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Abstract: Due to the growth of sensor technology, more affordable integrated circuits, and connec-
tivity technologies, the usage of wearable equipment and sensing devices for monitoring physical
activities, whether for wellness, sports monitoring, or medical rehabilitation, has exploded. The
current literature review was performed between October 2022 and February 2023 using PubMed,
Web of Science, and Scopus in accordance with P.R.I.S.M.A. criteria. The screening phase resulted
in the exclusion of 69 articles that did not fit the themes developed in all subchapters of the study,
41 articles that dealt exclusively with rehabilitation and orthopaedics, 28 articles whose abstracts were
not visible, and 10 articles that dealt exclusively with other sensor-based devices and not medical
ones; the inclusion phase resulted in the inclusion of 111 articles. Patients who utilise sensor-based
devices have several advantages due to rehabilitating a missing component, which marks the ac-
complishment of a fundamental goal within the rehabilitation program. As technology moves faster
and faster forward, the field of medical rehabilitation has to adapt to the time we live in by using
technology and intelligent devices. This means changing every part of rehabilitation and finding the
most valuable and helpful gadgets that can be used to regain lost functions, keep people healthy, or
prevent diseases.

Keywords: medical rehabilitation; sensor-based devices; virtual reality in rehabilitation; rehabilitation
robotics; artificial intelligence

1. Introduction

It has been observed in recent years that remarkable progress has been made in the
development of sensors. These advancements in sensor technology provide opportunities
that have never been available before for the early diagnosis and prevention of human dis-
eases by detecting critical biomarkers and health assessments via monitoring and analysing
human physiological signals in healthcare and biomedical applications [1].

The development and integration of materials science, sensing methods, wireless
technologies, and the Internet of Things (I.o.T.) have considerably helped the evolution of
wearable gadgets. Wearable technology has emerged as an innovative new approach to
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leading a healthy lifestyle. The amount of wearable technology worldwide has been on
the rise, as shown by research conducted by the International Data Corporation (I.D.C.) [2].
Over the course of the last two years, it has seen remarkable expansion. Even though the
pandemic hit it in 2020, the company’s exports nonetheless climbed by 32%, reaching a total
of 444.7 million CNY. It is clear that wearable technology is continuing to be popular, and
there is also a rising demand in the market [3]. Wearable technology for health monitoring
often consists of miniature rigid circuit boards and block power sources attached to different
regions of the human body, most notably the wrist, to monitor physiological data in
real-time [2].

Wearable gadgets, also known as devices that can be worn on the body and monitor
many activities and characteristics, are becoming more popular among the general public
and are seeing increased sales and use. Wearable technology has many applications, but one
of the most important ones is in medicine, namely, in biomedical research, clinical treatment,
personal health practices and monitoring, technological development, and engineering. In
this setting, the use of wearables for medical purposes has been linked to several promises
and advantages for more digital, individualised, preventative care [4].

The availability of consumer and medical products that use wearable sensor technol-
ogy has progressively increased over the last several years. This includes a broad range
of well-established consumer products. Wearable technologies can offer real-time feed-
back on a person’s health status. As a result, they may provide an objective alternative
to manage and monitor the course of chronic diseases, such as in the case of the elderly,
within rehabilitation, and for people who suffer from various impairments. Because of its
hardware capability, compact size, and reduced cost compared to analogous medical tools
capable of monitoring the same vital signs, wearable sensors have widespread use in health-
care [5]. In addition, wearable technology enables rehabilitation outside of the hospital in
an ambulatory setting, which brings the overall cost of intensive therapy down [6].

The research community and the industry are using I.o.T. applications with real-time
integrated devices to improve the lives of average users. The I.o.T. is increasingly used
everywhere, especially in the healthcare system. This is because the healthcare system offers
clinical facilities, nursing for patients, cutting-edge searching and monitoring of medical
challenges, computer-based treatment, and constant backup facilities for patients [7].

With the evolution of body area sensing and network technologies, wearable rehabili-
tation technology has opened up the possibility of independent training, which has many
advantages over traditional rehabilitation services. Inertial measurement units (IMUs),
including accelerometers and gyroscopes, have been widely used in technology-assisted re-
habilitation with sufficient effectiveness. However, despite the potential use of IMU-based
sensors in neurorehabilitation and for treating musculoskeletal impairments, some such
sensors have been used in clinical trials [8].

Image-based and wearable sensor systems have been used to assess exercise and body
movements, applying methods developed in human activity recognition. Image-based
systems have many challenges (related to configuration, line of sight, and computational
requirements) that may limit their suitability for home rehabilitation assessment and
posture monitoring. Portable sensors with inertial measurement units (IMUs) have been
widely used in various scenarios. IMUs are easy to incorporate, compatible with a variety of
contexts, and present fewer privacy problems. This device seems to be a potential solution
for monitoring adherence to rehabilitation protocols and posture [9,10].

This study aims to analyse the role and importance of using sensor-based devices in
medical rehabilitation, evaluating their effects on the quality of patients’ rehabilitation,
as well as the pact of using smart devices on patients and physiotherapists. Also, this
study aims to evaluate the use of advanced technology in medical rehabilitation and its
usefulness at the expense of classical methods and techniques used since ancient times
by physiotherapists.

The degree of novelty of this review consists of addressing a current issue in physical
therapy, namely, the use of smart devices based on sensors on the quality of rehabilitation
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of various pathologies and dysfunctions of patients. Their use nowadays has become a
beneficial and frequently used alternative, both due to the pandemic context we have gone
through and the accelerated advancement of technology.

2. Materials and Methods

Using the databases PubMed, Web of Science, and Scopus, the current literature review
was compiled between October 2022 and February 2023 in compliance with the P.R.I.S.M.A.
guidelines (Table 1).

Table 1. The search strategy used in PubMed, Web of Science, and Scopus, with each search term.

Database Search Terms

PubMed

(Sensor-based devices) AND (Rehabilitation) AND (Medical) OR
(Smart devices) AND (Rehabilitation) AND (Medical) OR (Video
Games) AND (Rehabilitation) AND (Medical) OR (Rehabilitation
robotics) OR (Artificial intelligence) AND (Rehabilitation) AND
(Medical) OR (Virtual reality) OR (V.R.) AND (Rehabilitation) AND
(Medical) OR (Medical rehabilitation) AND (New therapeutic
approaches) OR (Physical therapy) AND (Software) OR (Medical
rehabilitation) AND (Software) OR (Gamified rehabilitation).

Web of Science

(Virtual reality) OR (V.R.) AND (Rehabilitation) AND (Medical) OR
(Medical rehabilitation) AND (New therapeutic approaches) OR
(Physical therapy) AND (Software) OR (Medical rehabilitation) AND
(Software) OR (Gamified rehabilitation) OR (Sensor-based devices)
AND (Rehabilitation) AND (Medical) OR (Smart devices) AND
(Rehabilitation) AND (Medical) OR (Video Games) AND
(Rehabilitation) AND (Medical) OR (Rehabilitation robotics) OR
(Artificial intelligence) AND (Rehabilitation) AND (Medical).

Scopus

(Video Games) AND (Rehabilitation) AND (Medical) OR
(Rehabilitation robotics) OR (Artificial intelligence) AND
(Rehabilitation) AND (Medical) OR (Virtual reality) OR (Sensor-based
devices) AND (Rehabilitation) AND (Medical) OR (Smart devices)
AND (Rehabilitation) AND (Medical) OR (V.R.) AND (Rehabilitation)
AND (Medical) OR (Medical rehabilitation) AND (New therapeutic
approaches) OR (Physical therapy) AND (Software) OR (Medical
rehabilitation) AND (Software) OR (Gamified rehabilitation).

EndNote X9, a reference management application, was used to construct the records
recognised from the databases using the abovementioned keywords. It was also used to
help delete articles that were duplicated.

After that, depending on the designs of the studies, we attempted to include all articles
of the following types: a systematic review, a meta-analysis, a case–control study, a cross-
sectional study, a literature review, and a case report. However, we did not include expert
opinions, letters to the editor, or conference reports.

The data were obtained via the use of a word form. In order to develop the current
literature review, we went through each article that was chosen for evaluation and extracted
the material that we felt was relevant to the respective sub-chapter.

We want to mention the high number of duplicate articles because many are found in
two or even three databases.

The first search turned up 337 different titles in the databases mentioned above; the
database software deleted 78 duplicate articles, and 2 more articles were brought in from
external sources. After performing a relevancy check on the titles and abstracts of the
remaining 259 papers, we eliminated 78 research papers. At the screening stage, studies
were eliminated because of items that did not fit the themes developed in all subchapters of
the study (n = 69), because the articles dealt exclusively with rehabilitation and orthopaedics
(n = 41), because only the abstracts of 28 articles were visible, and because 10 articles dealt
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exclusively with other sensor-based devices and not medical ones; the inclusion phase
resulted in 111 articles being included in the study. The complete P.R.I.S.M.A. diagram is
seen in Figure 1.
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3. Medical Rehabilitation: New Therapeutic Approaches

According to the World Health Organization, physical rehabilitation is a set of inter-
ventions to optimise the body’s functions and reduce the disability of people with various
health problems [11]. Due to the awareness of the importance of functional and medi-
cal rehabilitation, rehabilitation services are continuously increasing, as well as chronic
conditions and disabilities [10]. Medical rehabilitation aims to improve the quality of
life, ensuring, in addition to the acquisition of functional independence, the individual’s
reintegration into society, one of the main objectives established at the beginning of a
rehabilitation program [12].

Physical therapy, also known as physiotherapy (which comes from the Greek words
fysis, which means nature, and therapia, which means treatment), combines a number
of different factors in order to treat and prevent diseases. These factors include natural
elements (the sun, the sea, healing mud, water, and movement) and manufactured elements
(electric current, ultrasound, artificial light, laser rays, and magnetic field). The effects of
their action include a reduction in pain, stimulation of restoration processes, increased range
of motion, activation of immunological systems, and improved biochemical performance.
When compared to other treatments, physical therapy is not only less expensive but also
less intrusive and more straightforward to put into practice [13–15].

Physicians such as Hippocrates, and later Galen, are believed to have been the first
physiotherapy practitioners. Around 460 BC, some practitioners advocated using massage,
manual therapy methods, and hydrotherapy to treat individuals. Due to the creation of
orthopaedics in the 18th century, devices such as the Gymnasticon were first designed to
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treat gout and other ailments of a similar kind through systematic joint exercise, similar to
later developments in physiotherapy [16].

Various factors impair a person’s physical abilities; many stem from a muscle, an acci-
dent, a surgical procedure, degenerative diseases, cardiovascular disease, and ageing [17].
Neurological and orthopaedic dysfunctions (acquired deficiency, congenital deficiency, or
incorrect posture) can lead to mobility issues [18]. Rehabilitation is necessary to maintain
or restore the patient’s mobility or function. The goal is to recover these impaired func-
tions entirely and, if that is not feasible, to enhance the movement of the upper and lower
extremities responsible for locomotion in order to attain functional independence [19,20].
In recent years, physical therapy office owners have seen technological trends that could
permanently change the standard of patient care. Because of these recent advancements
in physical therapy, patient treatment is now more readily available, simpler to deliver,
and provides better outcomes than a few industry standards that have been “tested and
proven” (Figure 2) [21].

3.1. Virtual Reality

As a result of recent technology breakthroughs, virtual reality (V.R.) is becoming
an increasingly popular tool for use in healthcare settings. These improvements present
opportunities for diagnosis and therapy. V.R. is a technology that creates the appearance
that the user is physically present in a simulated environment by means of the usage of
a headset to mimic a reality in which the user is immersed in a simulated setting. V.R.
provides users with a wide variety of options for how they may engage with a virtual
environment or with virtual characters. A better feeling of realism and the ability to have
meaningful interactions may be provided to the user through virtual characters, also known
as avatars [22].

The term “virtual reality” refers to a computer-generated, three-dimensional virtual
environment that users are able to interact with. A user’s many senses will be engaged
by the technology, which will then enable the user to interact with realistic 3D virtual sur-
roundings. V.R. is a kind of extended reality technology that differs from augmented reality
(A.R.), which is another sort of extended reality technology. Whereas AR superimposes
digital data onto the actual world, V.R. blocks off the real world and allows interaction
with a simulated virtual environment. Delivering simulated virtual worlds may either
be achieved in a non-immersive way or in an immersive way. In non-immersive virtual
reality, the virtual world is implemented by projecting it onto a big display or wall screen
(for example, Powerwall displays and cave automated virtual environments). On the other
hand, in immersive virtual reality, a head-mounted display is often used to offer complete
immersion and interaction with the virtual environment [23].

3.2. Motion Capture Tech

Motion capture (Motion Capture Tech) refers to the process of documenting movement,
whether of people or things. It has applications in the armed forces, the entertainment
industry, sports and medicine, computer vision, and robot validation applications [22].

Tracking the mobility of human bodies is now one of the study fields that are seeing
the highest growth. The word “motion capture” (MoCap) has been defined in various ways
by various researchers, each according to the particular study domain they specialise in.
The process of identifying and establishing the nature of a patient’s illness or condition
is known as medical diagnosis. This process, which plays an essential part in the area
of healthcare, is essential. Historically, diagnosing a medical condition mainly depended
on the knowledge and experience of experts working in healthcare. Nevertheless, there
has been a dramatic shift in how diagnoses are made in recent years due to technological
developments and the rise of artificial intelligence (A.I.) and Motion Capture Tech (MCT).
A medical diagnosis based on A.I. and MCT uses machine learning algorithms to examine
massive volumes of patient data, such as medical records, imaging scans, and genetic
information, to aid medical practitioners in making accurate and fast diagnoses [24].
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3.3. Video Games

In the last five years, for instance, mobile gaming has experienced exponential growth
in every country, accompanied by the appearance of powerful processors with stunning
graphics and high-speed performance. These technological advancements guarantee that
each patient possesses the necessary equipment for the physical therapist to prescribe
highly engaging treatment plans [25].

In light of this, recent advancements in gaming technology and telerehabilitation
are shifting the proportion of a therapist’s time spent on motor practice as opposed to
behavioural intervention. This innovative form of therapy allocates most of the therapist’s
time to behavioural interventions to improve arm usage. These interventions may be
carried out remotely through telerehabilitation, which increases accessibility. Patients may
use gaming technology designed for rehabilitation to manage their own intense motor
practice at home. The games increase in complexity over time, provide quick feedback, and
keep track of patients’ progress. This reversed approach to patient care was shown to be
risk-free and doable, and the patients favoured it. However, in order to evaluate whether
or not dedicating therapist time almost exclusively to behavioural intervention may be
just as beneficial as typical rehabilitation, which predominantly employs therapist time
for motor practice, a definite pragmatic randomised controlled study is still required. In
addition, this self-managed, time-efficient strategy’s success must be compared with the
efficacy of a complete time-intensive intervention (CI therapy), in which a therapist gives
both motor practice and behavioural treatment to the patient [25].

3.4. Physical Therapist Practice Management Software

In this demanding era of usage, outcomes research, and cost efficiency, it is necessary
to have open-ended medical practice management systems that are efficient with both time
and resources and have the ability to enhance patient care. As a result, medical practice
offices in developing nations are going through significant micro-processing shifts, a crucial
standard for recording and conveying patient care that has emerged over the last decade.

The patient management system (P.M.S.) and the electronic medical record (E.M.R.)
are currently considered the most important types of medical software in emerging nations’
medical informatics. An electronic medical record (E.M.R.) is a repository of information
regarding the health of a subject of care that is in a form that a computer can process,
can be stored and transmitted in a secure manner. On the other hand, medical practice
management software, often known as P.M.S.s, is a form of medical software used to
manage the day-to-day activities in a hospital, physical therapy at home, or doctors’ clinic.
This is accomplished by dealing with the day-to-day operations of a medical practice at a
physician’s office [26].

3.5. Rehabilitation Robotics

At the moment, robots for rehabilitation are driving a significant amount of research
and development, and a great number of exciting new avenues are developing, both directly
related to mechanical instruments and in the assistance of a rehabilitation process that is
much more extensive.

There is potentially a good number of benefits that may come from providing reha-
bilitation with the application of mechanical technology. To be more specific, it makes
it possible for more rigorous and patient-specific rehabilitation operations and services
(which, in turn, increases the amount and trait of therapy that can be administered). In
addition, it enables all team members (including physiotherapists, physicians, bioengineers,
and others) to establish and administer specific work parameters in order to personalise
and optimise the patient’s rehabilitation process (the type of workout, the proportion of
contribution from the machine, the power, and the duration of the exercise) [27].
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3.6. Remote Medical Services

Physical therapists are discussing telehealth in physical therapy more frequently,
regardless of whether or not they have a well-known work system or are seeking to
operationalise a new telehealth base [28]. As an outcome of the unanticipated repercussions
of the coronavirus disease (COVID-19) pandemic, considerable adjustments have been
made to the way in which health systems provide healthcare services. Stay-at-home orders,
lockdowns, and social distancing are examples of the types of epidemic control measures
that have caused disruptions in the continuity of healthcare provision for COVID-19
patients and those whose conditions are not related to COVID-19. One of the adjustment
mechanisms includes the increased use of telemedicine to maintain this continuity, as it has
appeared to be interrupted by these types of epidemic control measures. As a result of the
circumstances in which the advantages of telemedicine have been acknowledged in earlier
instances of public health catastrophes, such as the severe acute respiratory syndrome
(SARS) or the Middle East respiratory syndrome (MERS) (2), this accomplishment has
appeared to utilised, with certain adjustments made for the COVID-19 pandemic [29].

Patients who live in distant places, such as rural populations in poor nations, who
often have limited access to healthcare, may benefit from the increased availability of
healthcare that is made possible via telemedicine. In addition to this, it is able to swiftly
deploy large numbers of physicians, which helps with triage and supplies clinical services
in situations when health institutions are unable to fulfil demand [30]. Moreover, from a
physical therapist’s standpoint, the time decreases associated with virtual care can increase
productivity. In general, telehealth technology is gaining traction because the product is
superior, quicker, and more time-efficient than in-person therapy in particular use incidents
and where this form of medical rehabilitation is feasible [31].
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4. The Importance and Benefits of Using Sensor-Based Devices in
Medical Rehabilitation

The importance and especially the benefits of using sensor-based devices in medical
rehabilitation is an issue entirely addressed by physiotherapists and other specialists in
the field of rehabilitation; as technology advances at a significantly accelerated pace and
devices are created for the rehabilitation of lost functions, the devices have become very
complex and require advanced training of the specialists who will use them (Figure 3) [31].

Sensor-based devices appeared relatively recently in medical rehabilitation, incorporat-
ing many techniques that physical therapists can use to achieve a series of goals established
at the beginning of the rehabilitation protocol [32].

Sensor-based devices appear in many forms and can be used in many ways, aiming to
rehabilitate some lost functions [33]. Thanks to specially created software, these devices
stimulate the receivers to regain lost or limited functions. To make rehabilitation interactive
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and as efficient as possible, many applications and software models have been created to
increase the quality of rehabilitation [33].

4.1. Telerehabilitation

Telerehabilitation represents a topical technique that will be around for a while [34].
With the prevailing pandemic restricting people to their homes, teleconsultation has become
an enormous trend, making life extremely convenient for patients and doctors [35].

Patients in rural areas can easily connect with specialists, parents can enjoy physical
therapy sessions without dropping their kids off at daycare, and others who struggle to go
out/have social anxiety can be treated from the comfort of home [36].

In fact, in countries such as Poland and Germany, telerehabilitation is reimbursed as
part of health plans for citizens [37].

4.2. Gamification

Gamified rehabilitation applications help to engage patients, which plays a crucial
role in deciding the success or failure of treatment [38]. Even the best plans fall apart
when the patient fails to perform the movements due to a lack of motivation or, in some
cases, boredom [39]. These apps provide an addictive and rewarding experience, releasing
dopamine each time the patient enters the game and prompting patients to return and
maintain their high mood [40]. Some of these apps allow patients to perform their exercise
program at home while playing fun video games. The games involve prescribed physical
therapy movements tracked with wearable sensors. Repetitions, trajectories, and time
taken are followed accurately, and exercises are performed incorrectly so that the plan can
be modified later [40].

4.3. Artificial Intelligence and Machine Learning

These two phrases are more than buzzwords, and they can change the image of the
healthcare industry [41]. These mean less time spent writing notes and Googling treatment
guidelines, recognising similar patterns in patient lesions, and simplifying patient-specific
procedures—automatically [42]. At the same time, they aim to store all patient data in
one place and be analysed to discover various perspectives we can use to improve our
treatment as physiotherapists [43–45].

4.4. Pulsed Electromagnetic Field (P.E.M.F.)

Pulsed Electromagnetic Field P.E.M.F. therapy is a promising solution to reduce the
adverse effects of chronic stress –which is highly prevalent today [45]. Physiotherapists can
use P.E.M.F. to stimulate cells to improve the overall well-being of their patients [46]. As a
large portion of the workforce works from home, their increased exposure to harmful rays
and frequencies (cellphones, blue lights, and Wi-Fi) has added to the increased time spent
on electronic gadgets, the stress of additional tasks, and the absence of rest, creating a clear
need for this type of sensor [47,48].
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5. The Benefits of Using Sensor-Based Devices on Patients
The Quality of Rehabilitation of Lost Functions Using Sensor-Based Devices

Using sensor-based devices has many benefits for patients because the rehabilita-
tion of a missing part represents the achievement of a fundamental objective within the
rehabilitation program (Figure 4) [49,50].

Medical devices that use immersive virtual reality use neuro-motor and cognitive
rehabilitation techniques for patients of any age (children, adults, and elderly) with neu-
rological disease disorders such as stroke, cerebral palsy, Parkinson’s, and autism [51,52].
Specific medical tools can construct what is known as a “sensory chamber”, which allows
the patient to participate in a stimulating, immersive experience that mimics a variety of
actual settings. It will enable us to make the patient’s rehabilitation process much more
efficient by involving the subject in an exciting experience. It is possible to make changes to
exercises in real-time and tailor them to the individual patient’s capabilities [53,54].

Sensor-based systems may generate environments on the walls or floors where the
patient can engage with the delivered stimuli. The analysis equipment monitors the
patient’s motion and behaviour to adjust the projected environment appropriately. These
adjustments include the delivery of powerful incentives and rehabilitative audio–visual
feedback via full-body immersion [55]. The program is already set up with a series of
workouts, each of which may be adjusted to the amount of difficulty that the user likes,
speed of execution and sensitive areas for different categories of patients, and, of course,
various pathologies and rehabilitation programs [56]. By using this system, one therapist
will be in charge of the rehabilitation of several patients at the same time, who will all be
working in parallel [57,58].
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Utilising sEMG sensors in addition to IMU sensors to monitor individuals while they
exercise is one method used for remote evaluation of the characteristics of rehabilitative ex-
ercise described by some authors [59]. The authors noted that the method was conducted on
17 patients undergoing physical therapy, attaining a median reliability of 96% in observing
speedup, rotation, angular velocity, and posture statistics during monitored exercises [60].
The developers also mentioned that the method attained this level of precision. A separate
study combined sEMG detectors and accelerometers with a game-predicated teaching
device and a user-feedback network to create a wearable application. This study’s findings
demonstrated the system’s performance, gaming experience, and training impact [61].

Numerous studies [62] have examined the utilisation of force sensors to generate
pressure foot assessments. In a different publication, the authors described a portable and
discrete system that could calculate ambulatory motion and balancing measurements, such
as the deduced centre of mass and the dynamic extremity of equilibrium. The technology
can treat impaired motor skills, gait, and equilibrium in Parkinson’s disease, multiple
sclerosis, and elderly populations [63]. The absolute root mean square error (R.M.S.) for an
ambulatory locomotion and stability system comprising 3D F&M (forces and moments) and
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IMU sensors was 2.2 0.3 cm. The researchers examined various configurations of pressure
sensors on each limb in addition to an ultrasound spectrum estimate and discovered that
the R.M.S. error was relatively minor. Their study found that positioning pressure sensors
beneath the heel and toe provided a simple and unobtrusive alternative to F&M detection
for estimating ambulatory locomotion and dynamic stability [64].

Both Yu et al. [65] and Hayward et al. [66] centred their research on the use of wearable
sensor networks for patients who had strokes. The first study investigated whether or
not accelerometers may be used as a tool to evaluate real-world upper-limb usage after a
stroke, and the second paper analysed the possibility of wider use in clinical and research
settings. In the first research study, the authors suggested a remote quantitative Fugl–Meyer
evaluation framework for stroke patients. This framework makes use of wearable sensors
in order to monitor the movement function of the patient’s upper limbs, wrists, and
fingers. In the second study, we investigated whether or not there is a possibility of
broad adoption in clinical and scientific settings. These papers highlight the potential of
wearable sensor networks to enhance stroke rehabilitation and evaluation, as well as the
need for standardised protocols, apps, and data interpretation in order to encourage more
deployment of the technology [67].

Integration of small sensor components into on-chip electronic systems with ultra-low
power consumption has been made possible by recent technology breakthroughs for the
automated detection of functional activities of daily living in patients who have had a
stroke. This has led to the creation of “hybrid” wearable sensors, which integrate in a single
capsule (i) motion sensing and (ii) E.M.G. detection of muscle activity. These sensors have
been made possible because of the rise of hybrid computing. When evaluating and treating
patients with motor impairments, hybrid sensors may be especially beneficial for detecting
the quality of their movement. In point of fact, evaluating the features of the wearer’s
movement and the underlying muscle activity responsible for controlling the movement
allows for a more comprehensive analysis of movement dysfunction. An electromyography
(E.M.G.) recording component and a motion component, such as an accelerometer or IMU,
are included in modern hybrid sensors used for movement monitoring [68–71].

Roossien et al. (2021) [72] devised a technique for the assessment of lumbar load
that is based on the use of sensors. The technique utilises six inertial measurement unit
(IMU) sensors placed on the sternum, pelvis, and upper and lower arms. An approach
that makes use of artificial neural networks to arrive at an estimate of the net moment that
occurs around the L5/S1 intervertebral body is what is used to quantify the lumbar load.
In healthy people, the variations in the estimated lumbar load were consistent with the
reported intensity levels and the nature of the labour activities, which provided support for
the validity of the sensor-based technique. It is possible to utilise this approach to monitor
lumbar load in persons with musculoskeletal problems such as lower back pain, evaluate
muscle overload during rehabilitation, and assist physicians in customising therapies [73].

Prasanth et al. (2021) [74] conducted a comprehensive study to investigate the sensor-
based methodologies that were used for real-time gait analysis. Most of the time, threshold
or peak identification techniques are utilised in conjunction with inertial measurement
devices attached to the shin and the foot to perform gait analysis. Pathological gait data
were used to verify less than one-third of the sensor-based algorithms for gait analysis.
Inertial measurement units and rule-based procedures are the ideal options for clinical gait
evaluations [73]. This is because both types of methods provide accurate results.

Validated as a Class I medical device, the D.M.D. (Orthelligent knee, OPED, Valley,
Germany) [75] is a knee-replacement system. It includes a training program, paper, and
online training videos for each exercise, as well as settings for training control for each
activity. Additionally, it includes an inertial motion sensor and software that can be
downloaded onto individual cell phones. In rehabilitation for problems affecting the hip,
knee, and foot (such as injuries or surgical treatments), Orthelligent offers exercises tailored
to each step of the process. The sensor of the D.M.D. is a piece of objective measuring
equipment that is fastened to the lower leg right below the head of the tibia. After an
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injury such as replacement of the anterior cruciate ligament (A.C.L.), the D.M.D. is utilised
in home-based settings as an add-on to stage-specific routine physiotherapy to conduct
particular tests in the categories range of motion (R.O.M.), coordination (motor control),
and dynamic testing (strength/speed). Patients have complete control over whatever
activities and examinations they choose to participate in. Using the D.M.D. algorithm,
measured values of the damaged leg are compared to those of the contralateral unaffected
limb. The results of this comparison are then shown as graphs displaying the relative
values (symmetry or FIT Index) and changes that occur throughout rehabilitation. The
purpose of the Orthelligent system is to encourage patients to carry out the exercises
prescribed by their health care practitioner in a manner that is adequate, frequent, and
accurate qualitatively, as well as to fortify patients’ motivation via the use of autofeedback
in the context of self-monitoring [76].

Monitoring the human body and its dynamics supports exercise, clinical interventions,
and physical therapy in terms of patient rehabilitation [77,78]. Based on the information
presented in this section regarding the use of sensor-based devices in patient rehabilitation,
the use of sensor-based devices in rehabilitation is evident. In order to achieve this objective,
inertial sensors, pressure sensors, and bioelectric sensors, particularly those used for elec-
tromyography, are frequently combined with bioelectric sensors [76]. Moreover, numerous
motion monitoring sensors (such as infrared, ultrasonic, depth sensors, multi-array cam-
eras, and microphones) are typically included [79]. In addition, stimulation systems, such
as virtual reality and therapy-adapted video games, are frequently used as supplementary
platforms for rehabilitation [80,81].

6. The Impact of the Use of Sensor-Based Devices on Physiotherapists

Physiotherapists are specialists in the field of human biomechanics, and they play an
essential part in the prevention, diagnosis, evaluation, treatment, and (re)habilitation of
persons whose mobility and function are threatened or hindered as a result of ageing, injury,
illness, conditions, or environmental factors [82–84]. Physical therapists help individuals in
all phases of life recover from injuries, decrease pain and stiffness, promote mobility and
movement, and maximise function and quality of life by considering a person’s physical,
psychological, emotional, and social well-being [85,86]. Physiotherapists work in the health
care system, including hospitals, schools, private clinics, home care, long-term care facilities,
and organisations [86,87]. The increased need for human resources is a current issue in
this field, primarily due to the shift from treatment-focused care to preventive care and the
increase in the number of older people with chronic conditions and the associated demands
on the healthcare system [88].

In a multidisciplinary team, physiotherapists can work individually with patients with
musculoskeletal and neurological conditions, provide fall prevention, and educate patients
and caregivers about preventing and managing chronic diseases [89]. Physiotherapists also
play a significant part in group rehabilitation programs, which are geared at the prevention
and management of chronic illnesses, as well as the promotion of health and well-being in
the community [90]. Physiotherapists are also responsible for regaining patients’ physical
and functional independence, one of the first goals set at the beginning of a rehabilitation
plan [89,91]. At the same time, physiotherapists play a significant role in the area of
prophylaxis, as they are the ones who establish prevention programmes for certain diseases
and determine their progression and adaptation [92,93].

The impact of using sensor-based devices on physiotherapists and specialists in re-
habilitation medicine has been discussed and analysed from several perspectives over
time [94]. As well as other intelligent devices that have recently appeared and are used in
the medical rehabilitation of patients, sensor-based devices considerably facilitate the work
of a physiotherapist [95].

As a primary benefit of using sensor-based devices on physiotherapists, we mention
the reduced therapy time; many recovery goals are achieved with the help of these devices,
shortening both the recovery period of lost functions and the duration of a recovery
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session [96,97]. The physiotherapist can also work with multiple patients simultaneously
using various sensor-based devices, with the physiotherapist monitoring the activity in the
physiotherapy office and the effectiveness of the chosen treatment [98].

Regarding telerehabilitation and robot-assisted rehabilitation, physiotherapists may
face several issues related to the need for a team, as these devices can be coordinated
and guided by a reliable specialist [99]. This can be considered both an advantage and a
disadvantage for medical rehabilitation specialists [100].

7. Limitations of Using Sensor-Based Devices in Medical Rehabilitation

Using sensor-based devices in physical therapy has become increasingly popular [101].
Although the use of sensor-based devices facilitates in many ways both the functional
rehabilitation of the patient and the physical work of the physiotherapist, their use has
several limitations [102]. The ever-increasing use of devices in physical therapy offices
makes physical therapy much more interactive, thus increasing the quality of patients’
rehabilitation [103].

However, the availability of these sensor-based devices is quite limited because they
are expensive, most of them being quite challenging to acquire or requiring advanced
training of physiotherapists in their correct and effective use [104,105].

Although the benefits of using sensor-based devices in medical rehabilitation have
been demonstrated, their use in rehabilitation and rehabilitation programs is still in its
infancy, with many physiotherapy specialists opting for classical methods and techniques
over advanced technology [105,106].

At the same time, the use of sensor-based devices also has several limitations for
physical therapists [107]. Although these devices facilitate the work of physiotherapists, the
advancement of technology in rehabilitation medicine forces specialists to keep up with the
rapid growth of new methods and techniques, adapting to new demands [108]. Also, these
devices, as well as many other robotic devices in the field of physiotherapy, can replace the
work of a physiotherapist, so the demand for specialists becomes slightly limited; some
attributions and roles of physiotherapists can be covered by a robot or artificial device [109].

Regarding the rehabilitation of the elderly, the use of sensor-based devices may be
limited by their willingness to try this type of therapy [110]. At the same time, geriatric pa-
tients can find it much more difficult to adapt to rehabilitation and rehabilitation techniques
that use these types of devices, being reluctant to follow this type of physical therapy and
opting for a classic rehabilitation program, which is sometimes not as practical [111].

8. Conclusions

The use of sensor-based devices today represents a highly beneficial alternative to
the rehabilitation of lost functions, facilitating both the work of physiotherapists and
maintaining the active attention of the patient during a rehabilitation session. Sensor-based
devices help patients’ functional rehabilitation thanks to software specially created by
specialists, but also by creating interactive activities, adopting a new approach to medical
rehabilitation, and using advanced technology, which keeps patients’ attention throughout
a rehabilitation session.

The increasingly accelerated advancement of technology makes the field of medical
rehabilitation adapt to the era in which we live, based on technology and smart devices,
adapting every aspect of rehabilitation and discovering the most valuable and beneficial
devices that can be used for regaining some lost functions, maintaining well-being, or
preventing some pathologies.

The use of sensor-based devices in medical rehabilitation is undoubtedly one of the
current therapies used more and more often in rehabilitation programs and physiotherapy
clinics, having numerous benefits both in the restoration of lost functions and in maintaining
the active attention of patients, facilitating the work of physiotherapists.
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