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Abstract: This research delves into the aspects of communication and connectivity problems within
random Wireless Sensor Networks (WSNs). It takes into account the distinctive role of the sink node,
its placement, and application-specific requirements for effective communication while conserving
valuable network resources. Through mathematical modeling, theoretical analysis, and simulation
evaluations, we derive, compare, and contrast the probabilities of partial and full connectivity within a
random WSN, factoring in network parameters and the maximum allowable hop distance/count hmax.
hmax captures the diverse range of delay-sensitive requirements encountered in practical scenarios.
Our research underscores the significant impact of the sink node and its placement on network
connectivity and the sensor connection rate. The results exemplify a noteworthy decline in the sensor
connection rate, dropping from 98.8% to 72.5%, upon relocating the sink node from the network center
to the periphery. Moreover, as compared with full connectivity, partial connectivity and the sensor
connection rate are more suitable metrics for assessing the communication capability of random WSNs.
The results illustrate that 1.367 times more energy is required to connect less than 4% of the remote
sensors, based on the examined network settings. Additionally, to increase the sensor connection rate
slightly from 96% to 100%, an additional 538% more energy is required in multipath fading based
on the widely adopted energy consumption model. This research and its outcomes contribute to
establishing appropriate performance metrics and determining critical network parameters for the
practical design and implementation of real-world wireless sensor networks.

Keywords: full connectivity; sink placement; partial connectivity; sensor connection rate; sink
placement; wireless sensor networks

1. Introduction

Network connectivity as a fundamental issue in Wireless Sensor Networks (WSNs)
has been attracting researchers’ attention for decades, primarily focusing on strategies to
achieve or maintain full connectivity for communication in diverse applications [1–6]. For
full connectivity, there exists at least one communication path connecting any pair of nodes
in the network. The isolation of one single node will render the resulting network discon-
nected [7]. In addition, a network is said to be k-connected if the removal of any (k− 1)
sensors does not render the resulting network disconnected [8]. However, sensor isolation
is not an exception but rather a state of normality in practice [9,10]. The underlying reasons
include, but are not limited to, workload variations, non-uniform data communication, un-
balanced energy consumption, different sensor capabilities, and so on. Thus, investigating
the properties of a partially connected WSN and examining the inter-relationships between
network parameters and the network performance while economizing network resources
is an imperative task.

Furthermore, the current literature on communication and connectivity analysis pre-
dominantly focuses on ad hoc network models where all nodes are treated as equivalent.
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The crucial and unique role of the sink node, responsible for data collection and fusion, has
not received the attention it deserves [7] in data-centric, power-restricted, delay-sensitive,
and fault-tolerant WSNs [11]. To be specific, a sensor’s connection status depends upon
its ability to establish a pathway to reach the sink node for data fusion. Unlike ad hoc
networks, a WSN is deemed unconnected, if the sink node does not belong to the giant
connected component. Considering that practical sink node placement is often constrained
by environmental factors [12], it is crucial to treat the sink node separately and consider its
placement in the connectivity analysis of a random WSN under various scenarios.

This motivates us to reevaluate connectivity from a different angle, integrating the
sink node and its placement for partial and full connectivity within a unified analytical
framework. In practical scenarios, environmental and terrain constraints impact the place-
ment of both the sink node and sensors [12]. Consequently, their final locations may have
deviated from the ideal positions, potentially requiring corner sink placement instead of
the central location. Figure 1a,b compares and contrasts the partial connectivity status of a
random WSN with the same settings but differing sink placements: centered versus cor-
ner. Intuitively, center-based sink placement performs better; however, not all application
scenarios allow for such convenience.

We also delve into the sensor-to-sink hop distance and its impact on network con-
nectivity in delay-sensitive Wireless Sensor Network (WSN) applications. To this end, we
introduce a maximum allowable hop distance hmax to simulate diverse delay-sensitive
application requirements. Specifically, a sensor is deemed unconnected if its hop distance
to the sink exceeds the application-specific threshold hmax, thus enabling the development
of an integrated framework that considers WSN parameters and application requirements
for sensor-to-sink connectivity analysis under various circumstances.

(a) Centered sink in a random WSN. (b) Corner-placed sink in a random WSN.

Figure 1. A partial connectivity comparison between a centered and a corner-placed sink in a random
WSN, with sensors represented by blue dots, the sink by a red dot, and wireless links by green dashed
lines. The communication range of the sink node is highlighted by a red circle with a gray shade.

1.1. Major Contributions

The major contributions of this paper are multiple-fold:

• Proposing an integrated analytical model for sensor-to-sink connectivity, partial con-
nectivity, and full connectivity analysis.

• Mathematically deriving the hop distance, sensor-to-sink connectivity, full connectiv-
ity, and partial θ connectivity with a numerical analysis.

• Conducting Monte Carlo simulations to investigate the impact of various network
parameters on full and partial connectivity under various circumstances.

• Examining the impact of sink node placement on the sensor connection rate and partial
and full connectivity under various scenarios.



Sensors 2023, 23, 9058 3 of 23

• Comparing the impact of critical network parameters on full connectivity and partial
connectivity and quantifying the benefits for efficiency while fulfilling application
requirements.

• Analyzing the trade-offs between energy efficiency and network connectivity and illus-
trating the significant advantages of energy conservation through partial connectivity
in both free space and multi-fading environments.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 discusses some related
works. Section 3 formulates the problem and defines the evaluation metrics. Section 4
presents the theoretical analysis. Section 5 discusses the simulation results. Finally, this
work is concluded in Section 6.

2. Related Works

Based on an ad hoc network model, Dousee et al. [13] illustrated the considerable cost
associated with achieving full connectivity and the detrimental impact of poor network
properties like the transport capacity. They also showcased that a slight relaxation of the
full connectivity requirement to a partial η-connectivity, where only a given fraction η < 1
the nodes is connected, can significantly conserve network resources while enhancing the
overall performance. Dousse et al. [14,15] extended this perspective by demonstrating
that full connectivity does not scale well with the network size and that maintaining
partial network connectivity leads to an optimal network throughput. Cai et al. [16]
demonstrated that a large number of extra sensors are required to connect a small fraction
of isolated sensor(s) for full connectivity. More specifically, they showcased that there
exists a critical sensor density λ0, around which the probability that at least a fraction
α(α < 1) of sensors are connected in the network increases sharply within a short interval
of node density λ. Recently, Fu et al. [7] considered the role of the sink node in the
network load distribution and presented a sink-oriented cascading model along with the
MA-TOSCA algorithm to enhance WSNs’ resistance to cascading failures through topology
optimization. By considering border effects based on a binary disk connectivity model,
Hoyingcharoen et al. [17] developed an analytical formula to determine the expected
degree of sink connectivity for homogeneous sensors that are unable to transmit directly to
the sink.

Other studies have been dedicated to analyzing the hop distance (i.e., hop count) due
to its close relationship with network connectivity, communication delays, and network
algorithms and protocols [18–23]. Li et al. [18] derived an analytical hop count distribution
(HCD) expression for a finite ad hoc network with all nodes randomly and uniformly
distributed. They also introduced an equivalent area replacement method to derive the hop
count distribution given an arbitrary source node and destination node pair and validated
their results via simulation. Tu [19] proposed a hop count matrix recovery scheme using a
decision tree methodology to recover missing items caused by attacks, and investigated
the topology inference and its applications in range-free localization of sensor nodes. They
transformed the hop count matrix into a classification problem, where multi-dimensional
features are used for joint prediction to achieve a more accurate recovery performance,
validated by their simulation results on the MATLAB R2016b platform. Huang et al. [20]
proposed a self-supervised hop-count-based model (HCM) to learn and estimate hop counts
based on both local and global contextual information to detect anomalies in attributed
networks. The experimental results showcased the effectiveness of their approach. Liu
et al. [21] proposed an algorithm employing a differential evolution algorithm to correct
the estimated distance for the DV-Hop localization algorithm for error reduction. Kanwar
et al. [22] proposed a framework for DV-Hop localization for displaced sensor nodes
using particle swarm optimization and compared its performance with the traditional
framework. They showed that their proposed method results in approximately 81% less
elapsed time and 67% less energy consumption, with comparable errors. Before that,
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Bettstetter et al. [24] formulated the hop distance in a uniformly distributed ad hoc network,
derived the one-hop and two-hop connectivity probability in closed-form expressions,
and investigated the hop distance distribution between any two nodes via simulations.
Dulman et al. [25] established the relationship between the hop distance and the Euclidean
distance in both 1D and 2D networks. They provided an exact recursive formula for 1D
networks, introduced two approximation methods for 2D networks, and showcased the
effectiveness of integrating these statistical findings into existing localization algorithms
to enhance performance. To address the question of ‘how many hops does it take for a
packet to be relayed for a given distance’, Zhao et al. [26] conducted both probabilistic and
statistical studies. They proposed an attenuated Gaussian approximation for the calculation
of the conditional pdf, denoted as f (γ|Hi), where Hi represents the minimum number
of hops, i, from the source to the specific node at Euclidean distance γ. Ta et al. [27]
formulated a recursive analytical equation to compute the k-hop connection probability for
two random sensors separated by an Euclidean distance x to be connected in k hops. They
validated this analysis through simulations. Recently, Li et al. [18] introduced the concept
of unconditional hop count distribution (HCD) for practical networks, which eliminates the
need for specifying the source-to-destination distance. They also introduced a mathematical
framework, named the EARM, and derived an analytical expression for the distribution of
hop counts in finite multi-hop ad hoc networks using minimum hop route mechanisms
and validated the analytical results via simulations.

Furthermore, to address the inter-related challenges of coverage, connectivity, and
energy efficiency, Banoth et al. [28] proposed an energy-aware distributed algorithm for
maximizing coverage and achieving energy-aware connectivity by grouping sensor nodes
into cover sets. The proposed algorithm maximizes the number of cover sets that take
turns being active to track discrete targets and extends the lifetime of each cover set. Fo-
cusing on the t-sweep coverage issue, Srinivas et al. [29] proposed a 1.5-approximation
approach to resolve the sweep coverage issue for a chosen point of interest, which indirectly
contributes to improving the network connectivity. Haq et al. [30] designed an adaptive
topology management scheme that leverages phase array antennas to create directional
transmission beams in WSNs. This approach extends the network’s lifetime by conserving
energy through focused transmission, enabling efficient re-establishment of communication
paths via alternate links when intermediate links fail and reducing overhead and energy
consumption during idle listening by other nodes. Considering a 3D heterogeneous WSN,
Guo et al. [31] presented an energy-efficient coverage method that combines 3D Voronoi
partitioning and the K-means algorithm to optimize node deployment and determine opti-
mal perceptual radii for an enhanced network coverage quality. Additionally, the proposed
method introduces a multi-hop communication and polling mechanism to minimize node
energy consumption for improved network coverage and an extended network lifetime.

With the notable successes of machine learning in computer vision, linguistics, and
control, recent research has leveraged the power of machine learning to enhance connec-
tivity and topology maintenance in WSNs. Banerjee et al. [32] proposed an ‘RL-Sleep’
algorithm that employs reinforcement learning (RL) techniques to enhance sustainable
connectivity by adaptively scheduling sleep patterns of network nodes based on their
perceptions of the environment and autonomous actions (transmit, listen, or sleep). Sharma
et al. [33] introduced a distributed RL algorithm based on Nash Q-Learning for sensor
node scheduling to maintain coverage and network connectivity. In the proposed method,
each node autonomously customizes the sensing range by learning a control policy to
maximize the coverage rate while extending the network lifetime to maintain connectivity
in resource-constrained WSNs. Kumar et al. [34] explored the application of RL algorithms
to optimize the process of connectivity restoration in cases of network disruptions or par-
titions. Chandrasekar et al. [35] introduced a hybrid deep learning approach to preserve
network connectivity while improving WSN coverage. The hybrid approach effectively
navigates the trade-off by leveraging deep neural networks (DNNs) to monitor network
conditions and RL to make real-time decisions that optimize both the coverage and lifetime.
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Nguyen et al. [36] presented a self-learning clustering protocol to autonomously identify
neighboring nodes and the network’s topology, aiming to maintain robust and continuous
network connectivity. Mirzaei et al. [37] proposed a deep-learning-based approach for
establishing connectivity in mobile sensor networks, where high-traffic zones may lead
to energy depletion and network partitioning. In their approach, beamforming strategies
were employed to enhance the connectivity of isolated sensors and reduce the energy by
up to 30% in partition healing while ensuring the network throughput via simulation.

3. Modeling, Problem Formulation, and Definitions
3.1. Modeling and Problem Formulation

Two common models, including the network deployment model for spatial sensor
distribution and the disk communication model for wireless communication channel
between sensors, are adopted [12,16,25,38].

In the network model, a number of N sensors are randomly and independently
deployed in a bounded two-dimensional square field of interest (FoI) with side length
L and area A = L ∗ L, as shown in Figure 2. The sink node is located at a position
(xc + σx, yc + σy), where (xc, yc) is the sink’s candidate position and σx and σy are the
skewed or deviated distance in the x and y dimensions.

Note that σx and σy are introduced here to simulate the impact of environmental and
terrain factors during deployment. For instance, a set of sensors is intended to be deployed
in a designated region centered at the sink node; however, due to wind and/or terrain
effects, they might eventually deviate from their intended positions by a distance of σx
and σy, respectively. Consequently, the sensors are deployed at an offset distance of σx
and σy from the centered sink node. Here, σx and σy represent the relative offset distance
between the sink node and sensors, and a Cartesian system can be constructed accordingly,
as shown in Figure 2.

Figure 2. Modeling a randomly deployed Wireless Sensor Network (WSN) with a skewed sink node
in a square candidate region of side length L = 1000, where the candidate sink position is at the
network center (L/2, L/2). Sensors are depicted as blue dots, the sink as a red circle, and the center
as a black circle.
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In the disk communication model, any two sensors si(xi, yi) and sj(xj, yj) can commu-
nicate with each other directly if the Euclidean distance between them is no more than the
communication range rc [39]. Namely, si and sj can communicate directly if and only if:√

(xi − xj)2 + (yi − yj)2 ≤ rc, (1)

and thus are called neighbors.
A sensor is said to be connected if and only if there exists a communication path

to reach the sink node directly or in a multi-hop fashion. Any two sensors can also
communicate in a multi-hop way if there exists a communication path connecting them.

3.2. Definitions

To investigate the connectivity problem in a random WSN, we define the following
metrics for performance evaluation:

• Hop Distance P(h|d): It is defined as the probability that a random sensor at an
Euclidean distance of d to the sink has an h-hop communication path to the sink.

• Sensor-to-Sink Connectivity Pcon(x, y): It is defined as the probability that a sensor at
position (x, y) is connected to the sink within hmax hops, where hmax is the maximum
allowable hop distance specified in a WSN application. Namely, Pcon(x, y) is the
probability that there exists a h(h ≤ hmax) hop communication path between the
sensor at (x, y) and the sink.

• Partial θ-Connectivity: Given a maximum allowable hop distance hmax and θ (θ < 100%)
in a WSN application, the partial θ-connectivity is defined as the probability that at
least a fraction of θ sensors are connected to the sink within hmax hops.

• Sensor Connection Rate (SCR: α): It is defined as the percentage of connected sensors
in a WSN. Mathematically speaking, it is expressed as α = Nc

N ∗ 100%, where Nc is the
number of sensors that can form a communication path within hmax hops to the sink
and N is the total number of sensors in the WSN.

• Normalized Energy Consumption Ratio (NECR): It is defined as the ratio of energy
consumption Etx(l, rc) to the baseline Etx(l, r0), where r0 represents the baseline com-
munication range.

4. Theoretical Derivation and Analysis
4.1. Minimum Node Degree Analysis

In the considered network model, the probability that m sensors reside in the commu-
nication area πr2

c of an arbitrary sensor si follows the Poisson distribution.

P(m, λπr2
c ) =

(λπr2
c )

m

m!
∗ e−λπr2

c , (2)

where λ = N/A.
The probability that there are no neighbors within a random sensor si’s communication

area of πr2
c can be derived as P(0, λπr2

c ) = e−λπr2
c .

Let di represent the node degree of sensor si. The probability that si is not isolated, i.e.,
there exists at least one neighboring sensor within its communication range rc, denoted by
P(di ≥ 1), can be calculated as:

P(di ≥ 1) = 1− e−λπr2
c . (3)

P(di ≥ 1) provides the probabilistic lower bound for sensor connectivity, and critical
network parameters can be calculated in given conditions accordingly. For example, given
a required probability of ξ(ξ ≤ 1) that no node is isolated in a WSN application, the average
node degree davg can be derived as ξ = 1− e−davg , and we have

davg = − ln(1− ξ). (4)
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Figure 3 illustrates the critical average node degree davg = λπr2
c with varying ξ for

N = 200, 500, 800, 1000, respectively. We observe in the figure that, given ξ, the required
average node degrees for all four study cases are overlapped and they increase as ξ increases.
This indicates that the critical average node degree plays a determining role in fulfilling
the lower bound of sensor connectivity. Moreover, when ξ approaches 1, the required
average node degree increases sharply. This confirms the necessity of investigating the
partial connectivity problem in WSNs.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
ξ

0

10

20

30

40

50

60

70

d a
vg
 =
 λ
πr

2 c

Probabilistic Lower Bound
N = 1000
N = 800
N = 500
N = 200

Figure 3. Critical average node degree davg = λπr2
c with varying ξ for N = 200, 500, 800, 1000,

respectively.

Let dmin represent the minimum node degree in the network and assume statisti-
cal independence. The probability that none of the N sensors are isolated, denoted by
P(dmin ≥ 1), is derived as [40]:

P(dmin ≥ 1) = (1− e−λπr2
c )N . (5)

Figure 4 illustrates the probability of having no isolated sensor with the considered
WSN settings, while varying the communication range rc from 40 m to 150 m for N = 200,
500, 800, 1000, respectively. It can be observed that there exists a critical communication
range around which the probability P(dmin ≥ 1) rapidly transitions from 0 to 1 within a
short interval of communication ranges, and the length of these intervals varies with the
node density. For instance, in WSNs with a high node density (i.e., N = 1000), the interval
is much shorter than that in low-density networks (e.g., N = 200). Detailed results for this
analysis are presented in Table 1.
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Figure 4. P(dmin ≥ 1) with varying rc from 40 m to 150 m for N = 200, 500, 800, 1000, respectively.

Table 1. Critical communication range for varying P(dmin ≥ 1) when N1 = 200, N2 = 500, N3 = 800,
N4 = 1000, respectively.

rc 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

N1 = 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.29 0.50 0.69 0.82 0.90 0.95 0.98

N2 = 500 0.00 0.00 0.01 0.17 0.52 0.80 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N3 = 800 0.01 0.22 0.67 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N4 = 1000 0.18 0.68 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4.2. Sensor-to-Sink Connectivity

In this section, we derive and analyze the delay-oriented sensor-to-sink connectivity,
the full connectivity, and the partial θ-connectivity according to the network models and
definitions in Section 3.

Theorem 1. Suppose hmax (hmax > 0) is the maximal allowable hop distance for timely communi-
cation in a given WSN application. Let Pcon(x, y) be the probability that a sensor at position (x, y)
is connected to the sink at position (x0, y0) within hmax hops in the considered network model with
node density λ and disk communication range rc. Pcon(x, y) can be derived as:

Pcon(x, y) = Σhmax
h=1 P(h|

√
(x− x0)2 + (y− y0)2), (6)

where P(h|
√
(x− x0)2 + (y− y0)2) = (1 − e−2λ

∫ d+rc
d−rc P(h−1|l)lθdl) ∗ (1 − ∑h−1

k=1
P(k|

√
(x− x0)2 + (y− y0)2)).

Proof. The Euclidean distance from the sensor at position (x, y) to the sink is computed as
d =

√
(x− x0)2 + (y− y0)2. P(h|d) is the probability that sensor s at distance d is h hops

away from the sink. Then, the probability that the sensor s(x, y) at distance d to the sink is
connected within the maximum allowable hop distance hmax is computed as:

Pcon(x, y) = Σhmax
h=1 P(h|d). (7)
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Without loss of generality, we build a Cartesian coordinate system and set the sink at
the origin O(0, 0), shifting the Cartesian coordinate system if x0 6= 0 or y0 6= 0. According
to the disk communication model, the probability that the sensor s is connected to the sink
in one hop is given by:

P(h = 1|d) =
{

1, d ≤ rc;
0, d > rc.

. (8)

When d > rc, the sensor can only form a multi-hop communication path to the sink.
On the one hand, it can reach the sink in two hops like sensor B (using A as a relaying
node), as illustrated in Figure 5. Specifically, the required conditions for a sensor like B to
be two-hop-connected are:

• The Euclidian distance from the sensor to the sink must be between rc and 2 ∗ rc, i.e.,
rc < d < 2rc.

• There should exist at least one sensor like A in the intersectional area between the
communication disk centered at the sink and that centered at the sensor, i.e., the
shaded area as shown in Figure 5.

B

sink

A
C

Figure 5. Illustration of a multi-hop communication path sink&→ A→ B→ C, where A, B, and C
represent three sensors. The overlapped communication range of the sink and the 2nd-hop sensor B
is represented by the slashed area where sensor A is located and acts as a relay between the sink and
sensor B. The Euclidean distance between the sink and sensor B is denoted as d, where rc < d ≤ 2rc.

Hence, the two-hop connection probability P(h = 2|d) for a sensor at distance d to the
sink can be derived as below:

P(h = 2|d) =
{

1− e−λS, rc < d ≤ 2rc;
0, otherwise,

(9)

where S is the area of the shaded intersectional communication area between the sink and
the considered sensor. S was derived in [27] as:

S = 2r2
c arcsin(

√
(1− d2

4r2
c
))− drc

√
(1− d2

4r2
c
). (10)

In Equation (9), e−λS is the probability that no sensor is deployed in the shaded area S
to serve as the relay sensor between sensor s and the sink. Thus, 1− e−λS is the probability
that at least one sensor exists in the shaded area S to connect sensor s with the sink in
two hops.

On the other hand, when rc < d < 2rc, it is possible that the sensor s is connected to
the sink in h ≥ 3 hops when there is no sensor located in the shaded intercommunication
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area. In order to derive the probability that sensor s at distance d is connected to the sink at
h(h ≥ 3) hops, i.e., P(h|d) for h ≥ 3, it is necessary to understand two necessary conditions:

• The sensor should not be connected to the sink within (h− 1) or less hops;
• There should exist at least one relaying sensor in its communication range and the

relaying sensor should be connected to the sink in exactly (h− 1) hops.

Considering the first condition, the probability that a sensor s at distance d is connected
to the sink within (h− 1) or less hops is derived as ∑h−1

k=1 P(k|d). Thus, the probability that
it is not connected within (h− 1) is computed as 1−∑h−1

k=1 P(k|d).
As to the second condition, the probability that at least one sensor is located in

sensor s’s communication range and the sensor is connected to the sink in exactly (h− 1)

hops can be computed as (1 − e−2λ
∫ d+rc

d−rc P(h−1|x)xθdx), where θ = arccos (d2+l2−r2
c )

2ld and
d − rc < l < d + rc. Consequently, the probability P(h|d) that a sensor at distance d is
connected at a hop distance of h(h ≥ 3) can be computed recursively via [27,41]:

P(h|d) = (1− e−2λ
∫ d+rc

d−rc P(h−1|l)lθdl) ∗ (1−
h−1

∑
k=1

P(k|d)).

Finally, given hmax, the probability that a sensor at position (x, y) with distance
d =

√
(x− x0)2 + (y− y0)2 is connected to the sink is derived as:

Pcon(x, y) =
hmax

∑
h=1

P(h|
√
(x− x0)2 + (y− y0)2). (11)

Figures 6 and 7 plot the numerical results on P(h|d) for h = 2, . . . , 6 in random WSNs.
Specifically, rc is fixed at 30 and the area of interest is fixed at A(−100 ≤ x ≤ 100,−100 ≤
y ≤ 100) with area |A| = 2002 square meters in both network settings. N = 600 and N = 100
are selected to generate different network topologies with average node degrees of 42 and 7
in Figures 6 and 7, respectively. It can be seen clearly that the probability that a sensor with a
certain distance to the sink is connected by h hops differs under different network settings.

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

P
(h

|d
)

N = 600, A = 200*200

 

 

h = 2

h = 3

h = 4

h = 5

h = 6

Figure 6. The probability that a sensor at distance d is connected to the centered sink at h hops in a
WSN with N = 600, rc = 30, and A = 2002 square meters.
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Figure 7. The probability that a sensor at distance d is connected to the centered sink at h hops in a
WSN with N = 100, rc = 30, and A = 2002 square meters.

Figure 8 depicts the probability P(d) for hmax = 4 and hmax = 6 for N = 100 and
N = 600, respectively. We observe that sensors at the same Euclidean distance from the
sink are less likely to be connected in a weakly connected WSN. For instance, when other
network settings remain the same, PN=100(d) < PN=600(d). Furthermore, sensors located
farther away from the sink have reduced sensor connectivity, i.e., P(d1) < P(d2) if d1 > d2
in a partially connected WSN. This is different from the sensor connectivity in a fully
connected WSN, where P(d) = 1 regardless of the sensor’s Euclidean distance d to the sink.
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Figure 8. The probability that a sensor at distance d is connected to the centered sink within hmax hops.
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4.3. Full and Partial θ Connectivity

Theorem 2. Suppose hmax (hmax > 0) is the maximal allowable hop distance for timely com-
munication in a given WSN application. Let Pcon(hmax) be the full connectivity probability that
all sensors are connected to the sink within hmax hops in the considered network model with N
randomly and independently deployed sensors. Assume (xi, yi) (i = 1, . . . , N) is the ith sensor’s
coordinate and the sink is located at position (x0, y0). Pcon(hmax) can be derived as:

Pcon(hmax) =
N

∏
i=1

Σhmax
h=1 P(h|

√
(xi − x0)2 + (yi − y0)2). (12)

Proof. A WSN is considered fully connected if all the N sensors are connected to the
sink within hmax hops according to the definition in Section 3.2. As proven in Theorem
I, the probability that a sensor at position (xi, yi) is connected to a centered sink within
hmax is given by Pcon(xi, yi) = ∑hmax

h=1 P(h|
√
(xi − x0)2 + (yi − y0)2) = ∑hmax

h=1 P(h|di) = (1−

e−2λ
∫ d+rc

d−rc P(h−1|l)lθdl) ∗ (1−∑h−1
k=1 P(k|di)), where di =

√
(xi − x0)2 + (yi − y0)2.

Assuming statistical independence for all the sensors, the full connectivity is calculated as:

Pcon(hmax) =
N

∏
i=1

Pcon(xi, yi). (13)

Consequently,

Pcon(hmax) =
N

∏
i=1

Σhmax
h=1 P(h|

√
(xi − x0)2 + (yi − y0)2)

=
N

∏
i=1

Σhmax
h=1 (1− e−2λ

∫ di+rc
di−rc

P(h−1|l)lθdl)

∗ (1−
h−1

∑
k=1

P(k|di)).

Theorem 3. Suppose hmax (hmax > 0) is the maximal allowable hop distance for timely communi-
cation in a given WSN application. Let Pθ(hmax) be the θ connectivity probability that a fraction
of θ sensors are connected to the sink within hmax hops in the considered network model with N
randomly and independently deployed sensors. Assume (xi, yi) (i = 1, . . . , N) is the ith sensor’s
coordinate and the sink is located at position (x0, y0). Pθ(hmax) can be derived as:

Pθ(hmax) = P[
ΣN

i=1Σhmax
h=1 P(h|di)

N
> θ],

(14)

where di =
√
(xi − x0)2 + (yi − y0)2 and P(h|di) = (1 − e−2λ

∫ d+rc
d−rc P(h−1|l)lθdl) ∗ (1−

∑h−1
k=1 P(k|di)).

Proof. As proven in Theorem I, the probability that a sensor at position (xi, yi) is con-
nected to the sink at position (x0, y0) within hmax hops is given by Pcon(xi, yi) = ∑hmax

h=1

P(h|
√
(xi − x0)2 + (yi − y0)2) = ∑hmax

h=1 P(h|di) = (1 − e−2λ
∫ d+rc

d−rc P(h−1|l)lθdl)∗
(1−∑h−1

k=1 P(k|di)), where di =
√
(xi − x0)2 + (yi − y0)2.

Assuming statistical independence for all the sensors, ΣN
i=1Pcon(xi, yi) is therefore the

sum of the N sensors’ connectivity and ΣN
i=1Pcon(xi ,yi)

N is the expected fraction of connected
sensors. According to the definition of partial θ-connectivity defined in Section 3.2, a WSN



Sensors 2023, 23, 9058 13 of 23

is said to be θ connected if at least a fraction of θ sensors are connected to the sink within
hmax hops, i.e., ΣN

i=1Pcon(xi ,yi)
N > θ. Thus, Pθ(hmax) is derived as:

Pθ(hmax) = P[
ΣN

i=1Pcon(xi, yi)

N
> θ],

= P[
ΣN

i=1Σhmax
h=1 P(h|

√
x2

i + y2
i )

N
> θ]. (15)

where P(h|di) = (1− e
−2λ

∫ di+rc
di−rc

P(h−1|l)lθdl
) ∗ (1−∑h−1

k=1 P(k|di)).

Figure 9 shows the network full connectivity, partial θ = 0.9 connectivity, and the
average sensor connection rate for varying values of node density when the communication
range is set as rc = 10 m. It is observed that the network full connectivity contrasts
sharply with the partial θ = 0.9 connectivity and a larger node density will be required
to connect the most isolated sensors for full connectivity. This is not economic for many
WSN applications that do not require full connectivity such as intrusion detection [38,42].
The results confirm the necessity of investigating the partial connectivity and examining its
impact on the hop distance under various settings.
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Figure 9. Full connectivity, partial 0.9 connectivity, and sensor connection rate in a random WSN.

5. Simulation and Discussion

In this section, we conduct extensive simulations to investigate network connectivity
for various WSNs. The simulation is developed in Java, and the results are aggregated and
plotted in Python 3. Unless otherwise specified, the network FoI is set as a two-dimensional
square with side length L = 1000 m. All simulation results are the average of 1000 runs.

Figures 10 and 11 showcase two examples of simulated WSN cases: (a) A simulated
WSN case with a bordered sink, where N = 500, rc = 50, and L = 1000. (b) A simulated
WSN case with a centered sink, where N = 500, rc = 65, and L = 1000. In both figures,
sensor nodes are denoted as blue dots, while the sink node is depicted as a red circle. The
communication links are represented by green dashed lines.
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Figure 10. An example of a simulated WSN case (a), where sensors are depicted as blue dots and
communication links as dashed green lines.

Figure 11. An example of simulated WSN case (b), where sensors are depicted as blue dots and
communication links as dashed green lines.

5.1. Impact of Communication Range rc

Figure 12 compares the sensor connection rate and the full connectivity when the
communication range is varied from 40 to 100 m while other network settings remain
the same.
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Figure 12. Connection rate vs. full connectivity in a random WSN.

We observe in the figure that the sensor connection rate differs significantly from the
full connectivity. For instance, when rc = 65, the full connectivity is low at 2.2%, while
the sensor connection rate is high at 96.35%. In addition, to achieve a high probability
of full connectivity (say 97.6%), the communication range should be set above 100 m in
the considered conditions. On the other hand, 96.35% sensors are well connected to the
BS when the communication range is only 65 m as indicated in the figure. Increasing
the communication range from 65 m to 100 m will introduce an extremely higher energy
consumption and communication interference. According to the free space model [2,43],
all sensors need to spend approximately 1002−652

652 = 1.367 times more energy to connect

less than 4% of isolated sensors, while 1004−654

654 = 4.60 times more energy will be required
if following the multipath fading model [2,43]. Further in-depth analysis is provided in
Section 5.4.

The results support our claim that the literature research results on achieving full
connectivity in random WSNs cannot be applied to many real-life WSN designs and
sensor deployments, as much larger communication ranges and radio powers are required
to connect a small fraction of remote sensors, resulting in a significantly higher power
consumption rate and network lifetime reduction.

5.2. Centered Sink vs. Bordered Sink

Figure 13 compares the sensor connection rate of the considered WSNs with a centered
sink and a bordered sink. In this study, 500 sensors were randomly scattered in the FoI for
all cases, and the communication range was varied from 40 m to 100 m to simulate different
ranges of sensors.

In the figure, we observe a noticeable difference between the two studied WSNs in
terms of the sensor connection rate. For example, to achieve a 95% sensor connection rate,
the communication range should be 70 m in the WSN with a centered sink, while it should
be increased to 100 m for the WSN with a bordered sink, with the other network parameters
remaining the same. We also observe that the sensor connection rate of a WSN with a
centered sink is always better than its counterpart with a bordered sink. For instance, the
sensor connection rate drops from 98.8% to 72.5% when the sink is moved from the center
to the border while rc = 70 m. This is because when the sink is placed on the border, the
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distance to sensors that are close to the other side increases significantly, which makes it
less probable for the remote sensors to establish a communication path to reach the sink.
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Figure 13. Sensor connection rate of a WSN with a centered sink vs. its counterpart with a bor-
dered sink.

Figure 14 compares the full connectivity of the same experiments as depicted in
Figure 13. Different findings are uncovered. To be specific, the full connectivity of the
studied WSNs with a centered sink nearly overlaps with the counterparts of a bordered
sink, as shown in Figure 14. This means, the position of the sink has negligible influence on
the full connectivity in the considered WSNs. This is because in a fully connected WSN,
all sensors including the sink should be connected, no matter where the node is located.
This also explains why very little work has taken into consideration the impact of sink
placement on the full connectivity of random WSNs in the current literature.

The results confirm our claim that the placement of the sink has an essential impact on
WSN partial connectivity in terms of the sensor connection rate.

5.3. Impact of Skewed Distance of Sink Placement

In this section, we investigate the impact of relative skewed or deviated distance,
denoted as dx and dy as defined in Section 3, on the network connectivity. For simplicity of
analysis, we assume dx = dy. Figure 15 illustrates the impact of dx and dy on the sensor
connection rate and the full connectivity in randomly scattered WSNs where N = 500,
L = 1000 for rc = 60, 65, and 70 m, respectively.

On the one hand, we observe in the figure that the skewed distance has a noticeable
impact on the sensor connection rate for all three considered communication ranges. We
also observe that there exists a critical skewed distance dc, around which the sensor connec-
tion rate in the network drops quickly from the upper bound to the lower bound, and the
critical skewed distance differs when network settings vary. For rc = 70 m, as shown in
the figure, when the skewed distance dx increases from 0 to 250 m, the sensor connection
rate is constant; however, it drops quickly when dx exceeds 250 m. On the other hand, it is
shown that the skewed distance dx has little impact on the full connectivity. This is because
all sensors, regardless of their locations, should be connected in a fully connected WSN.
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Figure 14. Full connectivity of a WSN with a centered sink vs. counterpart with a bordered sink.
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Figure 15. Impact of skewed distance dx of sink node on the sensor connection rate and full connec-
tivity, where dx = dy.

The results show that randomly deployed WSNs can tolerate some extent of the
skewed distance between the sink and the sensors for partial connectivity. Furthermore,
with the given network settings, there exists a critical threshold skewed distance, within
which the sensor connection rate is the same and beyond which it drops quickly.
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5.4. Energy Efficiency and Trade-Off Analysis

To analyze energy efficiency and examine tradeoffs in a WSN, we adopted the widely
accepted radio energy dissipation model introduced by Heinzelman et al. [2,43] for both
free space (d2) and multipath fading (d4) environments. Assuming a transmission range of
rc, the sending sensor consumes energy as follows to transmit an l-bit message:

Etx(l, rc) =

{
l · Eelec + l · ε f s · r2

c , free space
l · Eelec + l · εmp · l · r4

c , multi-path
(16)

where Eelec is the electronics energy and ε f s and εmp are the amplifier energies. The model
can be applied to various WSN applications by calibrating the parameters appropriately. In
the subsequent analysis, we assume the parameters Eelec = 50 nJ/bit , ε f s = 10 pJ/bit/m2,
and ε = 0.013 pJ/bit/m4 as used in [2].

Figure 16 illustrates the normalized energy consumption ratio (NECR) for the free
space environment, while Figure 17 compares the NECR in free space with multi-fading
environments. In both figures, the sensors’ communication range rc varies from 40 to
100 m, and the NECR is defined as the ratio of energy consumption Etx(l, rc) to the baseline
Etx(l, r0), where r0 is set to 40 m. We observe that in both figures, the Energy Consumption
Ratio increases rapidly, more than doubling in the free space environment and increasing
up to 40 times in the multi-path fading scenario as the communication range extends from
40 to 100 m while other settings remain the same. Note that the data for the free space in
Figure 16 are the same as those in Figure 17, which are provided for comparison purposes.

Figure 16. The normalized energy consumption ratio (NECR) for the free space environment in a
random WSN with a varying communication range (rc).

Figure 18 compares the normalized energy consumption ratio (NECR) in both free
space and multi-fading environments while varying the full connectivity requirements, and
similar trends were observed. Moreover, Figures 19 and 20 illustrate the tradeoffs between
the sensor connection rate and the normalized energy consumption ratio (NECR) for free
space and multipath fading, respectively. We observe that to increase the sensor connection
rate slightly from 96% to 100%, an additional 21% and 538% more energy are required for
free space and multipath fading, respectively, while keeping other parameters constant.
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Figure 17. The normalized energy consumption ratio (NECR) for both free space and multi-fading
environments in a random WSN with a varying communication range (rc).

Figure 18. The normalized energy consumption ratio (NECR) for multi-fading environments in a
random WSN with varying full connectivity requirements.
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Figure 19. The normalized energy consumption ratio (NECR) for both free space and multi-fading
environments in a random WSN with varying sensor connection rate requirements.

Figure 20. The normalized energy consumption ratio (NECR) for multi-fading environments in a
random WSN with varying sensor connection rate requirements.

This validates our claim that pursuing full connectivity introduces significant de-
mands on network resources and dramatically decreases the energy efficiency of a WSN.
Corresponding data values are also provided in Table 2 for a detailed comparison.
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Table 2. Impact of the communication range (rc) on the sensor connection rate and full connectivity.

Communication
Range (rc) NECR (d2) NECR (d4)

Sensor Connection
Rate

Full
Connectivity

40 1.00 1.00 0.026388 0

45 1.06439394 1.60063353 0.070502 0

50 1.13636364 2.43859649 0.233284 0

55 1.21590909 3.56944444 0.597838 0

60 1.3030303 5.0545809 0.879652 0

65 1.39772727 6.96125731 0.963496 0.022

70 1.50 9.3625731 0.988434 0.193

75 1.60984848 12.33747563 0.995576 0.406

80 1.72727273 15.97076023 0.997982 0.645

85 1.85227273 20.35307018 0.99912 0.818

90 1.98484848 25.58089669 0.999606 0.904

95 2.125 31.75657895 0.99976 0.946

100 2.27272727 38.98830409 0.999916 0.976

6. Conclusions

Through mathematical modeling, theoretical analysis, and simulation evaluation,
we have drawn the following conclusions. First, full connectivity is not an appropriate
requirement for many real-life Wireless Sensor Network (WSN) applications to adopt
due to the significant cost of precious network resources and reduced energy efficiency.
Second, a pre-defined sensor connection rate for partial connectivity is appropriate for
most WSN performance evaluations and should be adopted to direct real-life WSN design,
deployment, and implementation. Third, the placement of the sink node and its potential
skewed distance to all sensors have an essential impact on partial connectivity in terms of
the sensor connection rate, which should be taken into consideration. This paper provides
insight into the definition of appropriate network metrics and into the selection of critical
network parameters for real-life WSN design and implementation. In the future, we plan to
address partial connectivity along with coverage requirements for various applications and
investigate their trade-offs. Additionally, we intend to explore available empirical WSN
datasets and apply data science and machine learning techniques for predictive modeling,
pattern recognition, and performance evaluations and comparisons.
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