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Abstract: This paper proposes an energy-efficient multi-level sleep mode control for periodic trans-
mission (MSC-PUT) in private fifth-generation (5G) networks. In general, private 5G networks meet
IIoT requirements but face rising energy consumption due to dense base station (BS) deployment,
particularly impacting operating expenses (OPEX). An approach of BS sleep mode has been stud-
ied to reduce energy consumption, but there has been insufficient consideration for the periodic
uplink transmission of industrial Internet of Things (IIoT) devices. Additionally, 5G New Reno’s
synchronization signal interval limits the effectiveness of the deepest sleep mode in reducing BS
energy consumption. By addressing this issue, the aim of this paper is to propose an energy-efficient
multi-level sleep mode control for periodic uplink transmission to improve the energy efficiency
of BSs. In advance, we develop an energy-efficient model that considers the trade-off between
throughput impairment caused by increased latency and energy saving by sleep mode operation
for IIoT’s periodic uplink transmission. Then, we propose an approach based on proximal policy
optimization (PPO) to determine the deep sleep mode of BSs, considering throughput impairment
and energy efficiency. Our simulation results verify the proposed MSC-PUT algorithm’s effectiveness
in terms of throughput, energy saving, and energy efficiency. Specifically, we verify that our proposed
MSC-PUT enhances energy efficiency by nearly 27.5% when compared to conventional multi-level
sleep operation and consumes less energy at 75.21% of the energy consumed by the conventional
method while incurring a throughput impairment of nearly 4.2%. Numerical results show that the
proposed algorithm can significantly reduce the energy consumption of BSs accounting for periodic
uplink transmission of IIoT devices.

Keywords: private 5G; energy efficiency; small-cell base station; internet of things; reinforcement learning

1. Introduction

The number of connected Internet of Things (IoT) devices in 2023 is expected to be
16.7 billion, and it is predicted that the world will have over 30 billion connected IoT
devices by 2025 [1]. This connectivity enables data collection and exchange for better
insight, automation, and decision making in industries and daily life. Recently, many IoT
devices require outstanding performance criteria, such as massive connectivity, throughput,
ultra-low latency, and security. To fulfill these requirements, the fifth-generation (5G)
provides essential functionalities such as ultra-reliable and low-latency communication
(URLLC), enhanced mobile broadband (eMBB), and massive machine-type communication
(mMTC) [2].

The usage of IoT devices in the industrial world is increasing rapidly, and the integra-
tion of 5G technology is expected to drive further growth in this market. According to the
research report published by Future Market Insights, in 2023, it is expected that the global
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5G industrial IoT market will achieve a valuation of US $1.421 million and is anticipated
to reach a valuation of US $17.094 million in 2033 [3]. As industries continue to embrace
the proliferation of IoT devices in the 5G network, a private 5G network is introduced to
evolve industrial processes, enhance automation, improve efficiency, and pave the way for
innovative industrial applications.

Private 5G networks, referred to as non-public networks by 3GPP, are physical or
virtual 5G cellular systems deployed for private use to provide dedicated wireless con-
nectivity and are isolated from public networks. Thus, private 5G networks can reduce
interference from other networks and provide dedicated and localized connectivity. It
allows for customization, high performance, enhanced security, and support for massive
IoT connections, making them suitable for industries such as manufacturing, transporta-
tion, healthcare, and smart cities. Furthermore, the report [4] forecasts the global private
5G Network market was valued at $1348 million in 2021 and is estimated to grow at a
compound annual growth rate (CAGR) of 38.8% between 2022 and 2029. This forecast
aligns with the increasing demand for private 5G networks across various industries as
businesses recognize the advantages of private 5G networks.

For the private 5G, overlapping the deployment of small cells is a practical and
economical method to increase coverage and network performance. This strategy leads
to the dense deployment of small-cell base stations (SBSs), such as ultra-dense networks
(UDN), effectively addressing both coverage and performance needs. However, the massive
SBS deployment significantly increases energy consumption, accounting for approximately
60∼80% of the total energy consumption in cellular networks, and this leads to an increase
in operating expenses (OPEX) of the service provider [5]. Even when the base station (BS)
is in an idle state, there is about 50∼60% of its maximum energy consumption [6]. As a
result, to decide whether activating BSs in a particular scenario is practical and profitable,
service providers must compare the higher OPEX increased by BS energy consumption
with the improving network performance.

To address the optimization problem between energy saving and network perfor-
mance, the BS sleep scheme is regarded as one of the most effective approaches because it
is easy to deploy and does not call for changes to the existing network architecture. The
BS sleep scheme can be categorized into two methods: The binary BS on/off method and
the multi-level sleep modes method. The binary BS on/off scheme [7–12] is that unused
or underutilized BSs are switched off to save energy. Totally shutting down BSs of binary
schemes can significantly reduce energy consumption, but it might cause coverage holes
in the network and have an impact on the quality of service (QoS) provided to the users.
Moreover, the QoS requirements for 5G are very strict in terms of delay or packet loss.

To cope with QoS requirements and delicately control energy saving, the multi-level
sleep scheme is introduced in [13–17]. The standardization work in [18] suggests that BSs
expand the signaling period up to 160 ms so that deeper and longer sleep modes can be
handled to exploit the SMs better. This makes it possible to accommodate the various sleep
modes, allowing the BS to reduce its overall energy usage in 5G networks drastically. In [13],
the multi-level sleep modes are proposed based on the hardware sleep capabilities such
as sleep duration, transition times, activation and deactivation time, and power savings.
However, when a multi-level sleep modes control scheme is used in UDN, choosing a
suitable sleep mode for each SBS can be challenging because of the substantial computing
cost of considering all potential sleep mode scenarios.

Thus, there have been studies based on reinforcement learning (RL) to find the optimal
sleep mode of SBSs, taking into account energy efficiency (EE) and QoS constraints [15,16,19].
By leveraging RL, these approaches balance energy savings and QoS requirements, yielding
practical guidelines for multi-level sleep mode settings in 5G networks and offering valuable
analytical insights into configuring multi-level sleep modes effectively. However, they focus
on reducing the energy consumption of downlink traffic. To provide energy-efficient IoT
services, it is essential to take into account the uplink traffic [20]. Because many IoT devices
generate significant uplink traffic, this trend is accelerating further in the industrial sector.
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In [21], the authors show the IoT traffic analysis of various industries and state that 92%
of IoT devices generated more uplink than downlink traffic, and the uplink traffic is much
larger than the downlink traffic in the industrial IoT applications for manufacturing.

Especially in private industrial networks, periodic uplink traffic is regularly transmit-
ted from industrial IoT devices to centralized servers or cloud platforms. This uplink traffic
allows IoT services to provide real-time insights into industrial operations, enables data-
driven decision making, and facilitates predictive maintenance [22]. The IoT devices are
generally programmed to sample in fixed time intervals specified by the network operator
for monitoring the industrial environment. During the intervals between data transmission
cycles of IoT devices, SBSs can transition to a sleep state to minimize energy consumption.
Considering the periodic uplink transmission interval of each IoT device connected to BSs,
it is necessary to study the optimal sleep mode.

Therefore, in this paper, we propose an energy-efficient multi-level sleep strategy
for periodic uplink transmission (MSC-PUT) to optimize energy efficiency and network
performance within the setup of industrial private 5G networks. The main contributions of
this paper are as follows:

• We newly propose an MSC-PUT strategy in an industrial private 5G network that
maximizes the energy efficiency of BSs. We decouple the BS on/off switching operation
into three levels: active, light sleep mode (SM), and deep SM. Unlike traditional
multi-level sleep mode schemes that keep sleep periods within the synchronization
signal duration, we have opted for a longer deep sleep mode that extends beyond
the synchronization signal period to address the considerable energy-related OPEX
challenges. We formulate the energy efficiency model based on these sleep modes
considering both an energy consumption model and a throughput model, including
the latency caused by BS’s sleep mode.

• We utilize the proximal policy optimization (PPO) to address the problem of growing
complexity posed by the increasing number of BSs and IoT devices in UDN and to
facilitate practical implementation. We establish an MSC-PUT strategy incorporating
a comprehensive PPO algorithm, considering wireless channel conditions, previous
sleep mode decisions, and network traffic load. By aligning these factors with our
optimization objective, MSC-PUT achieves a nearly optimal solution for managing
BS sleep modes efficiently, significantly enhancing energy efficiency in the context of
periodic uplink transmissions from industrial IoT (IIoT) devices in densely deployed
industrial private 5G networks.

• We provide extensive simulations in an industrial private 5G environment from which
we demonstrate that the proposed MSC-PUT achieves a substantial improvement in
energy efficiency over the conventional sleep mode control schemes. We have verified
that the proposed MSC-PUT algorithm achieved an energy efficiency improvement of
approximately 27.5% or more while consuming less energy at 75.21% and maintaining
throughput limitations to around 4.2% in comparison to the conventional multi-level
sleep mode mechanism represented by Light.

2. Related Works

BSs (also known as cell towers or eNodeBs in LTE networks) are an integral part of
mobile networks and consume a significant amount of energy. Various BS sleep algorithms
and techniques have been studied and developed to reduce the energy consumption of BS.
The algorithms aim to find the sleep operation of BSs while ensuring that coverage and
service quality are not compromised. There are two different categories of sleep schemes:
binary sleep modes (on and off) and multi-level sleep modes.

The binary sleep mode approach approximates the energy consumption under on/off
states. Under-utilized BSs are turned off in binary sleep mode while maximizing energy effi-
ciency. In [8], the authors propose a method to sequentially turn off a macro BS considering
the downlink traffic load and the uplink traffic load. When deciding the active/sleep mode
of BSs in UDN, the number of possible choices increases exponentially with the number of



Sensors 2023, 23, 9070 4 of 25

BSs. Recent studies have investigated incorporating machine learning approaches to ad-
dress this issue. In [7], the authors formulate the traffic variations and propose a stochastic
BS switching off using reinforcement learning. In [9], the authors propose an RL-based
cell switching algorithm that turns off the small cells at any given time to minimize the
energy consumption in ultra-dense deployments without compromising the QoS. In [10],
the cumulative energy consumption over a long-term period is considered, while many con-
ventional BS sleep techniques focused on reducing the instantaneous power consumption
in UDN. In [11], the author proposes effectively reducing the action space size to operate a
deep RL-based wireless network in UDN. In [12], the authors reduce the computational
overhead to decide the sleep mode of BSs from a decentralized perspective and propose a
multi-agent deep RL approach considering user association and user mobility in UDN.

However, when a BS switches to on/off mode in binary sleep mode, there is a transition
delay between activation and deactivation time and throughput degradation. Several
studies have divided BS’s sleep mode into stages to address this issue and described the
energy consumption at each stage. In [13], the authors introduce four sleep modes based
on an activation/deactivation time and a minimum sleep duration, enhancing network
flexibility to meet traffic demands and enabling more efficient energy conservation. While
a BS is not serving any user, the proposed sleep modes consist of deactivating the different
components of the BS gradually. Thus, this multi-level sleep modes strategy optimizes
energy savings by dynamically adjusting sleep modes in response to network activity.
In [14], the authors propose a method to turn off randomly under-utilized BSs while
guaranteeing QoS. The authors in [15,16] proposed a Q-learning algorithm to find the
optimal duration for each sleep mode according to the energy consumption and delay
constraints. The proposed approach has a gradual transition between sleep modes. In [19],
the authors introduce a traffic adaptive algorithm based on an online reinforcement learning
technique, enabling dynamic and direct transition decisions based on real-time traffic load.
Directly transitioning from active or light sleep mode to the deepest sleep mode avoids
unnecessary time wastage at intermediate levels and leads to more efficient power savings.
In [17], the authors introduce the Lyapunov optimization problem to obtain the optimal BS
switching result in a time series with the predicted user traffic based on long short-term
memory (LSTM).

The binary on/off sleep method is simple but can result in performance problems when
base stations are in the off mode, leading to coverage gaps and delays based on time spent
in different modes during sleep. On the other hand, the multi-level sleep method divides
energy consumption into stages, improving performance with better energy efficiency and
reduced latency. However, energy savings are generally limited, excluding the deep sleep
mode, which extends beyond the synchronization cycle between BS and IoT devices. As
shown in Table 1, most of the existing BS sleep technique research mainly targets energy
reduction during downlink transmissions in Wi-Fi or 5G networks. There is a need to
study a new energy-efficient BS sleep control strategy for periodic uplink transmissions, as
observed in industrial 5G networks with industrial IoT devices.

Table 1. Comparison of related works.

Sleep Mode Related Work Description Advantage Limitation

Binary

[7] Provide BS on/off operation to match up Minimize energy consumption of BSs Only adopt to limited scenarios
with traffic load variation using RL with fast ongoing learning process Sparse deployment of BSs

[8] Sequentially turn off Consider both downlink Macro BSthe macro BSs and uplink traffic

[9] Provide traffic-aware BS switching method Energy saving Consider downlink transmissionusing DQL (Deep Q-learning) without compromising QoS

[10] Provide LSTM based BS on/off decision Reduce cumulative energy consumption Not employ deep sleepin UDN

[11,12] Provide DRL-based approach to reduce Reduce the computational overhead Not employ deep sleep
energy consumption in UDN to decide BS switching operation Consider only downlink transmission
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Table 1. Cont.

Sleep Mode Related Work Description Advantage Limitation

Multi-level

[13] Provide multi-level sleep modes Enhance the network flexibility Unscalable within UDNto meet traffic demands

[14] Try to optimal proportion of sleep BSs Optimize sleep mode under random sleeping One small cellbased on stochastic geometry with low computational complexity

[15,16] Provide the optimal duration of sleep mode Adjust sleep mode models according Consider only downlink trafficusing Q-learning algorithm to the energy consumption and delay constraints

[17] Provide LSTM based user traffic prediction Reduce the synchronization overhead Sparse deployment of BSsbetween BSs and users by forecasting

[19] Propose a traffic adaptive algorithm Direct transition between sleep modes to avoids Not consider uplink trafficbased on an online RL technique unnecessary time wastage at intermediate levels

Proposed MSC-PUT Provide PPO-based Enhance energy efficiency employing deep sleep mode -Multi-level switching operation and consider densely deployment of BSs

3. System Description

This section presents a multi-level sleep modes control for SBSs in industrial private
5G networks, specifically targeting uplink transmission. We assume that IoT devices
periodically transmit uplink data to the connected BS, which can be either a macro base
station (MBS) or an SBS. Initially, IoT devices are connected to the BS with the strongest
signal-to-interference-plus-noise ratio (SINR). We consider the MBS to be constantly awake
to maintain a sustainable connection with IoT devices. Conversely, SBSs can operate sleep
mode (SM) in either light SM or deep SM to conserve energy (Figure 1).

Figure 1. Multi-level BS sleep strategy for industrial IoT devices.

In light SM, IoT devices maintain their connection to the SBS. The SBSs periodically
receive uplink data from the IoT devices and have the opportunity to enter light SM when
there is no incoming uplink data within a short timeframe. On the other hand, SBSs can
enter deep SM when there is no incoming uplink data for an extended period. In deep
SM, IoT devices terminate their connection to the SBS and initiate a handover process to
connect to another SBS or the MBS. However, this results in a reconnection delay for IoT
devices, which can compromise the QoS.
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Determining an adaptive multi-level sleep mode control for SBSs is challenging due
to the extensive computational complexity associated with considering all possible sleep
mode cases. For instance, with 10 SBSs, the number of possible sleep mode cases amounts to
210. Furthermore, if a long observation period (e.g., 100 timeslots) is taken into account for
the multi-level sleep modes control, the number of possible sleep mode cases exponentially
increases to 21000. Such calculations are computationally infeasible for sleep mode control.
To address this issue, we propose an approach that employs the RL method to design new
multi-level sleep modes control for SBSs in uplink transmission (Table 2).

Table 2. Key notations.

Notation Definition Notation Definition

Λt
m Total arrival rate for the BS m during t λt

k Arrival rate of the IoT device k during t

∆tm Light sleep time of the BS m tsyn Synchronization time between IoT devices and SBSs

Dt
km Average latency of the IoT device k that connected the BS m at time time slot t αt

m Operational status of BS m at time slot t

Dt,LS
km Light sleep latency of the IoT device k that connected the BS m at time slot t Dt,HO

km Handover latency of the IoT device k that connected the BS m at time slot t

Dt,TX
km Transmission latency of the IoT device k that connected the BS m at time slot t Ndata

k Amount of uplink transmission from the IoT device k

ρt
m Traffic load of BS m at time slot t γt

km SINR value between IoT device k and the serving BS m at time slot t

Nsense
k Sensed data per second of the IoT device k ck Transmission periodicity of the IoT device k

tarr Arrival time of uplink data tde Ending time of deactivation state from active state

tls Ending time of light sleep state tre Ending time of reactivation state from light sleep state

dde Latency of arrived data at deactivation state dls Latency of arrived data at light sleep state

dre Latency of arrived data at reactivation state r Residual time for active state

∆tde Deactivation duration ∆tls Light sleep duration

∆tre Reactivation duration DLS Average light sleep latency

Rt
km Throughput of uplink data from the IoT device k to the BS m at time slot t ET

total Total energy consumption of BSs during time T

ET
MBS Energy consumption of the MBS during time T ET

SBS,m Energy consumption of the SBS m during time T

Pstatic
MBS Static operational power of the MBS Pdyn_max

MBS Maximum dynamic operational power of the MBS

ρmax
MBS Maximum traffic load that MBS can serve ∆t Slot time

pt
m(A) Active probability of the SBS m at time t Pactive

SBS Power of the SBS in the active state

Pls
SBS Power of the SBS in the light sleep state Pds

SBS Power of the SBS in the deep sleep state

Pstatic
SBS Static operational power of the SBS Pdyn_max

SBS Maximum dynamic operation power of the SBS

ρmax
SBS Maximum traffic load that an SBS can serve µ Average service rate of an SBS

3.1. System Model

For the system model, we assume the set of BSs is B = {0, 1, . . . , M}, where 0 indi-
cates the MBS and 1, . . . , M indicates the SBSs. We also assume the set of IoT devices is
U = {1, . . . , K}, where 1, . . . , K indicates IoT devices and Um is the subset of U consisting of
IoT devices served by BS m. IoT devices transmit uplink data periodically to the connected
BS with an average arrival rate of λt

k during time slot t. The total uplink arrival rate during
time slot t for each BS is given by,

Λt
m = ∑

k∈Um

λt
k, (1)

where Λt
m follows a Poisson process. According to the 5G standardization [18], the synchroniza-

tion signal (SS) between IoT devices and SBSs has a period tsyn ∈ {5, 10, 20, 40, 80, 160}ms.
This means that SBSs can have a light sleep time ∆tm within the synchronization signal period
tsyn as defined below,

∆tm = min
{

1
Λt

m
, tsyn

}
. (2)

As seen in Table 3, due to SM4’s extended sleep duration and the resulting disconnec-
tion between BS and IoT devices, previous multi-level sleep mode control studies cannot
broadly incorporate SM4. Due to SM4’s long sleep duration and disconnection between BS
and IoT devices, the previous multi-level sleep mode control studies can not widely adopt
the deepest sleep mode, SM4. Since more components will be deactivated when moving
BSs to a deeper SM, more energy savings can be achievable. Thus, in this paper, we utilize
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SM4 to maximize the energy-saving effect, and SM4 is regarded as a deep SM. SMs 1, 2,
and 3 will be regarded as light SMs. A light SM can operate while maintaining a connection
with a BS because it can operate within the SS interval. However, because the deep SM’s
minimum sleep duration is typically longer than the SS interval, it is assumed that the
connected devices must be handed over to the nearby BS when the BS is switched to deep
SM. The MBS further assumes no sleep. Additionally, a periodic uplink transmission is
assumed, and the IoT device’s transmission interval may alter but remains constant during
the time slot.

Table 3. Sleep mode duration [13,16].

Sleep Mode SM1 SM2 SM3 SM4

Activation/deactivation duration 35.5 µs 0.5 ms 5 ms 0.5 s

Minimum sleep duration 71 µs 1 ms 10 ms 1 s

Corresponding component OFDM symbol sub-frame frame long-term sleep

3.1.1. Average Latency

When an SBS enters sleep mode, IoT devices have a latency in processing uplink data
transmission. In this subsection, we will discuss the average latency that IoT devices may
experience. The average latency that IoT devices in multi-level sleep modes systems may
encounter can be composed of three components: the average latency that can occur when
the SBS is in a light SM state, the average latency due to the handover process caused
by a deep SM state, and the average latency caused by data processing for uplink data
transmission. The average latency, Dkm, of the IoT device k that is connected to the SBS m
in uplink data transmission is given by,

Dt
km = αt

m · (1− pm(A)) · Dt,LS
km + (1− αt

m) · Dt,HO
km + Dt,TX

km , (3)

where Dt,LS
km is the light SM latency of the IoT device k that is connected to the m which is in

the light SM state at time slot t. Dt,HO
km is the handover latency of the IoT device k due to

the BS m being in the deep SM state at time slot t. Dt,TX
km is the transmission latency of the

IoT device k that is connected to the BS m at time slot t. The variable pm(A) is the active
probability of the SBS m. In addition, αt

m is the operation status of the BS m at time slot t
which has a value 1 when the BS m is in the active state or the light SM state and 0 when
the BS m is in the deep SM state.

Here, using Shannon’s information capacity theorem, the transmission latency, DTX
km ,

of the IoT device k that is connected to the BS m is given by,

Dt,TX
km =

Ndata
k

BW
|Um | · log2(1 + γt

km)
, where Ndata

k = Nsense
k · ck, (4)

where Ndata
k is the amount of uplink transmission from IoT device k, which is the product

of the sensed data per second, Nsense
k , and the transmission periodicity, ck. BW is the uplink

channel bandwidth, and |Um| represents the number of IoT devices that are served by the
BS m. Moreover, γkm is the SINR between IoT device k and the serving BS m.

The light SM latency is caused by the light SM status of BSs. The light SM period of
BSs is composed of a deactivation period, a light sleep period, and a reactivation period.
Figure 2 presents a cumulative distribution function (CDF) of the inter-arrival times. On
the x-axis, the sequence of the BS states visited during a light SM period is reported. In
particular, the labels tde, tls, and tre on the x-axis identify the ending time of deactivation
from the active state, the ending time of the light SM state, and the ending time of the
reactivation state, respectively. In addition, the labels ∆tde, ∆tls, and ∆tre represent the
duration of each state in the light SM period, respectively.
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Figure 2. Distribution of inter-arrival times comprising light SM.

Hence, the probability of arrivals occurring in each state can be derived as:

Pr(tarr ≤ tde) = 1− e−Λt
mtde

Pr(tde < tarr ≤ tls) = e−Λt
mtde − e−Λt

mtls

Pr(tls < tarr ≤ tre) = e−Λt
mtls − e−Λt

mtre ,

(5)

where tarr is the arrival time, and the uplink data can arrive in a deactivation state, a light
SM state, and a reactivation state. The label Λt

m is the total arrival rate of uplink for each BS.
The latency of IoT devices, denoted by dde, dls, and dre, for arrived data at a light SM

state (deactivation state, light sleep state, activation state) can be derived as given by [23]:

dde = rde + ∆tls + ∆tre, rde ≤ ∆tde

dls = rls + ∆tre, rls ≤ ∆tls

dre = rre, rre ≤ ∆tre,

(6)

where rde, rls, and rre represent the residual deactivation time, the residual light SM time,
and the residual activation time, respectively. In our computations, we make the conserva-
tive assumption that the residual time of each state is always equal to the upper bound of
the remaining time as below,

rde ≈ ∆tde

rls ≈ ∆tls

rre ≈ ∆tre.

(7)

From Equations (5) and (6), we can derive the average light SM latency, Dt,LS, as below,

Dt,LS = Pr(tarr ≤ tde) · dde + Pr(tde < tarr ≤ tls) · dls + Pr(tls < tarr ≤ tre) · dre. (8)

Likewise, incorporating the expressions from Equation (7) in Equation (8), we can
obtain the average light SM latency as:

Dt,LS = (1− e−Λt
mtde) · (∆tde + ∆tls + ∆tre) + (e−Λt

mtde − e−Λt
mtls) · (∆tls + ∆tre)

+ (e−Λt
mtls − e−Λt

mtre) · ∆tre,
(9)
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3.1.2. Average Throughput

In this subsection, we present the throughput of IoT devices in the proposed multi-
level sleep modes for periodic uplink data transmission. Throughput of uplink data from
the IoT device k to the BS m, Rt

km, is given by,

Rt
km =

Ndata
k

ck + Dt
km

=
Nsense

k · ck

ck + Dt
km

, (10)

where Ndata
k is the transmitting data amount of the IoT device k in a once, and ck is the

transmission periodicity of the IoT device k. The ck is the number of transmissions during
time slot t since we assume that IoT k transmits periodically.

The Ndata
k is a multiplication of the sensed data per second (Nsense

k ) and the transmis-
sion periodicity at time slot t (ck). The Dt

km is the average latency from Equation (3) in the
previous subsection. Then, the total throughput of the BS m at time slot t is a summation of
the throughput of served IoT devices as below,

Rt
m = ∑

k∈Um

Rt
km. (11)

3.1.3. Energy Consumption of BS

In the proposed multi-level sleep modes for periodic uplink data transmission, the
focus is on minimizing the long-term energy consumption of BSs, as opposed to conven-
tional schemes that concentrate on minimizing instantaneous energy usage. This approach
takes into account the inefficiencies that can arise from frequent mode conversions, which
can lead to a significant waste of energy for the BSs. We assume a long observation time
denoted as T to achieve this objective. The total energy consumption, ET

total , of BSs during
the T is given by,

ET
total = ET

MBS +
M

∑
m=1

ET
SBS,m, (12)

where ET
MBS, ET

SBS,m represent the energy consumption of the MBS and the SBS m, re-
spectively. The energy consumption of the MBS, ET

MBS, during the time T is given by,

ET
MBS =

T

∑
t=1

Et
MBS,

Et
MBS = (Pstatic

MBS + Pdyn_max
MBS ·

ρt
0

ρmax
MBS

) · ∆t,

(13)

where Et
MBS is the energy consumption of the MBS at time slot t. Also, Pstatic

MBS is the

static operational power of the MBS, regardless of the served IoT devices, Pdyn_max
MBS is the

maximum dynamic operational power of the MBS, affected by the number of serving
IoT devices. The variable ρt

0 represents the traffic load at time t in the MBS, while ρmax
MBS

represents the maximum traffic load that the MBS can serve. On the other hand, the energy
consumption of SBSs, ET

SBS, during the time T is given by,

ET
SBS =

T

∑
t=1

Et
SBS,

Et
SBS = αt

m

[
pt

m(A) · Pactive
SBS · ∆t + (1− pt

m(A)) · Pls
SBS · ∆t

]
+ (1− αt

m) · Pds
SBS · ∆t,

= αt
m ·
[

pt
m(A) · (Pstatic

SBS + Pdyn_max
SBS · ρt

m
ρmax

SBS
) · ∆t + (1− pt

m(A)) · Pls
SBS · ∆t

]
+ (1− αt

m) · Pds
SBS · ∆t,

(14)

where Et
SBS is the energy consumption of the SBS at time slot t. Also, αt

m represents the
activation status of the SBS m at time slot t, with a value of 1 when the SBS is in the active
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state or the light SM state, and a value of 0 when the SBS is in the deep SM state. The
notations Pactive

SBS , Pls
SBS, and Pds

SBS represent the power of the SBS in the active state, the light
SM state, and the deep SM state, respectively. In addition, Pstatic

SBS is the static operational

power of the SBS, regardless of the served IoT devices, and Pdyn_max
SBS is the maximum

dynamic operational power of the SBS, affected by the number of serving IoT devices. The
variable ρt

m represents the traffic load at time slot t in the SBS, while ρmax
SBS represents the

maximum traffic load that the SBS can serve. The variable pt
m(A) is the active probability of

the SBS m at time slot t. Since the density of SBS is typically much higher than the density
of users in UDN, we can assume that the service demands do not exceed SBS capacity.
Thus, we suppose that activity during low-traffic periods is characterized as a M/M/∞
queue, and we have the following:

pt
m(A) = 1− e−Λt

m/µm , (15)

where µm is the average service rate of the SBS m.

3.1.4. Energy Efficiency Maximization Problem Formulation

The energy efficiency of BSs, denoted by EE, is computed as the fraction of the
throughput by energy consumption. The energy efficiency during time slot t is given by,

EEt =
Rt

total
Et

total/∆t
=

Rt
MBS + ∑m

m=1 Rt
SBS,m

(Et
MBS + ∑m

m=1 Et
SBS,m)/∆t

, (16)

where Rt
MBS and Rt

SBS,m represent the average throughput of MBS and SBS at time slot t,
respectively, and ∆t is the duration of time slot t. In our study, we aim to maximize the
energy efficiency of BSs during time T in the proposed multi-level sleep modes control
scheme for periodic uplink transmission. The success of an energy-efficient industrial
private 5G network depends greatly on the development of a method that can efficiently
govern deep SM of BSs while satisfying the rate requirements of IoT devices. Therefore, we
can formally formulate the energy efficiency maximization problem as follows

max
{αt}T

t=1

EE =
T

∑
t=1

EEt

s.t. Rt
km ≥ Rmin

k .

(17)

In the above-formulated problem, αt denotes deep SM of SBSs at time slot t and Rmin
k is

the minimum rate requirement of user k at time slot t. Finding the best deep SM decision
of BSs that maximizes the energy efficiency of BSs is particularly challenging because
the deep SM decision problem is a binary integer programming, which is one of Karp’s
21 NP-complete problems [24].

As the density of the network increases and the number of BSs grows, the complexity
exponentially increases with the observed time slot. For the practical implementation,
we apply an RL-based approach, which specifically uses the PPO algorithm, to find a
near-optimal solution.

4. Multi-Level Sleep Modes Control for Periodic Uplink Transmission Strategy

In this section, we introduce a multi-level sleep modes control for periodic uplink
transmission (MSC-PUT) strategy, which maximizes the energy efficiency in the industrial
private 5G environment while considering latency impairment due to SM. Since the learning
process in the MSC-PUT strategy is based on the PPO algorithm, we will briefly review the
PPO algorithm first and then propose the MSC-PUT strategy later.
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4.1. Basics of Proximal Policy Optimization

The PPO algorithm developed by OpenAI [25] is conceived as a state-of-the-art algo-
rithm. It is a family of policy gradient methods for RL that alternates between sampling
data by interacting with the environment and optimizing a “surrogate” objective function
via stochastic gradient ascent, which makes it sample efficient [26]. It is also categorized
as a model-free algorithm that does not estimate the transition probability distribution
associated with the Markov decision process (MDP). Model-free RL algorithms are simpler
to implement and tune than model-based RL algorithms. Therefore, we adopt the PPO
algorithm for a policy learning process for the MSC-PUT strategy.

Generally, the policy π is the function that maps states to the action probability from
which the agent selects an action. If the policy π is implemented by neural networks
with trainable parameter θ, then we express the policy as πθ . The main goal of the policy
gradient-based algorithms is learning the optimal policy, π∗θ , that maximizes the expected
accumulated reward [27]:

π∗θ = arg max
πθ

J(πθ),

J(πθ) = Eτ∼π(θ)

[
T

∑
t=0

γtrt

]
= Eτ∼π(θ)[R(τ)]

(18)

where J(πθ) is the objective, τ is the trajectory from the policy, γt is a discount factor, and
rt is the reward. The reward for trajectory τ can be expressed as R(τ). The parameter θ is
updated to maximize the objective J(πθ) as follows.

θ ← θ + α∇θ J(πθ),

∇θ J(πθ) = Et[Rt(τ)∇θ log πθ(at|st)],
(19)

where α is a learning rate and ∇θ J(πθ) is the policy gradient. In advanced algorithms, to
reduce the high variance in policy gradient estimation, Rt(τ) in Equation (19) has been
substituted to the advantage function Aπ

t (st, at) which is defined as

Aπ
t (st, at) = Qπ(st, at)−Vπ(st),

∇θ J(πθ) = Eτ∼πθ
[Aπ

t (st, at)∇θ log πθ(at|st)],
(20)

where Qπ(st, at) is the action-value function and Vπ(st) is the state-value function which
can be parameterized by the critic network [28].

The main idea of the PPO algorithm is that it improves the policy monotonically to
avoid a performance collapse and makes it easier to implement with clipping. The surrogate
objective function was introduced in trust region policy optimization (TRPO) [26] as

JCPI(θ) = Et

[
πθ(at|st)

πθold(at|st)
A

πθold
t

]
= Et[rt(θ)], (21)

where CPI refers to conservative policy iteration and rt(θ) is the probability ratio. This
objective function is maximized within a constraint on the size of the policy change, which
is expressed as

max
θ

Et

[
rt(θ)A

πθold
t

]
,

s.t. Et
[
KL(πθ(at|st)||πθold(at|st))

]
≤ δ,

(22)

where KL(a||b) represents KL divergence between the probability a and b, which measures
the difference between two probability distribution. The adaptive KL penalty PPO has
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been suggested as the unconstrained optimization problem with using KL divergence as a
penalty rather than a constraint, which is given by

JKLPEN(θ) = Et

[
rt(θ)A

πθold
t − βKL(πθ(at|st)||πθold(at|st))

]
, (23)

where β is a penalty coefficient. Since it is difficult to decide the value of β, an adaptive
coefficient application method was proposed. However, its performance is inferior to that
of the clipping method. The clipping method removes the KL divergence constraint and
makes the objective more simple, which is represented as

JCLIP(θ) = Et

[
min

(
rt(θ)A

πθold
t , clip(rt(θ), 1− ε, 1 + ε)A

πθold
t

)]
. (24)

The clip function restricts the value of JCPI(θ) between (1− ε)A
πθold
t and (1 + ε)A

πθold
t .

The objective function JCLIP(θ) prevents parameter updates that can cause the policy to
alter quickly and unstably. It is a sample-efficient method since JCLIP(θ) makes it possible
to reuse the extracted trajectory many times. Furthermore, it simplifies the implementation
of the algorithm.

4.2. Multi-Level Sleep Modes Control for Periodic Uplink Transmission Model

The MSC-PUT strategy, which is controlled by an agent on the MBS side, centrally
manages SBSs. SBSs work probabilistically in active and light SM while keeping a connec-
tion with BS, according to the model given forth in the previous section. Using these models
as a basis, the MSC-PUT strategy learns policies that determine deep SM and maximize the
network’s energy efficiency in a given situation. Figure 3 depicts the overall operational
process of the MSC-PUT strategy.

Figure 3. An overview of the MSC-PUT operation.

The goal of the MSC-PUT strategy is to find the deep SM that can maximize energy
efficiency by balancing the throughput of MBS and SBS with respect to their energy con-
sumption. Latency due to sleep mode is defined as a performance degradation factor in
Equation (3) in order to create an energy efficiency model based on average throughput
and energy consumption.

SBS maintains an active state but enters a light SM when it is in an idle state without
transmitting data. Furthermore, the agent in MBS makes decisions about SBSs’ deep SM
by using reinforcement learning based on the PPO algorithm in order to maximize energy
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efficiency and applies it to the network. Note that MBS is constantly active in order to
guarantee IoT service in the MSC-PUT strategy.

This subsection defines the state, action, and reward function for the MSC-PUT strategy.

• State: State is the information that an agent acquires through observing its environ-
ment. We define the state of the environment as

st ,
[
st

0 · · · st
m · · · st

M
]
,

where st
m =

[
(Γt−1

m )
T

(Γt
m)

T
αt−1

m ρt
m

]
,

(25)

which is the concatenation of the individual BS’s state, st
m. It should consist of major

features that represent the current state of the environment well to train the good
policy. Firstly, to take account of the temporal correlation of the wireless channel, the
state contains SINR between IoT device i and BS j at time slot t− 1 and t as Γt−1 and
Γt, where Γt is K× 1 matrix of γk,m as

Γt =

γt
1,m
...

γt
K,m

. (26)

In addition, the decision of deep SM at time slot t− 1 is included in states to represent
the previous SMs of all SBSs, αt−1

m . Lastly, the traffic load of all BSs is also an essential
feature in deciding deep SM. Therefore, the traffic load vector at time slot t is included
as a state element, ρt

m.
• Action:

at , αt =
[
αt

1 · · · αt
M
]
, (27)

The action is the decision of whether SBSs switch to deep SM or not. Thus, the action
is defined as above where αt

m is the indicator. If SBS m is in active mode or light SM at
time slot t, then αt

m is 1, or if SBS m is in deep SM, then it is 0. The action space is the
combination of SBSs’ deep SM, and it becomes 2M.

• Reward:
rt , EEt − εt, (28)

The reward function is defined as above. It consists of energy efficiency and penalty
terms. The learning agent attains energy efficiency based on its decision during
time slot t. Furthermore, to adhere to the constraint presented in Equation (17), the
reward function incorporates a penalty term, εt = q ∑k∈U 1{Rt

km<Rmin
k }, where q is the

regularization coefficient for the penalty. The penalty is proportional to the count of
IoT devices unable to meet the minimum rate requirement at time slot t. Therefore,
the reward maximization problem is equally valid as the problem of Equation (17).

The deep learning parameters must be optimized throughout training to ensure that
the MSC-PUT strategy performs properly and maximizes energy efficiency. The MSC-PUT
strategy’s detailed training process is depicted as a pseudo-code in Algorithm 1. Firstly,
the parameter of the actor network and critic network is initialized for a given private 5G
environment setting. From lines 4 to 11, using the prior actor network, the agent gathers
trajectory data and computes target value and advantage. The agent observes states of
the environment, which are defined in Equation (25), and determines with policy θAold
which SBS to switch to deep SM. Subsequently, each SBS computes its uplink throughput
and energy consumption. The agent then obtains the uplink throughput and energy
consumption of each SBS and computes the reward rt. After that, the trajectory is kept in
the batch containing advantage At and target value Vπ

tar,t in order to extract it as a sample
later. From lines 12 to 22, based on the PPO algorithm, the parameters of the actor network
and critic network are updated during the loop for epoch L.
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Algorithm 1 Training process of MSC-PUT

1: Given:
B = {0, 1, . . . , M}: set of BSs which m SBSs over one MBS
U = {1, 2, . . . , K}: set of IoT devices,
IoT devices transmit uplink data periodically with an average arrival rate λt

k
Um: subset U and IoT devices which are served by BS m
The BS Bm receives uplink data Λt

m from connected IoT devices Λt
m = ∑k∈Um

λt
k

SBSs have average light sleep time ∆tm within a synchronization signal period tsyn

∆tm = min
{

1
Λt

m
, tsyn

}
2: Initialization:

Initialize θA, θC
Set learning rates of actor and critic αA, αC
Set the number of episode N and epoch L

3: for Episode = 1, 2, . . . , N do
4: for t = 1 : T do
5: set θAold = θA
6: st =

[
st

0 st
1 · · · st

M
]

7: at = Select action with policy θAold in state st

8: Apply action at and get rt

9: Calculate At, Vπ
tar,t

10: Store (st, at, rt, At, Vπ
tar,t) in the batch

11: end for
12: for Epoch = 1, 2, . . . , L do
13: for mini batch m in the batch do
14: Calculate rm(θA), Am, JCLIP

m (θA)
15: Calculate entropy Hm using θA
16: Calculate policy loss: Lpol(θA) = JCLIP

m (θA)− βHm
17: θA ← θA + αA∇θA Lpol(θA)

18: Calculate predicted V̂π(sm) using θC
19: Calculate value loss: Lval(θC) = MSE(V̂π(sm), Vπ

tar,t(sm))
20: θC ← θC + αC∇θC Lval(θC)
21: end for
22: end for
23: end for
24: Output: θA, θC

4.3. Complexity Analysis

In this subsection, we analyze the time complexity of the MSC-PUT strategy. In order
to quantify the complexity of the MSC-PUT strategy, we compute the time complexity of
the actor networks. If we feed forward from layer i to j, Sj = Wji ∗ Zi, then Sjk = Wji ∗ Zik
of which operation has O(j ∗ i ∗ k) time complexity. In addition, if we apply activation
function Zjk = f (Sjk), then it has O(j ∗ k) time complexity, because of the element-wise
operation. So, the total time complexity becomesO(j ∗ i ∗ k + j ∗ k). In the case of backward
propagation, the time complexity is the same as that of the feed-forward O(k ∗ j + k ∗ i ∗ j)
As a result, when we serialize the vector, it becomes O(2jk) for training or inference.

For the actor network of the MSC-PUT strategy, the dimension of the input vector
becomes R(2MK+2(M+K)+1) by serialization of the state vector in Equation (25), and the
dimension of output vector becomes R(2M−1), as in Equation (27). With N hidden lay-
ers and ω nodes per hidden layer, the actor network’s time complexity corresponds to
O(2ω((2MK + 2(M + K) + 1) + 2Nω + 2M).

5. Performance Evaluation
5.1. Simulation Setup

In this section, we present the evaluation of the performance of the proposed MSC-PUT
algorithm using the Python and the PyTorch library for the PPO algorithm implementa-
tion [26]. Our simulation considers an indoor factory IoT scenario where M SBSs are
deployed over one MBS and serve moving K IoT devices. The total 18 SBSs are located on
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the square lattice with spacing 50 m between SBSs and 25 m from the walls in the 300 m by
150 m sized hall as the indoor factory scenario in [29]. The MBS is located at the center of
the hall, and it is always in active mode. The simulation layout is presented in Figure 4.
The text in Figure 4 denotes the pairs of IoT devices’ ID and BS’s ID, which represent the
connection between the IoT device and the BS. The IoT devices move freely at a constant
speed of 1 m/s in the hall and send collected data through the uplink. We assumed that IoT
devices collect 1 Mbit of data per second. Thus, IoT device k sends the size of 1 Mbit/λt

k
burst data to the connected BS, where the arrivals of the burst data follow the Poisson
process and λt

k is the average number of arrivals.

(a) Initial layout (b) Last layout

Figure 4. Example of simulation layout.

For the path loss model, we followed the indoor factory with sparse clutter and high
BS height (InF-SH) scenario among the indoor factory scenarios which are introduced
in [29]. Thus, we used the NLOS path loss model where the path loss between IoT device k
and BS m, PLk,m

NLOS is given by

PLk,m
NLOS = max(PLk,m, PLk,m

LOS),

PLk,m = 32.4 + 23.0 log10(d3D) + 20 log10( fc), σSF = 5.9,

PLk,m
LOS = 31.84 + 21.5 log10(d

k,m
3D ) + 19 log10( fc), σSF = 4.0,

(29)

where the three-dimensional distance dk,m
3D =

√
(dk,m

2D )2 + (hm − hk)2, 1 ≤ d3D ≤ 600 m, fc is
the center frequency normalized by 1 GHz and σSF is the standard deviation of shadow fading.

The MCS-PUT strategy decides whether SBSs switch into deep SM or not per every
time slot. The time slot consists of multiple sub-time slots with the same duration as the SS
interval in 5G NR, which can be set to {5, 10, 20, 40, 80, 160}ms. We set the duration of a
time slot to 1s for {5, 10, 20, 40}ms SS intervals; thus, there are {200, 100, 50, 25} sub-slots in
a time slot, respectively. On the other hand, the time slot is set to 1.04 and 1.12s for {80, 160}
ms to match the cycle and {13, 7} sub-slots are in a time slot, respectively. We construct
two independent, fully connected multi-layer perceptron (MLP) networks for the actor
and critic networks with two hidden layers of 256 nodes for each layer to implement the
MCS-PUT strategy. We employ the ReLU activation function and use the ADAM optimizer.
The learning rate for both the actor and critic networks is set to 10−5, and the discount
factor is configured at 0.99. Additionally, the batch size is set to 64. The MLP networks are
trained for 500 episodes of the same scenario and evaluated after the training.

The scenario consists of 200 time slots, which means the actual observation time
duration is 60 s for {5, 10, 20, 40} ms SS intervals, 208 s for 80 ms SS intervals, and 232 s for
160 ms SS intervals.

The detailed values of parameters used in the simulation are summarized in Table 4.
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The performance was verified by changing the values of the number of IoT devices in
the network, the arrival parameter (λk), and the SS interval. We obtained the average of the
60 time slots for each experiment and compared the averages of multiple experiments with
various random seeds.

Table 4. Simulation parameters.

Parameters Value

Carrier frequency, fc 3.5 GHz
Channel bandwidth 40 MHz

BS height, hB 8 m
IoT device height, hU 1.5 m

Hall size 350 m × 150 m
Number of BSs 1 MBS and 18 SBSs

Number of IoT devices {10, 20, 30, 40, 50}
Data collecting rate 1 Mbits/s

Average number of arrivals {1, 10, 50, 100, 500, 1000}
MBS power in active mode static: 114.5, dynamic: 558.1 W
SBS power in active mode static: 13.2, dynamic: 7.5 W
SBS power in sleep mode light sleep: 8.22, deep sleep: 3 W

Transmit power of IoT devices 23 dB
IoT devices’ mobility speed 1 m/s

Handover latency 100 ms
Path loss, PL (d3D in m) 32.4 + 23 log10(d3D) + 20 log10( fc) dB

Path loss, PLLOS (d3D in m) 31.84 + 21.5 log10(d3D) + 19 log10( fc) dB
Path loss, PLNLOS PLNLOS = max(PL, PLLOS) dB

Thermal Noise −174 dBm/Hz
Number of time slots, T 200

Sub-slot time {5, 10, 20, 40, 80, 160}ms
Minimum throughput requirement, 1 Mbps

Discount factor, γ 0.99
Learning rate, 10−5

GAE lambda, 0.95
Policy clip, 0.2
Batch size 64

5.2. Benchmarks

The performance of our algorithm is compared with four different BS sleep operations,
which can produce some reasonable results.

1. AlwaysOn : Always-on scenario. All BSs are active and never switch into sleep mode.
2. Light: Light sleep only scenario. BSs only switch into light SM, which serves as a

benchmark for conventional multi-level sleep mode methods referred from [13,14],
where BSs progress through sleep mode stages sequentially until they transition to an
awake mode. Deep SM is not employed in this process.

3. NoConn: Deep sleep when there is no connection scenario. BSs can switch into light
SM and switch into deep SM only when there are no connected IoT devices.

4. Threshold: Deep sleep with threshold scenario. BSs can switch into light SM and
switch into deep SM only when a BS serves fewer IoT devices than the average number
of IoT devices per BS.

Furthermore, we conducted a benchmark comparison Binary with the conventional
binary on/off method referred from [7,10], applying deep SM as the off mode without
engaging in light SM. We then compared this approach with our proposed method in
Table 5. We perform the comparison against the number of IoT devices, average number
of arrivals, and sub-slot time, and all these methodologies are implemented using the
Python language.
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Table 5. Performance comparison with proposed MSC-PUT.

MSC-PUT AlwayOn Light NoConn Threshold Binary

Throughput
41.97 44.10 43.77 43.77 43.38 33.53

100.00% 95.16% 95.87% 95.87% 96.75% 125.16%

Energy
Consumption

231.61 408.21 307.94 302.68 259.35 208.54

100.00% 56.74% 75.21% 76.52% 89.30% 111.06%

Energy
Efficiency

0.181 0.108 0.142 0.145 0.167 0.161

100.00% 168% 127.51% 125.31% 108.28% 112.74%

5.3. Simulation Results
5.3.1. Convergence of the Algorithm

We present the log probability, critic value, and reward graphs during the training
process of a sample scenario in Figure 5 to demonstrate the proposed algorithm’s conver-
gence. We train the model for 500 episodes, which consist of 200 time slots; thus, there
are 105 train steps. The values on the graph are computed using a moving average every
50 steps. Since the algorithm deploys both neural networks, we investigate the learning
curves of the log probability for the actor network and the critic values for the critic network.
To make sure the entire system works properly, we also examine the learning curve of the
rewards during the training period.

As part of the training of the parameter of the actor network (θA), Figure 5a displays
the log probability of the chosen action in a certain state of a particular trajectory. The fact
that the log probability converges to 0 shows that θA has undergone sufficient training
since it means that the actor network chooses the action that has the highest probability
of being perceived as optimal in a given state. Figure 5b shows that the value of a given
state becomes saturated as the critic network’s parameter (θC) converges. Furthermore, the
reward achieves convergence at about 3.2× 104 steps in Figure 5c. These results imply that
the proposed algorithm’s learning process is working properly.

(a) Log probability (b) Critic value (c) Reward

Figure 5. Convergence of MSC-PUT algorithm.

5.3.2. Performance by the Number of IoT Devices

In Figures 6–8, we discuss and evaluate the performance of the proposed algorithm by
varying the number of IoT devices in scenarios where the arrival rate is set to 50 and slot
time is set to 0.16 ms to examine the impact of the number of IoT devices on performance.
The UDN is a network where the density of BS is significantly higher than the density of
users, and the highest number of active users is around 600 when there are 103 BSs per
1 km2, according to the concept of UDN given in [30,31]. So, we set the range of the active
IoT device population between 10 and 60 in the design of our simulation shown in Figure 4.
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(a) Throughput (b) Throughput ratio to the always-on scenario

Figure 6. Throughput performance according to the number of IoT devices.

(a) Energy consumption (b) Energy consumption ratio to the always-on scenario

Figure 7. Energy consumption performance according to the number of IoT devices.

(a) Energy efficiency (b) Energy efficiency ratio to the always-on scenario

Figure 8. Energy efficiency performance according to the number of IoT devices.

Note that the additional latency brought on by sleep mode is represented by through-
put impairment because the throughput defined here is the transfer rate against the ad-
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ditional delay brought on by SM. The likelihood of being in light SM diminishes with
the number of IoT devices. Hence, the gap in throughput performance between Light
and AlwaysOn scenarios reduce as more IoT devices are given to the network. For the
same reason, Figure 7 shows that scenario Light’s energy consumption increases slightly
as the number of devices increases. The throughput performance of NoConn is the same
as Light. Since only SBSs without served IoT devices switch into deep SM, there are no
additional factors for inducing handover and transmission latency. In contrast, when the
number of devices increases, the throughput for Threshold and MSC-PUT tends to decline.
To maximize the energy efficiency, Threshold and MSC-PUT switch to deep SM and hand
over the connected devices to nearby BSs even when servicing IoT devices are present.
The average number of IoT devices connected per BS increases as the network’s number
of devices rises. As a result, when BSs switch into deep SM, a considerable amount of
IoT devices undertake handover in Threshold and MSC-PUT scenarios. And throughput
drops as the number of devices increases because the impact of handover latency grows.
Furthermore, handed-over devices experience additional latency since they must trans-
mit to a BS located further away than usual. However, compared to Light, the scenario’s
throughput reduction in deep SM (Threshold and MSC-PUT) is only about maximum 4.1%,
while the decrease in energy consumption is at least 11.9%, making the energy reduction
superior to the throughput reduction. Thus, energy efficiency is improved. When the
number of connected devices increases, the possibility that an IoT device is not connected
to the BSs decreases. Thus, although NoConn also uses deep SM, NoConn’s energy efficiency
performance converges to Light’s as increasing energy consumption. Figure 8 shows that
MSC-PUT maximizes energy efficiency performance from 43.4% to 36.2% than Light by
reducing energy consumption by up to 18.7% while maintaining throughput impairment
within 4.1%.

5.3.3. Performance by Arrival Rates

In Figures 9–11, we analyze the effect of the arrival rates on performance by examining
and assessing the performance of the proposed method in scenarios where the number of
IoT devices set to 50 and slot time is set to 0.16 ms. The average light sleep time increases
when the arrival rate is low since the average light sleep time of BS m equals 1

Λt
m

. Also, the
lower arrival rates cause an increase in the average latency time for arrivals during the light
sleep period. As a result, throughput generally inclines as the arrival rate increases. Light
and NoConn scenarios show the same throughput tendency that approaches the throughput
of AlwaysOn as arrival rates increase. Throughput of Threshold shows a similar trend of
Light and NoConn, but it is degraded more than that of the two scenarios because Threshold
scenario triggers handover, which causes handover latency and also might cause more
transmission latency. The throughput performance of MSC-PUT also tends to improve
as the arrival rate grows since the chance of being in light SM decreases. However, to
balance the performance of reducing energy consumption against the degradation of
throughput performance, the MSC-PUT switches more SBSs into deep SM. This leads
to more handovers than in the other benchmark settings, which worsens throughput
performance as in Figure 9.

Arrival rates in the simulation do not affect the total energy consumption in benchmark
scenarios because the sum of energy consumption of BSs mostly depends on the number of
IoT devices, and we assume that IoT devices send the same amount of traffic with the same
arrival rates for every second to BSs in this simulation. As can be seen in Figure 10, light
SM can reduce 24.6%. The amount that BSs go into deep SM primarily impacts how much
energy can be saved further. The improvement in energy consumption of NoConn is modest
compared to Light because there are many IoT devices in a given experimental setup and
few BS without devices. In contrast, Threshold more aggressively switches to deep SM than
NoConn, and it reduces energy consumption by about 10%. Moreover, MSC-PUT reduces
energy consumption further than Threshold, about 13.5%, at the expense of introducing
latency, which impairs throughput performance.
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(a) Throughput (b) Throughput ratio to the always-on scenario

Figure 9. Throughput performance according to the arrival rates.

(a) Energy consumption (b) Energy consumption ratio to the always-on scenario

Figure 10. Energy consumption performance according to the arrival rates.

(a) Energy efficiency (b) Energy efficiency ratio to the always-on scenario

Figure 11. Energy efficiency performance according to the arrival rates.

In conclusion, as it influences the length of light sleep, arrival probability, and latency
time at the moment of arrival, the arrival rate is a metric intimately related to throughput
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performance. Throughput impairment diminishes as the arrival rate rises, and energy
efficiency even somewhat improves as the arrival rate rises. In addition, using deep SM,
MSC-PUT shows an energy efficiency improvement of up to 35.84% compared to Light.

5.3.4. Performance by Sub-Slot Time

We examine and evaluate the performance of the proposed method in scenarios where
the number of IoT devices is set to 50, and the arrival rate is set to 50 to figure out the
impact of the sub-slot time on performance in Figures 12–14. Note that the sub-slot period is
identical to the SS interval in 5G NR, as we mentioned in the previous subsection regarding
the simulation configuration. As we can see from Figure 12, there is a clear correlation
between slot time and throughput. As slot time increases, throughput decreases. This is
because light SM, which operates while keeping a connection with the BS, works within
the slot time. As a result, the slot time limits the maximum light sleep time. The average
wake-up delay time increases when the maximum light sleep time and slot time increase.
This can lead to a decrease in throughput performance in the given arrival rate conditions.

(a) Throughput (b) Throughput ratio to the always-on scenario

Figure 12. Throughput performance according to the slot time.

Due to the effect of longer light sleep duration in Figure 12, the relative throughput
performance of Light and NoConn degrades as sub-slot time increases. On the other hand,
the relative throughput performance of Threshold and MSC-PUT tends to improve as the slot
time grows. This happens because a handover results from BSs’ deep sleep, which causes
an aggregated arrival rate and reduces average light sleep time. The energy consumption is
dependent on the number of IoT devices, the same as the previous performance by arrival
rates. Therefore, slot time has no impact on the performance of energy consumption.

In summary, the throughput performance declines as the average light sleep duration
grows with increasing sub-slot time, and correspondingly, so does the energy efficiency
performance. However, aggregating the arrival rates due to deep SM and handover can
improve from 64.54% to 66.04% MSC-PUT’s performance compared to scenario AlwaysOn
as the sub-slot period increases.

In Table 5, we compare the performance evaluation of MSC-PUT and other algorithms
with respect to throughput, energy consumption, and energy efficiency under the following
conditions: 50 IoTs, an arrival rate of 50, and sub-time slots of 0.16 ms. Furthermore,
MSC-PUT’s performance improvement is confirmed by comparing it with AlwaysOn, Light,
NoConn, Threshold, and Binary. To compare MSC-PUT against conventional sleep operation,
Light conceptually represents the conventional multi-level sleep operation, and Binary
represents the conventional binary on/off method. The numerical values below each
comparison algorithm represent the percentage of performance improvement of MSC-PUT
compared to the respective comparison algorithm. When considering the Light, latency
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resulting from the operation of SM1, SM2, and SM3 in the conventional multi-level sleep
operation is calculated as average values using our model.

(a) Energy consumption (b) Energy consumption ratio to the always-on scenario

Figure 13. Energy consumption performance according to the slot time.

(a) Energy efficiency (b) Energy efficiency ratio to the always-on scenario

Figure 14. Energy efficiency performance according to the slot time.

As shown in Table 5, it is observed that our proposed MSC-PUT consumes energy
at 75.21% of the energy consumed by the Light method while incurring a throughput
impairment of nearly 4.2%. Because MSC-PUT employs the most extended deep sleep
mode, it demonstrates a substantial reduction in BS energy consumption, and MSC-PUT
enhances energy efficiency by nearly 27.5% when compared to Light. NoConn and Threshold
also employed deep sleep mode, but MSC-PUT achieves a lower energy consumption,
consuming only 76.52% and 89.3% compared to them, respectively. This is because MSC-
PUT considers the maximizing of energy efficiency using the PPO algorithm, taking into
account the trade-off between throughput impairment and energy savings caused by BS
sleep operation. In pursuit of maximizing energy efficiency, throughput performance in-
curred a slight loss of up to approximately 4.8% compared to AlwaysOn, Light, NoConn, and
Threshold. However, in the proposed MSC-PUT, the energy efficiency model formulation
includes rate requirements as constraints, making it suitable for providing IIoT applications.
Binary exhibits approximately 11% better performance in terms of energy consumption than
MSC-PUT but also demonstrates the most significant throughput impairment, at around
25%. And MSC-PUT outperforms energy efficiency by 12.74% compared with Binary.
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6. Discussion

Our proposed approach improves energy efficiency by applying sleep mode under
conditions that meet the requirement rate. However, compared to conventional multi-
level sleep mode or binary on/off, the proposed MSC-PUT introduces a slight throughput
reduction. This aligns with the fact that IoT service requirements in mixed-criticality in-
dustrial environments, as described in 3GPP document [32]. For instance, motion control
or automated guided vehicles demand up to 100mbps peak data rates, whereas process
and asset monitoring require approximately 1Mbps. Additionally, due to the high cost
of 5G devices, there is research on reduced capability (RedCap), also known as NR-Light,
which caters to cases where high-performance specifications are not essential, even within
a 5G network. As complexity decreases, NR-Light devices become more cost-effective,
consume less power, extend battery life, and reduce device size, offering new possibili-
ties. Considering the throughput impairment in the proposed MSC-PUT, even with rate
requirement constraints, it seems better suited for applications with slightly relaxed rate
requirements. This encourages further research on energy-efficient sleep mode control for
IIoT applications that may require higher data rates in the future.

Similarly to other papers [7,33,34], we have also utilized the assumption of Poisson-
distributed input traffic for our input traffic, potentially limiting its applicability beyond this
model. In practice, we assumed the BS’s buffer size to be infinite, making the input traffic
volume manageable and independent of the input traffic model. As we have constrained
the optimization to meet rate requirements, we cautiously speculate it can be applied with
a large buffer size in the simulation. This assumption accelerates research in constrained
environments where factors like user input traffic and buffer size are limited in real-
environment settings.

7. Conclusions

In this article, we investigated an energy-efficient MSC-PUT strategy in industrial
private 5G networks. We considered the periodic uplink transmission of IIoT devices and
formulated an energy efficiency model taking into account the trade-off between through-
put impairment and energy efficiency due to MSC-PUT. The decision problem of BS deep
sleep modes is NP-complete problems in dense deployment of BSs. To tackle the prob-
lem, we applied a PPO algorithm, an RL-based approach, to find a near-optimal solution.
By conducting experiments, it was possible to evaluate and examine the performance of
benchmark scenarios in terms of the number of IoT devices, arrival rates, and sub-slot
time. As a result, we have confirmed that in comparison to the conventional multi-level
sleep mode mechanism represented by Light, the proposed MSC-PUT algorithm achieved
an energy efficiency improvement of approximately 27.5% or more while consuming less
energy at 75.21% and maintaining throughput limitations to around 4.2%. Furthermore,
when compared to the conventional binary on/off mechanism represented Binary, Binary
outperforms energy consumption performance of approximately 11% than MSC-PUT but
also introduces the most significant throughput impairment, at around 25%. MSC-PUT
outperforms energy efficiency by 12.74% compared with Binary. Our proposed MSC-PUT
greatly outperforms the compared method in terms of energy efficiency.
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The following abbreviations are used in this manuscript:
5G Fifth-generation
BS Base station
CDF Cumulative distribution function
CPI Conservative policy iteration
DRL Deep reinforcement learning
DS Deep sleep
EE Energy efficiency
eMBB Enhanced mobile broadband
HO Handover
IIoT Industrial Internet of Things
IoT Internet of Things
LOS Line of sight
LS Light sleep
LSTM Long short term memory
MBS Macro-cell base station
MDP Markov decision process
mMTC Massive machine-type communication
µs Micro second
ms Millisecond
MSC-PUT Multi-level sleep modes control for periodic uplink transmission
NLOS Non-line of sight
NoConn No connection scenario
OPEX Operating expense
PPO Proximal policy optimization
QoS Quality of service
RL Reinforcement learning
SBS Small-cell base station
SINR Signal to interference-plus-noise ratio
SM Sleep mode
SS Synchronization signal
TRPO Trust region policy optimization
TX Transmission
UDN Ultra dense network
URLLC Ultra-reliable and low-latency communication
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