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and Dariusz Rączka 3
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Abstract: The article presents an attempt to identify an appropriate regression model for the estima-
tion of cutting tool lifespan in the milling process based on the analysis of the R2 parameters of these
models. The work is based on our own experiments and the accumulated database (which we make
available for further use). The study uses a Haas VF-1 milling machine equipped with vibration
sensors and based on a Beckhoff PLC data collector. As the acquired sensor data are continuous,
and in order to account for dependencies between them, regression models were used. Support
Vector Regression (SVR), decision trees and neural networks were tested during the work. The
results obtained show that the best prediction results with the lowest error values were obtained
for two-dimensional neural networks using the LBFGS solver (93.9%). Very similar results were
also obtained for SVR (93.4%). The research carried out is related to the realisation of intelligent
manufacturing dedicated to Industry 4.0 in the field of monitoring production processes, planning
service downtime and reducing the level of losses resulting from damage to materials, semi-finished
products and tools.

Keywords: IIoT; CNC machine; machine learning; smart manufacturing; tool condition monitoring

1. Introduction

The development of modern industry, especially with regard to the Industry 4.0
concept, requires the interaction of manufacturing machines, sensors and specialised
software to ensure greater efficiency, productivity and reliability of production processes.
Ensuring the continuity of these processes is a significant challenge for industry [1–3].
The most typical example is bearing diagnostics. This subject has been continuously
developed for decades [4–7], but there are fewer solutions in the context of real-time
process monitoring. New ideas and solutions must be sought and implemented in order to
achieve the desired goals in this area. One important aspect of ensuring the continuity of
production processes is the prediction of wear and tear on the tools used. The comparisons
included in [8–12] demonstrate how important and current this topic is. Proper estimation
makes it possible to reduce costs related to possible unplanned production downtime as
well as costs related to wasted material/semi-finished products due to damage to individual
tools or machines [13].

The current and well-established realm of research pertains to the investigation of fore-
casting the extent of tool wear during the execution of technological operations, including
drilling and milling. A literature analysis indicates that experiments are predominantly
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conducted using numerically controlled or conventional machine tools with various alloys
of steel, aluminium, or Inconel as the processed materials. Numerous authors endeavour
to devise methodologies for diagnosing cutting processes and predicting tool deterioration
through the utilisation of machine learning [14,15].

Anticipating the wear process of a tool until it becomes unsuitable for use, known as
Remaining Useful Life (RUL), permits the estimation of potential failure or damage time,
thus minimising unforeseen downtime. This is particularly significant, considering that
tool damage accounts for 7% to 20% of machine downtime and tool replacement contributes
to 3% to 12% of production costs [16,17]. Employing an IT system built upon the Tool
Condition Monitoring (TCM) approach proves instrumental in curtailing costs, reducing
downtime, and optimising tool usage. Such activities are particularly important in the
aviation and automotive industries, which are characterised by multi-series production
focused on efficiency while maintaining a very high quality of production. This relates to
reducing unplanned downtime and the waste of usually expensive materials and semi-
finished products. Developing a solution based on the integration of manufacturing
devices, sensors, and a data collection and processing system that will allow the continuous
supervision of the manufacturing process is important. Moreover, the work carried out
allowed for the preparation of a large standardised set of data that can be shared, which
can be used to conduct further research work.

By analysing sensory data and the operating parameters of a device, artificial intel-
ligence algorithms can contribute to the earlier detection of signs of future problems or
failures [18–21]. This makes it possible to take preventive action, which in turn increases
system reliability and saves costs. To classify tool conditions or predict failure instances,
various signals from sensors, process variables, and images are harnessed. Accelerometers,
force sensors, spindle current, work table drive axes, and acoustic emission sensors are
the most commonly utilised. These measurement signals are assessed individually or
combined, considering the intricacy of the problem. In particular, regression methods are
often used for equipment damage prediction because of their ability to model relationships
between different variables [22]. In the case of equipment damage prediction, we often
deal with continuous data, such as equipment operating parameters, operating time or
sensory values, and regression methods allow us to model these relationships and predict
continuous values. Also of great importance is the fact that regression algorithms can be
trained on historical data mapping specific operating conditions as well as patterns that
are specific to the device. Of course, the models can be updated as a result of new data
being provided. It is also not insignificant that regression models can be effectively trained
and implemented in environments where a lot of data are received, providing scalability,
including in continuous production environments. Therefore, by analysing the correlation
between the signal and tool wear across time, frequency, and time–frequency domains,
conventional metrics like RMS are determined and employed in shallow (ANN, SVM,
HMM, SVR, LR) and deep (RNN, LSTM, CNN) classification and regression models.

In the manufacturing industry, there is a significant demand for intelligent production
systems tasked with monitoring, for example, the wear progression of tools. These systems
are expected to alert operators in real time based on the gathered data about potential
failure or quality discrepancies in the product [23]. During the implementation of such
systems, decisions are made regarding which signals to measure and how they should
be collected and processed. The authors of [24] indicate that vibrations directly reflect
the operational state of devices, considering the mechanical behaviour of devices, such
as motor rotation, flow rates in pipes, etc. They consider vibration to be independent of
other external factors such as temperature and humidity. They also propose the hypothesis
that machine vibration effectively reflects the ageing process of devices, making it an
excellent indicator of early failure symptoms. In [25], it is added that machine vibration
analysis brings many benefits, including increased revenue, production reliability, shorter
downtime, and lower repair costs.
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Vibration levels generated by individual machine components are most commonly
recorded, but signals such as acoustic emissions, power consumption, forces, temperatures,
etc., are also often collected. With the increasing number of recorded signals, which can
be several dozen on a single machine, there is a growing demand for efficient information
systems capable of handling large amounts of streaming data (big data). Researchers and
practitioners refer to such a model as 4V—volume, velocity, variety, and veracity [26,27]. A
large dataset size also means that transferring data for processing is uneconomical; instead,
calculations should be performed on the same machine where the data are stored. They
also highlight the need to build analytical platforms for diagnostics based on additional
sensors, given that factory-installed sensors typically provide data only for internal control
systems. Moreover, in critical machine parts, pre-installed sensors are often lacking [26]. As
the number of data increases exponentially with the development of IoT technology [28],
research is being conducted to develop methods that maintain good classification quality
while reducing the amount of data used in the learning process [29,30].

The methods of computational intelligence are utilised both for diagnosing and pre-
dicting the wear of CNC machine components, engines, gear assemblies, wind turbines,
transformers, and many other devices. In practice, however, it is challenging to encounter
a functioning real-world diagnostic or predictive system, which is largely due to the uncer-
tainty in assessing and predicting the equipment’s condition and/or high initial investment
costs. Much of the ongoing research in this field remains theoretical. Most often, these
studies are conducted based on laboratory objects or publicly available datasets. There is a
lack of research on the production reality and evidence of efficiency improvement based
on the solutions described in the literature. Thus, the aim of this study is to verify the R2

parameter of regression models for estimating tool life in the milling process based on real
data from the production environment. This article presents sample results of the cutting
tool life estimation for a real CNC machine and a dataset collected in house, which we
share more widely.

The article consists of several sections. Section 2 describes the laboratory bench built
and used during the research, consisting of a three-axis Haas VF-1 milling machine and
expanded to include additional vibration sensors, specifically accelerometers and current
transducers. This stand enabled the collection of data necessary for the machine learning
algorithms. Section 3 contains the characteristics of the regression models used, together
with the parameters considered, as well as the results obtained from the tests carried out.

2. Testbed and Data Description

The research stand involves working with a three-axis Haas VF-1 milling machine. This
specific machine is equipped with a proprietary measurement system and is augmented by
additional vibration sensors, specifically accelerometers and current transducers (Figure 1).
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Figure 1. Haas VF-1 milling machine and mounting location of 3 sensors on the spindle.

The VF-1 milling machine integrates a meticulously designed measurement system
based on industrial automation components: Industrial PC (IPC) Beckhoff C6920, along
with a combination of I/O modules, specifically EL1008, EL2008, EL3632 (4 units), EL3702,
and EL3413 (4 units). The software driving this system is TwinCAT 3.1.

The measurement system includes strategically positioned sensors:
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• A total of eight accelerometers (sensitivity 100 mV/g)—Dytran 3055A2 and one Dy-
tran 3056D2T. Three of them on the spindle (Figure 1—Ch1: +Y axis, Ch2: −Z axis,
Ch3: −X axis) and five sensors on the drives of the work table were mounted (for X
direction Ch4: +Z axis, Ch5: −X axis and for Y direction Ch6: +Z axis, Ch7: +Y axis,
Ch8: −X axis).

• A total of twelve current transducers—Wago 855-4001/0100-0001, accompanied by
Wago 2007-8875 terminal blocks, are also integral to the system and were mounted
in the electrical cabinet for each phase (L1, L2, L3) for the spindle and the X, Y, and
Z axes.

When designing the experiments, consideration was given to other studies [31–38]
to ensure the comparability of results. Experiments similar to previous studies but with
a larger number of workpieces were proposed. The choice of material was influenced by
its widespread use in the aviation industry [39] and the automotive industry [40–42] as
well as the fact that steel workpieces, unlike aluminium, accelerate tool wear. Material 42
CrMo4 with manufacturing tolerance IT12 and hardness 38 ± 2 HRC (thermally hardened)
was selected, although not all workpieces met the specified hardness parameter. Hardness
measurements ranged from 35.33 to 41.67 HRC. Cuboid samples were utilised to facilitate
clamping in the machine vice with dimensions of 80 mm × 80 mm × 150 mm chosen to
ensure secure fastening to a depth of approximately 20 mm (Figure 2).
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Figure 2. Samples before and after milling (on the left) and during the milling (on the right).

The key to conducting the experiments properly was continuous milling without
retracting the tool from the material. To reflect real-life conditions and adapt to industrial
machining, the milling path followed a clockwise movement around the workpiece contour.
Due to the specificity of the milling process, the vibrations, power consumption, and
roughness obtained differ depending on whether the milling is co-rotating or counter-
rotating. In this case (omnidirectional movement), both types of milling occurred, so the
direction of machining CW or CCW does not matter; only the order is different.

Some experiments used cutting parameters recommended by technologists, while
others used unfavourable parameters. This was intended to accelerate the degradation
of cutters as well as to examine the negative impact of changing milling parameters on
their service life. The side recess of the cutter in the material was a crucial parameter
with the manufacturer’s recommendation limiting it to 45% of the tool’s diameter. This
allowed for 4 cycles per layer with 80% cutter insertion (non-optimal) and 7 cycles per
layer with 45% cutter insertion (optimal) for a sample of this size (RDOC—Radial Depth of
Cut values were 4.5 and 8 mm). The number of milling cycles also depended on the Axial
Depth of Cut (ADOC), resulting in 48 to 84 cycles at ADOC = 5 mm and 24 to 42 cycles
at ADOC = 10 mm. Two types of 10 mm diameter cutters were used: high quality (Van
Hoorn VHVTR 4 100 070 10 03 050) and medium quality (PARA Tooling RS4 10.0x70). The
parameter values for both cutters are: d = 10 mm (diameter), L = 70 mm (total length),



Sensors 2023, 23, 9346 5 of 16

L1 = 22 mm (cutting length), and z = 4 (number of flutes). Additionally, the impact of the
tool holder length on system vibration was compared in the tests (two different lengths).

The collected data were labelled by sample number (P), layer number (F) and cycle
number (C). Each sample was a single cuboid block of the material being processed, which
was divided into layers corresponding to the thickness of material removed at each stage
of the experiments. Cycles, each consisting of a single machining program run clockwise,
were distinguished within the layers. The process of milling is illustrated in Figure 3. The
number of layers and cycles for a given sample depended on the adopted ADOC and
RDOC values. The basic process parameters were as follows: spindle speed: 3200 rpm,
feed rate 640 mm/min, and tool holder length: 80 and 160 mm. Other process data and
details are described on https://datasets.kia.prz.edu.pl/ (accessed on 17 October 2023).
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Table 1 contains all statistical data regarding working time and the amount of material
collected by individual cutters. Tool ID numbers from 0 to 100 apply to Van Hoorn cutters
and over 100 apply to PARA Tooling cutters. Tools with ID 10 and 11 in the 160 mm tool
holder length were mounted (for tool no. 11, the breakage was immediate). The collected
data (Table 1) show that the RDOC parameter significantly affects the tool life, which
directly affects the number of cycles performed. Based on the data, it was also observed
that the ADOC parameter has no noticeable impact on the cutter lifespan. Therefore,
assuming the same number of cycles possible for ADOCs of 5 and 10 mm, the volume
of material collected from the sample will be twice as large with an ADOC of 10 mm.
The conclusion is consistent with the HEM strategy (High-Efficiency Milling) [43], which
consists of using the entire tool length (larger ADOC value) at the expense of reducing the
radial depth of cut. The advantage of this milling strategy is the possibility of greater heat
distribution in the tool, which increases its service life. For three PARA Tooling cutters,
a decrease in the number of cycles performed was visible while maintaining optimal
process parameters.

https://datasets.kia.prz.edu.pl/
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Table 1. Statistical data about tool lifetime—approximate values.

Tool ID ADOC (mm) RDOC (mm)
Number of Cycles

Performed by
the Tool

Total Tool
Operating
Time (s)

Total Length of
the Tool Path

(mm)

Total Volume of
Milled Material

(mm3)

2 5 8 49 1526 17,932 717,280
3 10 8 49 1526 17,932 1,434,560
4 5 8 40 1240 14,560 582,400
5 10 8 53 1605 19,388 1,551,040
6 5 8 29 906 10,652 426,080
7 10 4.5 126 3852 44,352 1,995,840
8 5 4.5 115 3531 40,696 915,660
9 5 4.5 149 4569 52,628 1,184,130

10 10 4.5 14 528 4928 221,760
11 10 4.5 0 0 0 0
101 10 4.5 83 2528 29,108 1,309,860
102 5 4.5 84 2568 29,568 665,280
103 10 4.5 59 1809 20,876 939,420
105 5 4.5 124 3812 43,892 987,570

3. Preparation and Testing of Regression Models

For each of the tested learning algorithms, multiple models were created with different
parameters specific to each algorithm. To achieve this, the GridSearchCV function from
the sklearn library was employed as it is one of the default methods to optimise hyper-
parameters in the sklearn library. To prevent overfitting during training, a 10-fold cross-
validation was used. The training data subset was randomly divided into 10 equal parts,
and the model with the specified parameters was trained 10 times, each time using a
different subset as the validation set.

The evaluation metric used to assess the quality of the models was the R2 score, which
takes a value of 1.0 in the case of a perfect result. The closer the quality metric value is
to 0.0, the lower the accuracy of the created model. Finally, the best model was selected
for each algorithm (the model with the best parameter set) and tested on a separate 20%
test dataset.

3.1. SVR

The research was conducted using the SVR (Support Vector Regression) function from
the sklearn library. It is a regression technique based on support vector machines (SVMs)
that allows the modelling and prediction of continuous values using C and epsilon-free
parameters. As a result of the initial analysis in machine learning, the utilisation of a kernel
based on the radial basis function proved to be the most effective. This kernel allows for
the transformation of data into a space of infinite dimensionality. The radial basis function
(RBF) Is the default kernel method in the sklearn library’s Support Vector Regression (SVR).
Since the initial learning results for other kernel functions were unsatisfactory, the analysis
focused solely on the radial basis function.

To find the optimal model, 271,441 different combinations of the following parameters
were examined [44]:

• Parameter C—This is a regularisation parameter that controls the importance of
allowable errors. A higher value of this parameter gives more weight to errors (loose
values falling outside the decision boundaries of the model), leading to more flexible
and complex models (the model will try harder to fit the data). However, an excessively
high value of this parameter can lead to overfitting. The default value of parameter C
is 1.0. In the conducted experiments, 521 values were tested in the range from 10−9 to
104, which were evenly spaced on a logarithmic scale.

• Parameter gamma—This is a kernel parameter that determines how far the influence
of a single data point reaches on the model’s prediction. A high value of the gamma
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parameter makes points close to each other have a greater influence on the prediction,
while a low value of this parameter emphasises points that are far apart. In the
sklearn library, the default value of the gamma parameter is calculated according
to the formula: 1/(number of features × variance). In the conducted experiments,
521 values were tested in the range from 10−4 to 109, which were evenly spaced on a
logarithmic scale.

Figure 4 presents the results of the obtained learning for the SVR for both the full
range of tested parameters and the range of best results obtained.
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approximately 13.3352 and a C parameter of approximately 501.187. For this parameter
combination, the R2 score was 0.907 ± 0.119 (double standard deviation), which translates
to approximately 90% prediction accuracy. When the C parameter was smaller than
approximately 10−3 and the gamma parameter was larger than 105, the learning results
were consistently low. It is also noticeable that the gamma parameter has a greater influence
on the learning results (for the C parameter, the learning results remained nearly constant
after reaching a certain threshold). These observations and the learning results depending
on individual parameters (for the best combination) are presented in Figure 5.
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3.2. Regression Decision Tree

The research was conducted using the DecisionTreeRegressor function from the sklearn
library. It is the default method for fitting regression models using decision trees, which are
flexible tools for modelling nonlinear relationships and are widely used in regression tasks.
To find the optimal model, 77,616 different combinations of the following attributes and
parameters [45] were tested:

• Splitting criterion (criterion parameter)—describing the function used to measure the
quality of a split. The following functions were tested:

a. Mean Squared Error (“squared_error”)—minimises the Mean Squared Error
between predicted and actual values. It is calculated as the arithmetic mean of
the squared prediction errors for each sample in the dataset.

b. Friedman Mean Squared Error (“friedman_mse”)—operates similarly to Mean
Squared Error but incorporates a Friedman correction to minimise the impact of
noise on prediction results.

c. Mean Absolute Error (“absolute_error”)—minimises the Mean Absolute Error
between predicted and actual values.

d. Poisson Deviance (“poisson”)—uses Poisson deviance reduction to find appro-
priate splits.

• Splitting strategy at each node (“splitter”)—two options were available within the
algorithm, both of which were tested:

a. Best (“best”)—selects the best possible split.
b. Random (“random”)—selects the best random split.

• Minimum number of samples required to split a node (“min_samples_split”)—values
were tested in the range from 2 to 99.

• Minimum number of samples required to create a leaf node (“min_samples_leaf”)—values
were tested in the range from 1 to 99.

In the case of decision tree utilisation, the best learning results were achieved using
the criterion based on Poisson deviance. The trained model exhibited approximately 92%
accuracy with an R2 parameter of 0.915 ± 0.103 (double standard deviation). Similar
learning results were obtained with criteria based on the Mean Squared Error; almost
identical values were achieved in both cases. The criterion based on mean absolute error
performed significantly worse in learning.

The choice of different splitting strategies did not affect the best result achieved by
individual criteria. However, it is noticeable that the best split strategy resulted in better
prediction results across the entire range of tested parameters. The experiments showed
that in each of the tested cases, the best learning results were achieved with a relatively
small number of samples required to split a node or create a decision tree leaf node.

3.3. Regression by One-, Two- and Three-Layer Neural Networks

The research was conducted using the MLPRegressor function from the sklearn library.
It is the default method for fitting a regression model using a multi-layer perceptron,
which allows the modelling of complex nonlinear relationships between features and
the explanatory variable. To find the optimal artificial neural network model, a total of
195,088 different combinations of learning parameters were tested. The parameters tested
included the following [46]:

1. Activation function parameter—defining the activation function used in hidden layers.
All available activation functions in the sklearn library were tested (identity, logistic,
tanh, ReLU).

2. Solver parameter—determining the optimisation algorithm used to minimise the cost
function and find the appropriate set of weights in the neural network. The Adam
and LBFGS solvers were tested.

3. Number of neurons in hidden layers:
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a. For single-layer networks—the number of neurons in the hidden layer was
tested from 1 to 496 with a step of 5 (a total of 100 possibilities).

b. For two-layer networks—the number of neurons in individual layers was tested
from 2 to 299 with a step of 3 (a total of 10,000 combinations).

c. For three-layer networks—the number of neurons in individual layers was
tested from 5 to 205 with a step of 10 (a total of 9261 combinations).

4. For single-layer networks, the influence of the alpha parameter on network learning
was also tested. This parameter determines the regularisation penalty added to
the cost function and directly affects the regularisation effect. The default value of
the alpha parameter in the sklearn library is 10−4. In the conducted experiments,
51 values were tested in the range from 10−5 to 105, which were evenly spaced on a
logarithmic scale.

3.3.1. Single-Layer Network

In the case of single-layer networks, the best learning results were achieved using
the ReLU activation function and the LBFGS solver. The best-trained model exhibited
approximately 96% accuracy with an R2 parameter of 0.962 ± 0.085 (double standard
deviation). When using the Adam solver, the best result was also achieved with the ReLU
activation function, but the learning accuracy was much lower, around 73%, with an R2

parameter of 0.728 ± 0.214.
Satisfactory learning results were also achieved with the LBFGS solver when using

the hyperbolic tangent function (for fewer than 100 neurons) and the logistic function (for
fewer than 20 neurons). In other cases, the prediction accuracy did not exceed 70%. For
all learning combinations, it was observed that the alpha parameter had a nearly uniform
impact. Results rapidly decreased to almost zero for values from 1 to 10 and remained at
that level until the maximum tested value. The best results were observed for small values
of the alpha parameter (values less than 1). The aggregate learning results for different
activation functions and the LBFGS solver are presented in Figure 6.
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3.3.2. Two-Layer Network

In the case of two-layer networks, similar to single-layer networks, the best learning
results were achieved using the ReLU and Tanh activation functions with the LBFGS
solver. The best models exhibited approximately 96% accuracy with an R2 parameter
of 0.959 ± 0.065 for ReLU and 0.959 ± 0.034 for Tanh (Figure 7). When using the Adam
solver, the best result was also achieved with the ReLU activation function, but the learning
accuracy was lower, around 88%, with an R2 parameter of 0.877 ± 0.104.
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(two-layer network): (a) activation function—identity; (b) activation function—logistic; (c) Acti-
vation function—Tanh; (d) activation function—ReLU.

3.3.3. Three-Layer Network

For both solvers, the identity activation function resulted in only approximately 65%
learning accuracy across the entire range of tested parameters. Using the LBFGS solver, the
results obtained by using a linear activation function differed only within 0.001 (Figure 8a,b),
which corresponds to the results obtained for one-layer and two-layer networks. From
these results, we can conclude that there are no linear relationships between the input data.

In the tested cases, the logistic activation function performed poorly with exceptionally
low learning results (Figure 8c). The vast majority of results did not exceed an accuracy of
more than 1%. There were a few combinations of parameters when using the LBFGS solver
that achieved higher learning results (up to around 90%—Figure 8d). Higher regression
results were achieved for neural networks with fewer neurons in each layer (as in the
cases of single-layer and two-layer networks); however, this may have been achieved
by randomly fitting the test data to the model (bias). The results obtained confirm the
information found in the sources that the logistic function is definitely better suited in the
context of classification problems than for regression problems.
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Using the Adam solver, the hyperbolic tangent function returned results similar to
those obtained with the identity function. The LBFGS solver performed significantly better,
allowing for a maximum learning accuracy of approximately 96% with an R2 parameter of
0.96 ± 0.052 being the best-achieved value for the tested three-layer networks. The ReLU
activation function consistently allowed for high learning results. For the LBFGS solver,
the maximum accuracy achieved with this function was approximately 96% with an R2
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parameter of 0.958 ± 0.052. For the Adam solver, the highest accuracy was around 93%
with an R2 parameter of 0.93 ± 0.073. The aggregate learning results for different activation
functions and the LBFGS solver are presented in Figure 8.

4. Discussion

The problem lies in selecting an appropriate classification or regression model for the
dataset under consideration. If correct assumptions about the dataset are not made, no
computational intelligence algorithm can be deemed superior to others as a consequence of
the No Free Lunch Theorem. It often happens that data or their features exhibit a linear
nature, making the application of linear models most appropriate. On the other hand, for
more complex data, the use of models built on neural networks, for example, might be
more suitable. Therefore, for each dataset, several to several dozen algorithms should be
appropriately selected and tested.

The best results obtained on the learning dataset were achieved for one-, two- and
three-layer neural networks using the LBFGS solver. These results were characterised by
the lowest error values. In the case of the Adam solver, it was observed that increasing
the number of layers positively impacted learning accuracy. For support vector machines
and decision trees, similar results were achieved with accuracy levels exceeding 90%. A
summary of the results achieved for each of the machine learning methods is shown in
Figure 9.
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The machine learning models obtained were then tested on a 20% randomly selected
test dataset, which was separated before the learning process. This step was aimed at
checking that the models were not overfitting to the training data. The obtained results are
presented in Figure 10.

The obtained prediction results have similar levels to the predictions achieved on
the training datasets and fall within the range of the error obtained through 10-fold cross-
validation. Considering that the created models have not had prior access to the input data
on which the final validation was carried out, we can exclude the occurrence of overfitting.

With the exception of single-layer neural networks using the Adam solver, all machine
learning algorithms enabled the achievement of satisfactory and high-quality prediction models.



Sensors 2023, 23, 9346 13 of 16Sensors 2023, 23, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. Results of the best models of individual machine learning algorithms—test dataset. 

The obtained prediction results have similar levels to the predictions achieved on the 
training datasets and fall within the range of the error obtained through 10-fold cross-
validation. Considering that the created models have not had prior access to the input 
data on which the final validation was carried out, we can exclude the occurrence of over-
fitting. 

With the exception of single-layer neural networks using the Adam solver, all ma-
chine learning algorithms enabled the achievement of satisfactory and high-quality pre-
diction models. 

The fastest learning algorithms were decision trees and the support vector machine 
algorithm. In the case of artificial neural networks, the learning speed was inversely pro-
portional to the number of network layers. 

A comparative analysis of the various machine learning regression models made it 
possible to show how they behave in a specific context, in this case, in predicting the fail-
ure of a milling machine. This allows the selection of the best method or approach to a 
given problem, which can significantly contribute to improving the efficiency and quality 
of industrial processes.  

The models created would achieve very high learning efficiency. Referring to the lit-
erature and other studies that assume the prediction of the life cycle of a tool, it can be 
considered that the results achieving an accuracy level of more than 90% are very satisfac-
tory. However, comparisons of this type are not conclusive, since it is impossible to objec-
tively compare models based on different learning data; therefore, the effectiveness of 
each model should be evaluated individually. Sometimes, due to the high complexity of 
the data, it may not be possible to achieve such high accuracy as in the case we studied, 
but this does not mean that such results are not equally valuable. 

The use of artificial intelligence in industry is of great importance in the context of 
improving efficiency, optimising costs and improving the safety of production processes. 
The proper selection and optimisation of machine learning methods is one of the key as-
pects of creating effective solutions. 

The conducted research allows us to understand what factors affect the effectiveness 
of individual methods. By performing a series of tests, it was possible to optimise learning 
parameters, which can be a valuable indication for engineers and specialists in the field of 
industrial process automation. Improperly selected learning parameters can prolong the 
learning process even several times without providing any benefit in the achieved results. 

Figure 10. Results of the best models of individual machine learning algorithms—test dataset.

The fastest learning algorithms were decision trees and the support vector machine
algorithm. In the case of artificial neural networks, the learning speed was inversely
proportional to the number of network layers.

A comparative analysis of the various machine learning regression models made it
possible to show how they behave in a specific context, in this case, in predicting the failure
of a milling machine. This allows the selection of the best method or approach to a given
problem, which can significantly contribute to improving the efficiency and quality of
industrial processes.

The models created would achieve very high learning efficiency. Referring to the
literature and other studies that assume the prediction of the life cycle of a tool, it can
be considered that the results achieving an accuracy level of more than 90% are very
satisfactory. However, comparisons of this type are not conclusive, since it is impossible to
objectively compare models based on different learning data; therefore, the effectiveness of
each model should be evaluated individually. Sometimes, due to the high complexity of
the data, it may not be possible to achieve such high accuracy as in the case we studied, but
this does not mean that such results are not equally valuable.

The use of artificial intelligence in industry is of great importance in the context of
improving efficiency, optimising costs and improving the safety of production processes.
The proper selection and optimisation of machine learning methods is one of the key
aspects of creating effective solutions.

The conducted research allows us to understand what factors affect the effectiveness
of individual methods. By performing a series of tests, it was possible to optimise learning
parameters, which can be a valuable indication for engineers and specialists in the field of
industrial process automation. Improperly selected learning parameters can prolong the
learning process even several times without providing any benefit in the achieved results.

In addition, by using machine learning models to monitor and predict failures, com-
panies can introduce a proactive approach to equipment maintenance. This makes it
possible to avoid prolonged production downtime and costly repairs, which significantly
contributes to saving time and resources.

This research is also crucial for the continuous improvement of industrial processes.
Based on the results of benchmarking, machine learning models can be adjusted and improved,
leading to more accurate predictions and the more efficient use of production resources.
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It is worth noting that the artificial intelligence-based solutions developed can be
adapted and scaled to different types of industrial machinery and equipment, making them
versatile tools in the process of automation and optimisation in industry.

5. Conclusions

The use of artificial intelligence in industry is becoming increasingly widespread. As
the performance of the prediction mechanisms is strictly dependent on the adopted training
dataset, a significant aspect of the conducted work involved constructing an appropriate
dataset under industrial conditions. These data formed the basis for further research
regarding the application of regression methods for estimating tool life in the milling
process. As a result of the conducted experiments, the following conclusions were drawn:

• The best results for both the training and testing datasets were achieved using two-
layer neural networks with the LBFGS solver (95.9% and 93.9%, respectively).

• The worst results were obtained for both datasets in the case of one-layer neural
networks using the Adam solver (72.8% for the training dataset and 63.4% for the
testing dataset).

• Other employed models yielded results around 90% for both datasets.

Taking into account the obtained results, it can be assumed that regression models
allow the estimation of cutting tool wear in the milling process. The information obtained
in this way can be used in the IT system to plan production downtime, but above all, it
can lead to counteracting uncontrolled failures and damage to manufactured components
and semi-finished products. Such activities are particularly important in the aviation and
automotive industries, where materials and manufactured elements are often expensive
and, moreover, must meet high-quality standards. Therefore, elements manufactured with
possible defects resulting from faulty tools are not allowed. The use of tested models,
especially neural networks, may contribute to the elimination or significant reduction in
these undesirable situations.
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