
Citation: Kumar, A.; Singh, A.K.; Ali,

S.S.; Choi, B.J. Expand and Shrink:

Federated Learning with Unlabeled

Data Using Clustering. Sensors 2023,

23, 9404. https://doi.org/10.3390/

s23239404

Academic Editor: Jun Zhao

Received: 7 August 2023

Revised: 14 November 2023

Accepted: 23 November 2023

Published: 25 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Expand and Shrink: Federated Learning with Unlabeled Data
Using Clustering
Ajit Kumar , Ankit Kumar Singh , Syed Saqib Ali and Bong Jun Choi ∗

School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
ajitkumar.pu@gmail.com (A.K.); aks.bihta@gmail.com (A.K.S.); saqib.kazmi149@gmail.com (S.S.A.)
* Correspondence: davidchoi@soongsil.ac.kr

Abstract: The amalgamation of the Internet of Things (IoT) and federated learning (FL) is leading the
next generation of data usage due to the possibility of deep learning with data privacy preservation.
The FL architecture currently assumes labeled data samples from a client for supervised classification,
which is unrealistic. Most research works in the literature focus on local training, update receiving,
and global model updates. However, by principle, the labeling must be performed on the client
side because the data samples cannot leave the source under the FL principle. In the literature, a
few works have proposed methods for unlabeled data for FL using “class-prior probabilities” or
“pseudo-labeling”. However, these methods make either unrealistic or uncommon assumptions,
such as knowing class-prior probabilities are impractical or unavailable for each classification task
and even more challenging in the IoT ecosystem. Considering these limitations, we explored the
possibility of performing federated learning with unlabeled data by providing a clustering-based
method of labeling the sample before training or federation. The proposed work will be suitable for
every type of classification task. We performed different experiments on the client by varying the
labeled data ratio, the number of clusters, and the client participation ratio. We achieved accuracy
rates of 87% and 90% by using 0.01 and 0.03 of the truth labels, respectively.

Keywords: federated learning; unlabeled dataset; labeling; clustering; privacy preservation; deep
learning; Internet of Things; supervised learning; weak supervision; semi-supervised learning

1. Introduction

Today, almost every digital solution is rapidly adopting artificial intelligence (AI) for
products and services. These AI solutions are data-intensive, which result in exponential growth
in data generation and sharing. The use of data for AI and Machine Learning (ML) is a privacy
concern, and recently, many privacy-preserving solutions have been developed [1–3]. Federated
learning (FL) is a potential solution gaining the attraction of researchers for privacy-preserving
ML and deep learning (DL) [4,5]. Considering these, the Internet of Things (IoT) is becoming a
key adopter of federated learning due to privacy preservation and restrictions on data movement
from the source devices [6–9]. For example, Rahman et al. [8] discussed the application of FL
for IoT intrusion detection by using the NSL-KDD dataset [10]. Similarly, there are other use
cases for FL application in IoT. A plethora of academic and industrial researches have been
carried out recently to produce software solutions and frameworks, that would assist the real
world application of FL [11–13]. FL limits data sharing, i.e., raw data do not leave the client
(restricted to generation point/source) system to be used for the training model. FL is derived
from parallel and distributed computing and enables a model’s training in a federated manner
by utilizing data from multiple clients. Currently, most FL algorithms are centered around
supervised learning, where labeled data are assumed to be present on the client side. This
requirement is achievable in a cross-silo (organizations act as participants and may have a data
labeling team) setup. However, it is difficult to achieve in a cross-device setup due to several
reasons, such as the cost, skills, and complexity associated with manual labeling by clients, as
well as the large volume of data and the need for active participation.

Sensors 2023, 23, 9404. https://doi.org/10.3390/s23239404 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239404
https://doi.org/10.3390/s23239404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5728-2270
https://orcid.org/0000-0001-7187-3704
https://orcid.org/0000-0002-6550-749X
https://doi.org/10.3390/s23239404
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239404?type=check_update&version=2

Sensors 2023, 23, 9404 2 of 20

In an actual or practical situation for cross-device FL, data at the client device are
primarily unlabeled. For example, suppose pictures are stored in the client system for an
object detection model. These pictures may be generated using the device camera, or the
user can download them. Clearly, these pictures cannot always be assumed to be labeled
and will not be ready for training. The data labeling issue for models that use medical
imaging for training and testing was presented in [14].

The proposed work is inspired by weak supervision and semi-supervised learning
and applies a clustering-based approach to label data at the client device. We assumed that
the parametric server has a set of labeled data for the specific task (it is a valid assumption
because the server needs to have labeled data for validating and tuning the global model).
The client can seed the labeling process using a small fraction of these labeled data (shared
once by the server with each client after joining the federation). In the proposed Expand
and Shrink labeling approach, this tiny fraction of data (truth set) is mixed with the client
data during the expand phase, and then clustering is applied. During the shrink phase, a
set of clusters is shrunk to a class by comparing and tracing the clusters using the truth set.
Labeling is performed once at the client in the current experiment, assuming that the client
participates with the available data. However, the same approach can be repeated for new
data (by mixing with previously labeled data or separately on new data).

Any FL averaging and communication strategy can be applied for post labeling at
client side, therefore the proposed work is appropriate for the current FL architecture and
federated averaging. The proposed work is suitable and required for using many devices
available under the IoT because these devices generate lots of data, and often, these data
need to have class labels. The proposed method uses a clustering-based approach that will
make it easy to assign new query data, i.e., a sample to a particular cluster, and will have
minimal cost. The proposed work is also compatible with existing model compression and
quantization techniques, so a compressed model can be used instead of a large model for
training IoT devices.

We performed different experiments on the client by varying the labeled data ratio,
the number of clusters, and the client participation ratio. We obtained accuracy rates of
87% and 90% by using 0.01 and 0.03 of the truth labels, respectively. In general, with the
proposed work, we made the following contributions:

• We proposed a data labeling method at the client device for supervised federated
learning. The proposed labeling adopts pre-initialized centroid clustering methods to
infer the class label of the unlabeled sample at the client device.

• We proposed an aggregation-independent labeling method that complements the
existing supervised federated learning architecture, so no further changes are required
in the existing communication and aggregation methods.

• We proposed a low cost in terms of the time and extensible labeling approach, i.e., a
new sample can be labeled with reduced cost due to newly labeled samples.

• We performed extensive experiments to validate the proposed labeling method. In the
federated learning setup, the proposed method provides equivalent performance to
the human-labeled dataset in terms of accuracy. It achieves a similar level of global
accuracy compared to the existing works while requiring much fewer truth labels.

The remainder of the paper is organized as follows. Section 2 presents existing
work that deals with unlabeled data. Section 3 presents the proposed Expand and Shrink
algorithm that employs a clustering-based approach to enable federated learning with
unlabeled data. Section 4 compares the performance of the proposed algorithm with
varying degrees of truth label availability. Our results show that the Expand and Shrink
algorithm provides minimal labeling cost in terms of time and is extensible, thus allowing
the labeling of a new sample at a lower cost. We conclude the paper in Section 5.

2. Related Work

In the supervised learning approach, unlabeled data are samples without any class
label. Although the same data can have different class tags per the classification problem,

Sensors 2023, 23, 9404 3 of 20

the unlabeled data sample needs a label for the underlying classification task, for example,
class labels between 0 and 9 for digit classification, such as in the MNIST dataset [15].
In general, the training set for supervised learning is indicated by (xi, yi), where xi is a
feature, and yi is the class label of the ith sample. The proposed work aims to assign y′i
for xi, where y′i is a noisy label and can be used for supervised training in the absence of
the actual label during FL. There are many approaches to labeling datasets for supervised
learning. In the semi-supervised method, some labeled data are used to annotate unlabeled
data. Supervised training is carried out on the complete dataset (pre and post-labeled data
sample). Semi-supervised learning has a smoothness assumption that if two samples x and
x′ are close in the input space, then their labels y and y′ should be the same, i.e., d = (x, y)
and d′ = (x′, y′). Building a supervised classifier using labeled and unlabeled data is
familiar, and much literature is available on centralized machine learning.

Virginia R. de Sa [16] used structure between the pattern distributions of different
sensory modalities to propose building a neural network (NN) model from unlabeled
data. Caron et al. [17] used k-mean to cluster the features and then used cluster labels to
update the NN weight during training. Recently, Jin et al. [18] adopted semi-supervised
learning for federated learning to address the labeling task at the client. In semi-supervised
learning, unlabeled data may degrade the model’s performance. Using federated learning,
Albaseer et al. [19] applied semi-supervised learning for labeling and building a traffic sign
detection model. Jeong et al. [20] used semi-supervised learning in two distinct scenarios:
(a) labels-at-client (both labeled and unlabeled data are available at the client) and (b)
label-at-server (labeled data are only with the server). Long et al. [21] also considered the
label-at-server scenario and proposed FedCon, i.e., a contrastive learning-based federated
learning framework. Rafa et al. [22] applied federated semi-supervised learning (FSSL) for
Android malware detection; similarly, Pei et al. [23] applied transfer and semi-supervised
learning with FL for IoT malware. Itahara et al. [24] used distillation-based semi-supervised
FL to improve the communication for non independent and identically distributed (non-iid)
data. Lu et al. [25] proposed FedUL, which assumes the availability of user class-conditional
distributions, and used it to recover the required model from the global model each client
trains with the help of surrogate labels for unlabeled data. Wang et al. [26] explored
various setups to improve the semi-supervised federated learning (SSFL) performance
and suggested that reducing gradient diversity can result in a fast and improved model.
Zhu et al. [27] proposed to generate pseudo labels for unlabeled data using unlabeled data
and global models. In each round, a temporary global model was trained that was tuned
using the initial global model to obtain the final global model.

There was a recent development in semi-supervised learning, i.e., self-supervised
learning (SSL), which removes the requirement of a human-annotated initial dataset to
initiate semi-supervised learning. He et al. [28] used self-supervised learning for label
deficiency in federated learning and also provided personalization for the client in FL. Yan
et al. [29] used self-supervised federated learning to address the data heterogeneity and
label deficiency in the medical domain (dataset retinal images, dermatology images, and
chest X-rays). Wang et al. [30] also used contrastive visual representation learning and SSL
for various tasks and studied the impact of non-iid and unlabeled data in FL. With the
model-assisted labeling process, a small portion of the data is labeled to build an initial
model that can be further used for only labeling, i.e., predicting labels for the remaining
unlabeled data. An active learning-based FL approach was discussed, involving an oracle
initially labeling a few unlabeled data at the client device [31].

There have been many modern approaches to centralized supervised learning for
learning from unlabeled data, like transfer learning and few-shot learning approaches,
which are being adopted for federated learning. Li and Wang [32] applied transfer learning
and model distillation for federated learning. Guha et al. [33] proposed one-shot federated
learning for supervised and semi-supervised setups for learning global models in one
round of communication.

Sensors 2023, 23, 9404 4 of 20

The existing literature shows that it is required to enable FL to learn from unlabeled
data. One major limitation of the current approach is the high computation necessary for
the client, for example, retraining a model under the transfer learning approach or inferring
labels using the model inference, which are all computationally intensive. Many of these
approaches depend heavily on approximation, which can propagate errors to the global
model. The proposed work uses simple clustering-based labeling, which requires lower
computation. The expand phase exploits the drawback of centralized clustering, i.e., to
obtain good clustering performance, the model may result in a higher number of clusters
(by splitting similar items into different clusters to improve upon cluster density or other
metrics). We aim to group similar items independent of the number of total clusters because
during the shrink phase, the clusters will be mapped to the number of the required class.

3. Expand and Shrink: Federated Learning with Unlabeled Data Using Clustering
3.1. Problem Definition

Data labeling is necessary for supervised learning and takes significant time, effort,
and resources (computational and financial). Data labeling methods can be divided into
two main groups: manual and automatic. The human annotators perform the fully manual
labeling, and the programs perform fully automatic labeling. However, manual and
automatic can assist each other; for example, if human annotators assist in automatic
labeling, it is called human in the loop (HITL). Besides labeling, humans also play the
role of verifier or reviewer for the data labeled by other annotators. Most of the time, a
human annotator also supervises automatic labeling and acts as a verifier. Human labeling
is costly and time-consuming. However, it provided better-quality labeled data. Many
applications only considered human labeling; for example, only labels from medically
trained professionals are acceptable for medical-related models, such as cancer cell or
tumor classification.

The FL system can label data at the client device with or without client participation
for labeling and label verification. Client participation in labeling and verification can be
implicit, like behavior-based auto labeling, i.e., using the “client click” on the advertisement
as a class label or client acceptance of text suggestion as a class label. Such an implicit
approach can also be termed as labeling automation without assistance. In explicit partici-
pation, the client must actively engage with unwanted and unfeasible labeling processes.
Due to client participation, it is called labeling automation with assistance (the item and
label are auto-generated, and the user has to verify).

The proposed work, Expand and Shrink, does not require user participation for
labeling or verification and is fully automated. The proposed work adopts the popular
cluster-then-label approach. In the expand phase, we apply a clustering algorithm to all
unlabeled data. During the shrink phase, we use the truth dataset to map the resulting
clusters to a specific class label (the possibility of many clusters being mapped to a single
class label). With the expand step, we moved from the critical assumption of the cluster to
class mapping approaches such that one cluster exactly corresponds to one class because in
the proposed work, expand results in more clusters than classes.

Figure 1 presents the proposed Expand and Shrink approach. The expand phase is
based on a “higher number of clusters decreases the inertia and lower inertia is better”. So,
with a threshold (I), we keep increasing the number of clusters and stop when the inertia
value comes under I.

Figure 1A shows the ideal case of clustering, where the data point has a proper and
uniform shape, resulting in two suitable clusters. However, such a perfect case is rare,
and often in the real world, we have scenarios where data points come with variance and
may result in different clusters as shown in Figure 1B. The expand phase considers this
real-world use case and so tries to obtain the maximum clusters by grouping the data points
with variance into different clusters. Figure 1C shows the shrink step, where the clusters
are mapped to the class label (the number of classes decided as per the selected supervised

Sensors 2023, 23, 9404 5 of 20

learning task, for example, 0–10 for MNIST [15]) by using the truth label set based on the
distance and seed sample (labeled sample is mixed with unlabeled data before clustering).

Raw Data (Identical and clean sample)

Cluster-
A

Cluster-
B Rotated samples will formed a separated

cluster and it will result in a better performance
metric for clustering. However, if we consider
binary classification then it will induce error.

Cluster-A Cluster-B1
Merging clusters:
1. Cluster distance 2. Distance from Ground Truth
Class labelling:
1. Using Ground Truth on merged clusters
 (Based on the number of available classes)

G
ro

un
d

Tr
ut

h

C. Clustering to Class Labelling

Cluster-A1
Cluster-B

B. Clustering with Noise

Raw Data (Non-Identical and with noise)

An ideal case of clustering (not achievable)

Raw Data (Non-Identical and with noise)

A. Ideal clustering

Figure 1. Overview of Expand and Shrink: (A) Ideal case of clustering, i.e., a set of data points are
identical and form ideal clusters. (B) Expand step: Clustering is applied assuming variance in data
points within a set and a higher number of clusters formed considering lower inertia. (C) Shrink step:
Clusters are mapped to class labels using the truth label set and distance (one or more clusters can be
mapped to a single class).

3.2. System Model

Providing class labels to the data at the client device must be automated and performed
on the device. Semi-supervised approaches are adopted in federated learning for labeling
the client’s data. We propose a clustering-based approach to label the data sample at the
client machine in a federated learning architecture. Figure 2 shows the integration of the
federated learning (FL) approach with the data labeling process on the client device. Table 1
lists the symbols and notations used in this paper.

Table 1. List of symbols used for system definition in equations and algorithms.

Symbol Description

C Clustering method

ck Vector representation of centroid of cluster k

Di Set of the local dataset of client i

E Total number of communication rounds

g Index of the class label

G Total number of classes

i Client index

j Round index

k Cluster index

K Total number of clusters (|K|)

Li Set of the local labeled dataset of client i

M Learning model

µk Centroid of cluster k

N Total number of clients (|N|)

ni number data samples of client i

Sensors 2023, 23, 9404 6 of 20

Table 1. Cont.

Symbol Description

P Policy set

S Distance matrix

S′ Normalized (1/0) distance matrix

S Total number of selected clients (|S|)

Sk Set of clients belonging to cluster k

sr,c
Element of distance matrix on row r and
column c

Ui Set of unlabeled dataset of client i

V Truth set

vi coordinate of validation sample

xi Data sample of client i

Y Set of class label

The sets of N total and S selected participating nodes for each round are defined,
respectively, as N = {1, 2 . . . , N} and S = {1, 2, . . . , S}, where N = |N|, S = |S|, and
S < N.

Ui is a set of local unlabeled data of client i, where the client i initially has a set of
ni number of unlabeled training samples client i ∈ N denoted as Ui = {x1

i , x2
i , . . . , xni

i }.
After applying to the Expand and Shrink method by the client, each data sample of client i
xi ∈ Ui will be mapped to the class label in the set of class label Y as follows:

xi 7→ yi,

where yi equals g ∈ {1, 2, . . . , G}, which is an element of a set of class labels denoted as Y.
The local labeling gives mapping results in a set of elements Di = {(x1

i , y1
i), (x2

i , y2
i), . . . ,

(xni
i , yni

i)}. D represents the labeled dataset from all selected clients denoted as
D := {D1, D2, . . . , DS}. Each element in the dataset Di is a pair (xi, yi), where xi rep-
resents a data point and yi ∈ Y is the corresponding class label. We introduce a policy set
P, which is the policy vector of the federation that is sent to every node by the parameter
server. It has a set of values as P = {M, V, C}:
• Model (M): Supervised learning model selected by the parameter server to train using

federated learning, for example, CNN, LSTM, etc.
• Validation dataset (V): A small proportion of the labeled datasets are provided to each

client for the shrink phase of labeling.
• Clustering method (C): The client can choose a set of clustering methods. We are

currently using only K-mean clustering.

3.3. Data Labeling with Expand and Shrink

For federated learning, each node/device has to join the federation. The joining
process will start with the initial setup, i.e., the parameter server will share the P with the
client, and each client will perform the data labeling by executing the Expand and Shrink
method. The client will be selected for a training round based on the ”labeling status“ along
with other existing selecting criteria, such as power and computation availability, etc.

We use modified K-means clustering to perform data labeling for each client. The data
labeling process is independent of the federated training process, and the client joins the
federation and obtains the P for performing the labeling of its unlabeled local data Ui. The
federated learning process will be similar to the existing approach.

Sensors 2023, 23, 9404 7 of 20

Step 1—Join: A device joins the federation and obtains policy vector P from the parameter
server.

Step 2—Expand: Each client applies clustering to its unlabeled data and uses the inertia
versus the number of clusters to find the value of K, where K is the total number of
clusters that give the best inertia value. The inertia represents the sum of squared
distances between each data point and its assigned centroid. Any clustering algo-
rithms can be used, as in the proposed work was evaluated using K-means. Thus, the
objective function of the K-means clustering is defined as a minimization problem,
and it is presented in Equation (1):

argmin
S

=
K

∑
k=1

∑
xi∈Sk

‖xi − µk‖2 (1)

where xi represents the sample of client i, Sk is the set of clients belonging to cluster k,
and µk is the centroid of cluster k.

Step 3—Shrink: The client with K number of clusters starts to shrink by using the distance
between the clusters and the sample in validation dataset V shared by the parameter
server. The distance calculation will create S using Equation (3), which is the K× G
score value matrix, where K is the total number of clusters in the expansion step
and G is the total number of classes for the supervised learning task. In S, each row
will have the distance score s of a cluster k = {1, 2, . . . , K} against all the classes,
i.e., 1, 2, . . . G. The distance matrix S is constructed as

S =

s1,1 s1,2 · · · s1,G
s2,1 s2,2 · · · s2,G

...
...

. . .
...

sk,1 sk,2 · · · sk,G

 (2)

Each distance score can be calculated using the Euclidean distance, computed as

sr,c =

√
n

∑
i=1

(ci − vi)2 (3)

where c and v are vectors for the centroid and sample in the validation set for the
respective clusters and class labels. So, ci and vi represent the corresponding elements
in the vectors c and v at the same index i.

For merging clusters, we need to assign one or zero based on distance. The cell with
the minimum value in each row will be marked as 1, indicating the cluster close
enough to a particular class. In summary, each row of S will be converted to S′ as

s′r,c =

{
1, if sr,c = min(Sk)for row k
0, otherwise

(4)

where sr,c represents an element of the distance matrix on the row r = {1, 2, . . . , K}
cluster index and the column c = {1, 2, . . . , K} class index.

Now, for merging cluster(s), each column vector will be scanned for 1, and the
respective cluster k will merge as

Dc =
⋃

k∈K|s′r,c=1

k (5)

Sensors 2023, 23, 9404 8 of 20

Then, each member of the respective cluster will be merged as one larger cluster, and
it will be labeled as per the respective column class as

Di =
⋃

c∈Y
Dc (6)

Merging clusters and labeling with respective class labels will create labeled data of
each client i.

Step 4—Ready State: The client can set its status to ready after completing the data labeling
so the server can use this information while selecting the client for training.

Client-1

2
Client-2 Client-3 Client-N

Ground Truth
labeled sample with

Server
Initial Global model

Raw data generated
at the user/source

Labeled data
(By client)

Local Model at
client

1 3 4

1. Server starts the training
by sharing (initial global
model, labeling
method,and ground truth
sample

2. Every client labeled it raw
sample and train a local
model

3. Every participating client
share its local update to
the server

4. Server Aggregate the
updates and share
updated global model to
clients.

2 2 2

Parametric Server

Figure 2. Steps of federated learning with data labeling process at the client device.

Figure 3 shows the result of labeling in terms of the accuracy and homogeneity score
(Figure 3b), i.e., the outcome of the proposed algorithm on the unlabeled dataset of an
individual client without training (Figure 3a) and global test accuracy after labeling with
a varying number of clusters and training rounds (Figure 3c). The data labeling accuracy
shown in Figure 3a is 85–90%, equivalent to human-level accuracy, considering the labeling
errors in various datasets mentioned by Northcutt et al. [34]. The labeling performance in
terms of accuracy and homogeneity score has less variation by increasing the clients, and
the value of both metrics also improves with high clusters in the expand phase. Due to
the larger client participation, each has fewer samples, which offers another benefit, and
the proposed method works with smaller datasets, which is often the case in FL. A similar
trend is observed in global test accuracy with different numbers of clusters and training
rounds. The global accuracy gets stable with the higher number of clusters, while the
number of training rounds has a smaller impact, so we can stop training with an early stop.
We evaluated the labeling result using the truth label available for the experimental dataset.
However, measuring only the accuracy of labeling will not be possible in a real-world
scenario because there will be no true label. Once the client completes the data labeling
process using the proposed method (Algorithm 1), any FL approach can be applied to the
labeled data without modifying the existing approach. However, the labeling process must

Sensors 2023, 23, 9404 9 of 20

be integrated with the overall training steps as shown in Figure 2. Further, each step of FL
with unlabeled data is explained in detail, and Algorithm 2 presents the pseudocode of the
overall training.

0 20 40 60 80 100
Clients

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

K 10
K 20
K 40
K 80
K 160

(a)

0 20 40 60 80 100
Clients

0.4

0.5

0.6

0.7

Ho
m

og
en

ei
ty

 S
co

re

K 10
K 20
K 40
K 80
K 160

(b)
Figure 3. Cont.

Sensors 2023, 23, 9404 10 of 20

0 20 40 60 80 100
Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

K 10
K 20
K 40
K 80
K 160

(c)

Figure 3. Performance of data labeling without training using a varying number of clusters (a,b), and
global test accuracy under different rounds of training (c). (a) Accuracy of local client data (unlabeled)
after labeling by the proposed method; (b) Homogeneity score of client data (unlabeled) after labeling
by the proposed method; (c) Global test accuracy.

Algorithm 1 Data labeling at each client using Expand and Shrink.
Require: U: Set of unlabeled data, V: validation dataset
Ensure: D (xi 7→ yi) for 1 ≤ i ≤ N

{Expand: Create K clusters using a clustering algorithm}
1: K← Expand(U) using Equation (1)
2: S← s(c, v) using Equations (2) and (3)

{Find the minimum score in each row, mark it with 1 and the others with 0}

3: sr,c ←
{

1, if sr,c = min(Sk) for row k,
0, otherwise.

{Shrink: Merge clusters }
4: Dc ←

⋃
k∈K|s′r,c=1 k

5: Di ←
⋃

c∈Y Dc
6: return Di

Step 0—Data Labeling: A new client joins the federation and obtains P from the parameter
server and labels its unlabeled data independently and free from the training round.
After labeling, the client changes its status to ready.

Step 1—Initialization: The parameter server selects s number of clients from N for feder-
ated training, initializes the global model M and shares it along with the validation
dataset, i.e., V with each selected node in S. The V is a set of labeled pairs of (x, y).

Step 2—Local Training: Each client applies Algorithm 1 on its local unlabeled samples
U (explained in the previous section). Each node trains the model (M) on its self-
labeled dataset and calculates the gradient difference using Stochastic Gradient
Descent (SGD).

Sensors 2023, 23, 9404 11 of 20

Step 3—Client Update Sharing: Each node shares the calculated gradient difference (∆θi)
with the parameter server. The gradient is calculated by applying local training on θ
using Di.

Step 4—Global Aggregation: For each global training round, the server collects and ag-
gregates updates from each participating client (Ni ∈ S) and updates the previous
model (θ ← θ − η · ∆θavg).

Step 5—Updated Global Model Sharing: The final updated global model is shared with
previously participating clients, and if the updated model is shared with new partici-
pants, then this step is similar to step 1. So, this step is optional and depends upon
the training policy.

Steps 1–5 are performed for one training round of federated learning, and a single
model is trained in multiple rounds. The termination criteria for training can be a combina-
tion of different requirements, such as desired accuracy, the maximum allowed training
time, data available, etc. The following section presents the experimental setup and results
of the experiments.

Algorithm 2 Federated learning using Expand and Shrink on unlabeled data.

Require: U : Unlabeled Data, N: Number of clients, E: Number of communication rounds
1: Initialize P, i.e., global modelM as θ, V, and C
2: for each round r from 1 to E do
3: Randomly select a subset of clients S

// Local Model Update
4: for each client i in S do
5: Receive P from the server
6: Di ← Run Expand and Shrink on Ui using Algorithm 1
7: Bi ← Split Di into batches for client i
8: for each local epoch do
9: Compute local update: ∆θi ← ClientUpdate(Bi, θ)

10: end for
11: Send local update ∆θi to the server
12: end for

// Server Aggregation and Global Model Update
13: Server aggregates the local updates:
14: ∆θavg ← 1

|Di | ∑
Ni∈S

∆θi

15: Update global model: θ ← θ − η · ∆θavg
16: end for
17: return θ

4. Experiments and Result
4.1. Experimental Setup

We performed all the experiments on a server computer with Intel(R) Core(TM) i9-
10980XE CPU @ 3.00 GHz processor, 251GB RAM, and 2xNVIDIA GeForce RTX 3090, and
the same computing resources were used for running labeling code at client and federated
learning. At the software end, we used the Ubuntu 18.04 64-bit operating system and
Python 3.9 with different modules and frameworks, such as TensorFlow2, TensorFlow
Federated (TFF), and Keras3, to implement the labeling scripts and federated learning.

During the implementation of the proposed work, we conducted all experiments with
a fixed batch size of 64 (step 7 in Algorithm 2), which is standard practice. We followed the
literature for model selection and considered using different models per the dataset. So,
for MNIST [15] and FMNIST [35], we used a simple two-layer (Linear-ReLU-Linear-ReLU-
Linear) neural network (TwoNN). Similarly, we trained the ResNet9 for CIFAR10 [36].
We used CrossEntropyLoss() as a loss function with the SGD optimizer, and in all the
experiments, we used FedAvg() as an aggregation algorithm (step 14 in Algorithm 2).

Sensors 2023, 23, 9404 12 of 20

4.2. Dataset Preparation

We validated the proposed work with experiments on MNIST datasets [15] and
performed training and testing on FMNIST [35] and CIFAR10 [36] for comparison with
similar works from the literature. In centralized training, 5% of the training data is used as
a truth set while using the same sample numbers as in the default test set, i.e., 1000. After
keeping 5% of the training data as a truth set for federated learning, the rest of the training
samples were divided into 100 clients. The division of remaining samples among clients
was randomized after properly shuffling the sample and sharing the required percentage
with each client.

The experiments in the proposed work are limited to the iid case, i.e., each client
receives an equal percentage of training data while keeping the same sample ratio for each
class. Further, Figure 4a–c show the sample distribution per class in the overall dataset,
training, and test dataset, respectively. Figure 4d shows the sample distribution per class
for a random client. We only considered the iid use-case. However, the number of samples
per class is not uniform for each client, so our experiment has elements of non-iid but not
strictly non-iid.

0 2 4 6 8
Labels

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f S
am

pl
es

(a)

0 2 4 6 8
Labels

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f S
am

pl
es

(b)

0 2 4 6 8
Labels

0

100

200

300

400

500

600

Nu
m

be
r o

f S
am

pl
es

(c)

0 2 4 6 8
Labels

0

20

40

60

80

100

Nu
m

be
r o

f S
am

pl
es

(d)
Figure 4. Sample distribution at each client. In figure, (a) Data samples per class in the dataset;
(b) Training data samples per class; (c) Truth data samples per class; (d) Single client unlabeled data
samples per class.

4.3. Labeling and Training Time

The proposed method aims to be computation-effective in terms of time for performing
labeling at the client. We experimented to understand the required labeling time with a
different ratio of the truth label set and varied clusters for all three datasets. Figure 5 shows
the labeling time taken by the proposed method. Figure 5a shows the labeling time only for
MNIST under three ratios of truth label, i.e., (0.01, 0.03, and 0.05), while Figure 5b shows the
time only for truth label ratio 0.05 for all three datasets. The result shows that the average
labeling time for all 100 clients is below 3 s. Interestingly, a higher truth label ratio reduced
the labeling time, and this is because the number of samples in each client gets reduced,
and hence, the clustering takes less time. From Figure 5b , we can observe that the labeling
time is independent of the data type (CIFAR10 has color images, while MNIST is grayscale)
and a higher numbers of clusters will increase the labeling time, which is obvious.

Sensors 2023, 23, 9404 13 of 20

Number of Clusters

Ti
m

e
(S

ec
on

ds
)

0

1

2

3

10 20 40 80 160

0.01 0.03 0.05

(a)

Number of Clusters

Ti
m

e
(s

ec
on

ds
)

0.00

0.25

0.50

0.75

1.00

10 20 40 80 160

MNIST FMNIST CIFAR10

(b)

Figure 5. Labeling time by the proposed Expand and Shrink method. In figure, (a) Labeling time for
MNIST with different ratios of the truth set; (b) Labeling time with 0.05 truth set.

We also calculated the training time of the proposed method on various datasets. From
Figure 6, we can observe that the training time is consistent with the number of rounds
and size of the dataset, while it is varying as per the dataset type of sample. For example,
MNIST and FashionMNIST are the same size and have grayscale images; in contrast, the
other three datasets are larger and have color images.

4.4. Expand and Shrink: Centralized Learning

We first validated the proposed Expand and Shrink labeling in a centralized learning
setting. Later, in the discussion section, we presented observations, comparisons, and
results for centralized and FL setups. Although centralized learning differs from the
federated setup, we will use this setting to demonstrate the general behaviors of the
algorithms. Some key differences are that all unlabeled data are available at once in
centralized learning, and more samples are available. At the same time, in FL, each client
will have a lower number of samples. In a non-iid setup, each client will also have a
different number of samples for each class that will further induce complexity. Table 2
shows the accuracy of the final model in centralized learning training after providing labels
to the training sample using the proposed algorithm. The experimental results are shown

Sensors 2023, 23, 9404 14 of 20

for different numbers of clusters created (10, 20, 40, 80, and 160) in the expand step and for
different ratios (0.01, 0.03, 0.05, 0.07, and 0.09) of data used from the validation or truth set.

0 20 40 60 80 100
Rounds

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

Tr
ai

ni
ng

 ti
m

e

BelgiumTSC
CIFAR10
EMNIST
FashionMNIST
MNIST

Figure 6. Training time of the proposed method on various datasets.

Table 2. Accuracy of centralized learning with all of the clusters in the expand step (10, 20, 40, 80,
and 160) and a ratio (0.01, 0.03, 0.05, 0.07, and 0.09) of the truth label.

Ratio of Truth Label
/Number of Clusters 0.01 0.03 0.05 0.07 0.09

10 57 58 59 58 59
20 68 70 73 68 72
40 78 79 80 79 79
80 85 85 84 85 84
160 88 90 90 90 90

In the centralized scenario, the best accuracy is gained with a minimum of 0.03 truth-
labeled data and 160 clusters. Using a higher ratio than 0.03 of the truth label has a minimal
effect on model performance. The results in Table 2 further verify our assumption that
increasing clusters during the expand phase results in better labeling and increases the
model’s accuracy. Figure 7 shows the test accuracy of the model in centralized learning
with different configurations, and we can observe that the accuracy increases with the
number of clusters.

4.5. Expand and Shrink: Federated Learning

In federated learning, we tested different scenarios by changing the number of clients
participating in each round (0.1, 0.2, 0.3, 0.4, and 0.5 of 100 clients), percentage of validation,
or truth set (0.01 and 0.03) for the iid datasets. Table 3 shows the test accuracy of FedAvg
with the proposed algorithm for 0.01 and 0.03 validation/truth datasets for a different ratio
of participating clients and the varying number of clusters in the expansion stage of the
labeling process. With only 0.01 of truth label and 10 clients, the global model obtained
89% test accuracy. From Table 3, we can observe that increasing truth labels from 0.01 to
0.03 only improves the performance by 1–2%. However, with either ratio of the truth labels,
the FL model can achieve the same test accuracy as the centralized model. In FL learning,
the model performance increases with the number of clusters (Figures 8 and 9), and the

Sensors 2023, 23, 9404 15 of 20

performance varies slightly (±1–2%) with the increasing number of client participants.
However, more client participants delay the convergence, resulting in more communication
rounds. So, it is suggested to train the FL model with a lower number of clients participating
in each round. We can also observe that after labeling at the client (Figure 3), the highest
accuracy of 80–84% is achieved, while after training the global model, an accuracy of 0.91 is
achieved, showing an improvement of over 0.10.

20 40 60 80 100 120 140 160
Number of Clusters

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Te

st
 A

cc
ur

ac
y

0.01
0.03
0.05
0.07
0.09

Figure 7. Test accuracy in centralized settings on a varying truth label ratio between 0.01 and 0.09.

Table 3. Accuracy with a different ratio of client participation (0.1, 0.2, 0.3, 0.4, and 0.5), the number
of clusters (10, 20, 40, 80, and 160), and truth label ratio (0.01 and 0.03).

Ratio of Truth Label 0.01 0.03

Number of Clusters /Number of Clients 10 20 40 80 160 10 20 40 80 160

0.1 62 73 82 87 89 63 75 83 88 90
0.2 62 74 81 86 88 60 74 82 88 91
0.3 59 71 77 82 87 63 74 82 86 90
0.4 61 70 79 82 86 62 74 81 86 90
0.5 63 71 81 85 87 62 74 82 88 90

4.6. Comparison with Existing Work

We also compared the proposed work with existing works. FedUL [25] and Fed-
Match [20] also performed data labeling on the client side for FL. FedUL uses the class prior
probability instead of any labeled dataset as a truth or validation set. The proposed work
is similar to FedUL in considering that the client has unlabeled data, and labeling is fully
automated at the client. However, the global test accuracy for the MNIST dataset [15] is not
mentioned, so the comparison is not possible due to the difference in performance metrics.

In FedMatch, there are two scenarios: labels-at-client (client has labeled data) and
labels-at-server (only server has labeled data). Although the server sent the labeled dataset
to all clients in the proposed work, it is similar to labels-at-client because labeling is only
performed at the client. Although our approach is similar to the labels-at-client approach,
the experimental dataset differs in the proposed work and FedMatch [20].

Sensors 2023, 23, 9404 16 of 20

20 40 60 80 100 120 140 160
Number of Clusters

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

0.1
0.2
0.3
0.4
0.5

Figure 8. Test accuracy in federated settings on a varying client ratio between 0.1 and 0.5 with having
a truth label ratio of 0.01.

20 40 60 80 100 120 140 160
Number of Clusters

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

0.1
0.2
0.3
0.4
0.5

Figure 9. Test accuracy in federated settings on a varying client ratio between 0.1 and 0.5 with having
a truth label ratio of 0.03.

Following the experimental details of FedMatch, we extended our experiments and
adopted similar deep learning architecture, i.e., ResNet-9 and the CIFAR-10 dataset [36],
along with other FL-related configurations like the number of clients and client participation
percentage. Table 4 shows the performance of the proposed work on CIFAR-10 [36] with
two levels of the truth dataset, i.e., 0.01 and 0.003.

We obtained the best accuracy rates of 91% and 79% for MNIST and FMNIST with
0.03% of the truth label and 0.1% and 0.2% of the client participation, respectively. Similarly,
the best accuracy for CIFAR10 is 30% with 0.03% of truth label and 0.2% of the client
participation. From the experimental result, we can observe that the highest number of

Sensors 2023, 23, 9404 17 of 20

clusters during labeling and the lowest number of client participation provides the best
performance of all three datasets and models.

In the proposed work, we only used 600 labeled data, while FedMatch uses 5000.
However, the proposed work and FedMatch differ in the way of sharing the truth set. We
share the same truth set among all the clients, while Fedmatch shares a unique labeled
set with each client. FedMatch achieved a global accuracy of 52.25% for the CIFAR-10
dataset [36] in non-iid with 100 clients. With the ResNet architecture, we achieved 46%
accuracy with 50% client sharing and only 5% labeled truth set. Interestingly, with the
ExpandShrink, our labeling accuracy was 76%. It is also to note that the proposed work
performed training after labeling all the samples at the client side, while FedMatch training
was performed with labeled and unlabeled data.

The complexity comparison of the proposed and existing work can be made in two aspects:
(1) the computational requirement for implementing the labeling method, and (2) the time
and space requirement for training and getting the model from the federated learning process.
FedUL [25] uses class-conditional distributions to provide surrogate labels to training data, and
the model is trained on the surrogate-labeled dataset, and later, the wanted model is recovered.
So, the computational cost should be considered two times; however, the proposed work
uses extra computation for labeling, and there is no computation overhead for model training.
Similarly, FedMatch [20] uses inter-client consistency loss to train with labeled and unlabeled
data. However, generating, searching, and sharing helper agents increase the computation
overhead compared to the proposed work.

Table 4. Accuracy of the proposed algorithm on multiple datasets to compare with existing works
(L%: truth label ratio, NoC: number of clusters, C%: client participation ratio). Note: The value in
bold represents the highest accuracy for the dataset.

L% 0.01 0.03

NoC /C% Dataset 10 20 40 80 160 10 20 40 80 160

0.1

MNIST 0.6237 0.7384 0.8211 0.8719 0.8926 0.6387 0.7528 0.8335 0.883 0.9077

FMNIST 0.6194 0.6996 0.7222 0.7237 0.7617 0.6142 0.7001 0.7207 0.7461 0.779

CIFAR10 0.2319 0.242 0.2478 0.2547 0.2663 0.2343 0.2486 0.2601 0.2706 0.2841

0.2

MNIST 0.6244 0.7499 0.8165 0.8644 0.8879 0.6047 0.7491 0.8253 0.884 0.911

FMNIST 0.6002 0.7017 0.7165 0.7443 0.756 0.612 0.6982 0.7208 0.7477 0.7614

CIFAR10 0.2283 0.2362 0.2535 0.2624 0.2662 0.2341 0.2551 0.2666 0.2674 0.2963

0.3

MNIST 0.5942 0.7126 0.7767 0.8246 0.8699 0.6321 0.7472 0.8202 0.8691 0.9015

FMNIST 0.6164 0.6963 0.7198 0.7391 0.7622 0.606 0.695 0.7163 0.7394 0.7666

CIFAR10 0.2244 0.2403 0.2501 0.2521 0.2617 0.2332 0.2478 0.2609 0.2765 0.2927

0.4

MNIST 0.6121 0.7066 0.7969 0.8269 0.8601 0.6271 0.7462 0.8116 0.8671 0.9003

FMNIST 0.6191 0.6958 0.715 0.7305 0.761 0.6042 0.6974 0.7212 0.7372 0.7775

CIFAR10 0.2304 0.2363 0.2421 0.2495 0.2662 0.2399 0.2549 0.2634 0.2741 0.2905

0.5

MNIST 0.6397 0.7115 0.8175 0.8522 0.8788 0.6245 0.7423 0.8276 0.8817 0.9012

FMNIST 0.5977 0.6945 0.7184 0.7262 0.7635 0.5876 0.6981 0.7168 0.7381 0.7684

CIFAR10 0.2331 0.2296 0.2456 0.2525 0.2762 0.2385 0.2533 0.267 0.2731 0.2843

5. Conclusions

The data labeling at the source device is critical for the practical use and adaptability
of FL. The proposed method addresses the issue of the unlabeled dataset for supervised
federated learning. In addition, the proposed method makes it possible to train a supervised
model in federated learning without labeled data at the client device, enabling extensive
data availability for training. With the proposed data labeling method, the model performs
similarly to unlabeled client data in terms of accuracy and training loss compared to the
traditional FL with the labeled dataset. We achieved accuracy rates of 87% and 90% by
using 0.01 and 0.03 truth labels, respectively. The trade-off between the computation cost
of automatic data labeling at the client device and model performance would be favorable

Sensors 2023, 23, 9404 18 of 20

and acceptable given the need for labeling at the source device. Obtaining labeling from
the client can increase the risk of model poison attacks because the server and other clients
will have less control over the global model due to the decrease in the truth sample and the
expected possibility of an increase in noise in the data. However, verifying such a trend
is out of the scope of the proposed work and can be conducted as future work. In future
work, we aim to experiment with non-iid data distribution and identify specific in-device
data labeling challenges and their mitigation in IoT environments.

Author Contributions: Conceptualization: A.K. and B.J.C.; data curation: A.K. and A.K.S.; formal
analysis: A.K.; funding acquisition: B.J.C.; methodology: A.K., A.K.S., and B.J.C.; project administra-
tion: B.J.C.; resources: A.K.; software: A.K., A.K.S.; supervision: B.J.C.; validation: A.K. and B.J.C.;
visualization: A.K.S. and S.S.A.; writing—original draft: A.K.; writing—review and editing: B.J.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT Korea under the NRF Korea (NRF-2022R1A2C4001270)
and the Information Technology Research Center (ITRC) support program (IITP-2022-2020-0-01602) super-
vised by the IITP (Institute for Information & Communications Technology Planning & Evaluation). This
research was also supported by the KIAT grant funded by the Korean government (MOTIE) (P0017123,
The Competency Development Program for Industry Specialist).

Data Availability Statement: Data are contained within this article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
FL Federated Learning
FSSL Federated semi-supervised Learning
HITL Human in the Loop
IoT Internet of Things
LSTM Long Short-Term Memory
ML Machine Learning
NN Neural Network
non-IID Not Independent and Identically Distributed
SGD Stochastic Gradient Descent
SSFL Semi-Supervised Federated Learning
SSL Self-Supervised Learning
TFF TensorFlow Federated

References
1. Kaissis, G.A.; Makowski, M.R.; R‘̀uckert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical

imaging. Nat. Mach. Intell. 2020, 2, 305–311. [CrossRef]
2. Perino, D.; Katevas, K.; Lutu, A.; Marin, E.; Kourtellis, N. Privacy-preserving AI for future networks. Commun. ACM 2022,

65, 52–53. [CrossRef]
3. Timan, T.; Mann, Z. Data Protection in the Era of Artificial Intelligence: Trends, Existing Solutions and Recommendations for

Privacy-Preserving Technologies. In The Elements of Big Data Value; Springer: Cham, Switzerland, 2021; pp. 153–175.
4. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1310–1321.
5. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics—PMLR, 2017, Fort Lauderdale, FL, USA, 20–22
April 2017; pp. 1273–1282.

6. Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated learning for internet of things: Recent advances, taxonomy, and
open challenges. IEEE Commun. Surv. Tutorials 2021, 23, 1759–1799. [CrossRef]

http://doi.org/10.1038/s42256-020-0186-1
http://dx.doi.org/10.1145/3512343
http://dx.doi.org/10.1109/COMST.2021.3090430

Sensors 2023, 23, 9404 19 of 20

7. Guo, Y.; Zhao, Z.; He, K.; Lai, S.; Xia, J.; Fan, L. Efficient and flexible management for industrial internet of things: A federated
learning approach. Comput. Netw. 2021, 192, 108122. [CrossRef]

8. Rahman, S.A.; Tout, H.; Talhi, C.; Mourad, A. Internet of things intrusion detection: Centralized, on-device, or federated learning?
IEEE Netw. 2020, 34, 310–317. [CrossRef]

9. Zhao, Y.; Zhao, J.; Yang, M.; Wang, T.; Wang, N.; Lyu, L.; Niyato, D.; Lam, K.Y. Local differential privacy-based federated learning
for internet of things. IEEE Internet Things J. 2020, 8, 8836–8853. [CrossRef]

10. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

11. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; Lane, N.D. Flower: A Friendly Federated Learning Research Framework.
ArXiv Preprint ArXiv:2007.14390. 2020

12. He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; et al. FedML: A Research Library
and Benchmark for Federated Machine Learning. ArXiv Preprint ArXiv:2007.13518 2020.

13. Bonawitz, K.; Eichner, H.; Grieskamp, W. TensorFlow Federated: Machine Learning on Decentralized Data. 2020. Available
online: https://www.tensorflow.org/federated (accessed on 1 June 2023).

14. Ng, D.; Lan, X.; Yao, M.M.S.; Chan, W.P.; Feng, M. Federated learning: A collaborative effort to achieve better medical imaging
models for individual sites that have small labelled datasets. Quant. Imaging Med. Surg. 2021, 11, 852. [CrossRef]

15. Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012,
29, 141–142. [CrossRef]

16. de Sa, V.R. Learning classification with unlabeled data. Adv. Neural Inf. Process. Syst. 1994, 112–119.
17. Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of

the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149.
18. Jin, Y.; Wei, X.; Liu, Y.; Yang, Q. A Survey towards Federated Semi-Supervised Learning; The Hong Kong University of Science and

Technology: Kowloon, China, 2020.
19. Albaseer, A.; Ciftler, B.S.; Abdallah, M.; Al-Fuqaha, A. Exploiting unlabeled data in smart cities using federated edge learning. In

Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June
2020; pp. 1666–1671.

20. Jeong, W.; Yoon, J.; Yang, E.; Hwang, S.J. Federated semi-supervised learning with inter-client consistency & disjoint learning.
arXiv 2020, arXiv:2006.12097.

21. Long, Z.; Wang, J.; Wang, Y.; Xiao, H.; Ma, F. FedCon: A Contrastive Framework for Federated Semi-Supervised Learning. arXiv
2021, arXiv:2109.04533.

22. Gálvez, R.; Moonsamy, V.; Diaz, C. Less is More: A privacy-respecting Android malware classifier using federated learning.
arXiv 2020, arXiv:2007.08319.

23. Pei, X.; Deng, X.; Tian, S.; Zhang, L.; Xue, K. A Knowledge Transfer-based Semi-Supervised Federated Learning for IoT Malware
Detection. IEEE Trans. Dependable Secur. Comput. 2022, 20, 2127–2143. [CrossRef]

24. Itahara, S.; Nishio, T.; Koda, Y.; Morikura, M.; Yamamoto, K. Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-iid private data. IEEE Trans. Mob. Comput. 2021, 22, 191–205. [CrossRef]

25. Lu, N.; Wang, Z.; Li, X.; Niu, G.; Dou, Q.; Sugiyama, M. Federated Learning from Only Unlabeled Data with Class-Conditional-
Sharing Clients. arXiv 2022, arXiv:2204.03304.

26. Zhang, Z.; Yang, Y.; Yao, Z.; Yan, Y.; Gonzalez, J.E.; Ramchandran, K.; Mahoney, M.W. Improving semi-supervised federated
learning by reducing the gradient diversity of models. In Proceedings of the 2021 IEEE International Conference on Big Data (Big
Data), Orlando, FL, USA, 15–18 December 2021; pp. 1214–1225.

27. Zhu, T.; Wang, X.; Ren, W.; Zhang, D.; Xiong, P. Migrating Federated Learning to Centralized Learning with the Leverage of
Unlabeled Data. Knowl. Inf. Syst. 2023, 65, 3725–3752.

28. He, C.; Yang, Z.; Mushtaq, E.; Lee, S.; Soltanolkotabi, M.; Avestimehr, S. Ssfl: Tackling label deficiency in federated learning via
personalized self-supervision. arXiv 2021, arXiv:2110.02470.

29. Yan, R.; Qu, L.; Wei, Q.; Huang, S.C.; Shen, L.; Rubin, D.; Xing, L.; Zhou, Y. Label-Efficient Self-Supervised Federated Learning for
Tackling Data Heterogeneity in Medical Imaging. arXiv 2022, arXiv:2205.08576.

30. Wang, L.; Zhang, K.; Li, Y.; Tian, Y.; Tedrake, R. Does Decentralized Learning with Non-IID Unlabeled Data Benefit from Self
Supervision? arXiv 2022, arXiv:2210.10947.

31. Bommel, J. Active Learning during Federated Learning for Object Detection. B.S. Thesis, University of Twente, Enschede, The
Netherlands, 2021.

32. Li, D.; Wang, J. Fedmd: Heterogenous federated learning via model distillation. arXiv 2019, arXiv:1910.03581.
33. Guha, N.; Talwalkar, A.; Smith, V. One-shot federated learning. arXiv 2019, arXiv:1902.11175.
34. Northcutt, C.G.; Athalye, A.; Mueller, J. Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv 2021,

arXiv:2103.14749.

http://dx.doi.org/10.1016/j.comnet.2021.108122
http://dx.doi.org/10.1109/MNET.011.2000286
http://dx.doi.org/10.1109/JIOT.2020.3037194
https://www.tensorflow.org/federated
http://dx.doi.org/10.21037/qims-20-595
http://dx.doi.org/10.1109/MSP.2012.2211477
http://dx.doi.org/10.1109/TDSC.2022.3173664
http://dx.doi.org/10.1109/TMC.2021.3070013

Sensors 2023, 23, 9404 20 of 20

35. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv
2017, arXiv:1708.07747.

36. Krizhevsky, A.; Hinton, G. Learning multiple layers of features from tiny images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/cifar.html (accessed on 1 June 2023)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Related Work
	Expand and Shrink: Federated Learning with Unlabeled Data Using Clustering
	Problem Definition
	System Model
	Data Labeling with Expand and Shrink

	Experiments and Result
	Experimental Setup
	Dataset Preparation
	Labeling and Training Time
	Expand and Shrink: Centralized Learning
	Expand and Shrink: Federated Learning
	Comparison with Existing Work

	Conclusions
	References

