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Abstract: This article presents an analytical solution for calculating the flow rate in water injection
wells based on the established thermal profile along the tubing. The intent is to minimize the intrinsic
systematic error of classic quasi-static methodologies, which assume that all thermal transience on well
completion has passed. When these techniques are applied during the initial hours of injection well op-
eration, it can result in errors higher than 20%. To solve this limitation, the first law of thermodynamics
was used to define a mathematical model and a thermal profile was established in the injection fluid,
captured by using distributed temperature systems (DTSs) installed inside the tubing. The geothermal
profile was also established naturally by a thermal source in the earth to determine the thermal gra-
dient. A computational simulation of the injection well was developed to validate the mathematical
solution. The simulation intended to generate the fluid’s thermal profile, for which data were not
available for the desired time period. As a result, at the cost of greater complexity, the systematic error
dropped to values below 1% in the first two hours of well operation, as seen throughout this document.
The code was developed in Phyton, version 1.7.0., from Anaconda Navigator.

Keywords: oil reservoir; thermal profile; geothermal profile; flow rate injection

1. Introduction

When working with water injection in an oil production field, knowing the injected
flow rate is crucial. Deviations from the designed flow rates can result in lost oil production
and damage to the reservoir in the worst case. In the case of multiple injection zones, where
fluid is injected simultaneously in several sections along the injection well, the quality of
the flow rate value is more critical due to the risk of greater flow deviations between zones,
where a problem in one injection zone can completely change the flow rate being injected
in another zone.

Currently, the flow rate is measured at the surface near the well. Typically, an orifice
plate takes the measurement [1]. Another method could be used. To measure the flow
below the surface using well tubing, it is necessary to shut down the well to install and use
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specialized instrumentation (e.g., flow meters and radioactive tracers). The measurement
is not continuous. It is executed at a single point in time, which makes these methods
very expensive and not suitable for continuous well production. For wells with only one
injection zone, this is sufficient. However, for wells with multiple zones, the proportion
of the flow in each zone is estimated from the surface flow. The estimate is based on the
pressure applied to mechanical flow regulators, which are installed in the injection zone.
This approach normally leads to an incorrect injection flow rate.

To overcome these difficulties and limitations, several measurement techniques are
being developed based on the thermal profile in the injection column obtained by so-
called distributed temperature sensors (DTSs). In this technique, an enriched fiber at
predetermined points provides, in real-time, the temperature along the production column
through the intensity of the reflected light wave. From this thermal profile, it is possible to
derive the flow rate transported inside the tube and, consequently, the injection flow [2].

As a result of the small radii of well completions (<1 m) compared to the radius of the
formation, which is assumed to have infinite extension (>>1 m), all previous researchers
have ignored the transient heat flow in the well completion (tubing, annulus, casing, and
cementation). Ramey was one of them. He proposed the first practical and consistent work
to predict the fluid’s thermal profile in the tubing. Since heat flow is a very slow process,
the heat transient in well completion is still significant during the initial hours of well
operation. This implies a significant systemic error inherent in the methodology.

Motivated by the need to reduce the systematic error in the calculation of the flow
rate inside the tubing during the first hours of well operation and originally inspired by
the work of Ramey, this paper proposes a solution that takes into account the effect of the
transient heat flow in well completion on the prediction of the thermal profile of the fluid
and, consequently, the flow rate, the desired variable.

2. Preliminaries

Consider an injection well with the standard completion shown in Figure 1. Further-
more, assume that the well is in an idle state in thermal equilibrium with the formation.
Under this condition, the temperatures of the well, completions, and formations are equal
to the geothermal temperature, Tg(z), which increases linearly with depth, given by:

Tg(z) = az + b (1)

where z is the vertical coordinate (depth), a is the geothermal gradient, and b is the surface
temperature. The geothermal temperature is the temperature naturally established in the
formation and wellbore by heat flow from the earth’s center. It is a very slow process
compared to the thermal processes involved in well completion.

Figure 1. Standard well schematic.



Sensors 2023, 23, 9465 3 of 20

Assume that a new injection process starts at t = 0. Furthermore, assume that the
injection fluid has no phase change, is incompressible, and is colder than the reservoir.
Under these conditions, as the fluid moves through the tubing, it gains thermal energy
from its surroundings, and its temperature increases, creating a thermal profile along the
tubing. The profile created is directly related to the flow rate in the tubing.

To calculate the flow rate for t > 0, consider the application of the energy and mass
conservation principle to the control volume (CV) highlighted in Figure 2. In this figure, ṁ
is the forced mass flow in the tubing, Q̇1, and Q̇2 are the heat flows entering the control
volume by convection at the upper and lower surfaces, and δQ̇3 is the heat flow entering
the control volume by convection at the inner tubing surface of size δz.

Figure 2. Control volumes and conservation of energy.

Assume that the flow rate is constant and the flow pattern is turbulent. As a result
of this last characteristic, the fluid can be treated as an agglomerated system, in which
the transience of the heat transfer in the fluid can be neglected because of the slowness of
the transfer mechanisms in its environment. Consider also that the thermal properties are
isotropic, homogeneous, and invariant with time and that there is no heat generation due
to the fluid viscosity.

In this context, applying the principles of conservation of energy and mass to the CV,
we have:

Ėṁ1(z−
δz
2

, t)− Ėṁ2(z +
δz
2

, t) + Q̇1(z−
δz
2

, t) + Q̇2(z +
δz
2

, t) + δQ̇3(r1, z, t)

=
∂ECV(z, t)

∂t
(2)

where Ėṁ is the energy flow (thermal, kinetic, gravitational, and hydraulic potential energy)
associated with the mass flow entering or leaving the control volume (CV). ĖĊV is the total
energy within the CV.

Since the vertical heat flows Q̇1 and Q̇2 are a negligible fraction of the heat transported
by the mass flow, they are assumed to be zero in this paper. As a result, the mass flow
inside the tubing is given by [3,4]:

ṁ ∼=
2πr1U(z, t)

c
[
Tg(z)− Tf (z, t)

]/∂Tf (z, t)
∂z

− π(r1)
2ρ

∂Tf (z, t)
∂t

/∂Tf (z, t)
∂z

(3)

where c is the specific thermal capacity of the fluid, ρ is the specific volume of the fluid,
Tf (z, t) is the temperature of the fluid at the center of tubing (r = 0), and U(z, t) is the
global heat transfer coefficient, with r = r1 as the reference. The coefficient U(z, t) includes
all thermal resistance to heat propagation, from convection at the inner surface of the tubing
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at r = r1 to the radial limit of thermal disturbance caused by transporting the fluid at a
colder temperature. For example, if the thermal disturbance is beyond the cementation,
this coefficient includes the following resistances: tubing conduction, natural convection in
the annulus, casing conduction, cementation conduction, and finally, formation conduction
from r = r5 to the thermal disturbance inside the formation. It is defined by [5]:

U(z, t) =
δQ̇3(z, t)

2πr1δz[Tg(z)− Tf (z, t)]
(4)

The calculation of the flow rate, ṁ, as can be deduced from Equation (3), depends on
the value of U(z, t), which in turn depends on the convection coefficient on the inner surface
of the tubing, which depends on the desired flow rate. In other words, to determine the
value of the flow rate, it is necessary to solve the following system of nonlinear equations:

Pr =
µc
k

(5)

Re =
ρυmed(2r1)

µ
(6)

f = [0.79 ln(Re)− 1.64]−2 (7)

h =
( f /8)(Re− 1000)Pr

1 + 12.7( f /8)0.5(Pr2/3 − 1)
k

2r1
(8)

Ũ ∼= U(z̃, t) (9)

ṁ ∼=
2πr1Ũ

c

∫ z2
z1

[
Tg(z)− Tf (z, t)

]
dz

Tf (z2, t)− Tf (z1, t)
− π(r1)

2ρ

∫ z2
z1

[
∂Tf (z, t)/∂t

]
dz

Tf (z2, t)− Tf (z1, t)
(10)

where Pr is the Prandtl number, Re is the Reynolds number, f is the friction factor, h is the
convection coefficient, U(z̃, t) is the global average heat transfer coefficient in the interval
[z1,z2], and ṁ is the desired mass flow rate. The variables µ, c, k, and ρ are the absolute
viscosity, specific heat capacity, thermal conductivity, and specific mass, respectively, all
relative to the fluid in flow.

Equation (7) corresponds to Petukhov’s first explicit equation for calculating the
friction factor in smooth tubes. It is valid for 3 × 103 < Re < 5 × 106 [6].

Equation (8) is the Gnielinski equation for calculating the convection coefficient
for a forced turbulent flow moving in a tube. It is valid for 0.5 ≤ Pr ≤ 2 × 103 and
3 × 103 < Re < 5 × 106 [6].

The system resulting from Equations (5) to (10) can be solved, among other methods
in the literature, by executing the algorithm shown in Figure 3.

The approach chosen for calculating Ũ will define its applicability and the intensity
of the corresponding systematic error. This article presents two approaches: (a) the quasi-
static approach, which assumes that the thermal processes are already slow enough to be
considered in thermal equilibrium, and (b) the purely analytical approach, which seeks the
solution by solving the differential heat transfer equations.
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Figure 3. Algorithm for solving the equation system.

3. Quasi-Static Approach

As a result of the small radius of the completion compared to the formation (r >> r5),
which corresponds to the radius of the outer cementation surface (r = r5 in Figure 2), the
quasi-static solutions ignore all thermal transients in the fluid and completion (tubing,
annulus, casing, and cementing). As a result, still taking Figure 2 as a reference, the global
heat transfer coefficient and the mass flow will be given by:

Ũ ∼=
[

1
h
+

r1

ktub
ln(

r2

r1
) +

r1

r2

1
hcomb

+
r1

krev
ln(

r4

r3
) +

r1

kcim
ln(

r5

r4
) +

r1 f (t)
k f or

]−1

(11)

ṁ ∼=
2πr1Ũ

c

∫ z2
z1

[
Tg(z)− Tf (z, t)

]
dz

Tf (z2, t)− Tf (z1, t)
(12)

where ktub, krev, kcim, and k f or, are the thermal conductivity of tubing, casing, cementa-
tion, and formation, respectively. r1, r2 are the tubing’s inner radius and external radius
in m, respectively, r3 and r4 are the casing’s inner and outer radius, respectively, r5 is the
cementation’s external radius, hcomb is the combined heat transfer coefficient, and f (t) is
the transient function for heat propagation in the formation up to the thermal perturbation
limit [5]. This function encompasses the entire time dependence of heat propagation in the
formation. It is the primary variable to be determined in this methodology. It is defined by:

f (t) =
2πk f or

[
T(r5, z, t)− Tg(z)

]
∆z

∆Q̇(r5, z, t)
(13)

In Equation (13), T(r5, z, t) is the temperature at the interface with the formation, Tg(z)
is the geothermal temperature at depth z, and ∆Q̇(r5, z, t) is the heat rate transferred to the
formation by the depth element ∆z [5].

In 1962, Ramey proposed the following approximation for times longer than a week [5]:

f (t) ∼= − ln
r5

2
√

αt
− 0.290 (14)

with α being the thermal diffusivity of the formation and t being the time measured in days.
In 1967, Matthews and Russell, assuming that the fluid inside the tubing could be

considered a linear geometric heat source (line source) and given the small radius of the
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tubing compared to the radius of the formation, came up with the following approximation
for the transient function [7]:

f (τ) ∼=
1
2

∫ ∞

1
4τ

e−u

u
du (15)

where τ corresponds to the dimensionless Fourier time for formation, i.e.,

τ =
k f ort

ρ f orc f orr52 (16)

where c f or is the specific heat of formation and ρ f or is the mass density of the formation.
In 1994, Hasan and Kabir proposed the following approximation for the transient

function referring to the condition of constant heat flow at the interface with the formation
in r1 [8,9]:

τ ≤ 1.5→ f (τ) = 1.1281
√

τ(1− 0.3
√

τ) (17)

τ > 1.5→ f (τ) = [0.4063 + 0.5 ln(τ)](1 +
0.6
τ
) (18)

In 2004, Hagoort proposed an approximate function for the constant temperature
boundary condition at the internal interface of the formation. This is [10]:

τ < 1→ f (τ) =
1

1
πτ + 0.5− 0.2

√
τ/π

(19)

1 < τ < 105 → f (τ) = −0.0012[ln(τ)]3 + 0.0249[ln(τ)]2 + 0.3083 ln(τ) + 1.0504 (20)

τ > 105 → f (τ) = 0.5 ln(
τ

0.447
) (21)

In general, the transient functions for boundary conditions of the “constant temper-
ature at r1”, “constant flow at r1”, and “fluid with constant temperature and convection
boundary condition at r1” types are given, respectively, by

f (τ) = 1/L−1
s→τ

{ K1(
√

s)√
sK0(
√

s)

}
(22)

f (τ) = L−1
s→τ

{ K0(
√

s)
s
√

sK1(
√

s)

}
(23)

f (τ) = L−1
s→τ

{1
s

K0(
√

s)

K0(
√

s) +
√

s
β f or

K1(
√

s)

}/
L−1

s→τ

{ 1√
s

K1(
√

s)

K0(
√

s) +
√

s
β f or

K1(
√

s)

}
(24)

where L−1
s→τ{−} is the inverse Laplace transformation from s to τ, K0 and K1 are the Bessel

functions of the second kind and order 0 and 1, respectively, and β f or is the Biot number
for the formation [6], i.e.,

β f or =
r1U f or

k f or
(25)

where U f or is the global heat transfer coefficient up to the interface with the formation,
given by:

U f or =

[
1
h
+

r1

ktub
ln(

r2

r1
) +

r1

r2

1
hcomb

+
r1

krev
ln(

r4

r3
) +

r1

kcim
ln(

r5

r4
)

]−1

(26)
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The derivation of the listed equations, i.e., the solution of the system of differential
equations for the mentioned boundary conditions, can be found in the work of Lima [4].

4. Analitical Approach

Wu and Pruess in 1990 [3], Assmann [11] in 1993, and Haggort in 2004 [10] presented
analytical solutions for calculating the temperature of the fluid inside the tubing. Using the
concept of the global heat transfer coefficient to synthesize the thermal resistances up to
the formation, they all disregarded the transience in the completion. In addition, the work
by Wu and Pruess presented data on the relationship between vertical and radial gradients,
justifying the assumption of a zero vertical heat flow.

Although the solutions obtained by Wu and Pruess, Assmann, and Hagoort, among
others, show good results after the well has been in operation for less than two weeks, like
Ramey’s solution, disregarding the transience of the heat transfer in the completion, as well
as the variation in the internal energy of the fluid (second part of Equation (10)), makes it
impossible to obtain better results for times around the transit time of the fluid in the tubing.

Consider the simplified completion shown in Figure 4, where the annulus has been
ignored to illustrate the methodology. The layers of the well have been numbered to facilitate
the naming of properties and variables. Furthermore, in the same figure, the chosen positions
(z1 and z2) to calculate the integrals of Equation (10) are shown.

Figure 4. New control volumes and conservation of energy.

As we have seen so far, calculating the flow rate depends on knowing the value of the
overall heat transfer coefficient, which in turn depends on the convection coefficient, the
fluid temperature, the geothermal temperature, and the temperature of the internal tubing
interface. Consider the following dimensionless temperatures for the fluid and the internal
tubing interface:

θ f (z, t) =
Tf (z, t)− Tg(z)

Tg(z)
(27)

θ1(z, t) =
T(r1, z, t)− Tg(z)

Tg(z)
(28)

with θ f being the injection fluid temperature and θ1 being the temperature of medium 1.
Since the heat flow by convection at the internal interface of the tubing must be equal

to the heat flow at the same interface due to the use of the global heat coefficient, we have:

U(z, t) = h
Tf (z, t)− T(r1, z, t)

Tf (z, t)− Tg(z)
(29)
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and, consequently:

U(z, t) = h− θ1(z, t)
θ f (z, t)

h (30)

Considering that the vertical thermal gradient, and consequently the heat flow in the
same direction, is only significant when compared to the intensity of the radial flow at the
thermal disturbance front, which occurs during the fluid’s transit time in the tubing, it will
be disregarded in this analysis [3]. Thus, excluding the vertical heat flow, assuming that the
flow regime inside the tubing is turbulent, and applying the principles of conservation of
energy and mass, we have the system of partial differential equations described in Table 1.
The deduction of the equations and the solution can be found in Appendix A of the work
by Lima [4].

Table 1. System of differential equations—simplified completion.

Description Equation

Fo
rm

at
io

n
(r

3
≤

r
≤

∞
) General Equation ∂2T(r,z,t)

∂r2 + 1
r

∂T(r,z,t)
∂r = 1

α3

∂T(r,z,t)
∂t , α3 = k3

ρ3c3

Initial Condition T(r, z, 0) = Tg(z)
Boundary Condition (∞) lim

r→∞
T(r, z, t) = Tg(z)

Boundary Condition (r3) (a) k2
∂T(r−3 ,z,t)

∂r = k3
∂T(r+3 ,z,t)

∂r
(b) T(r−3 , z, t) = T(r+3 , z, t)

C
em

en
ta

ti
on

(r
2
≤

r
≤

r 3
)

General Equation ∂2T(r,z,t)
∂r2 + 1

r
∂T(r,z,t)

∂r = 1
α2

∂T(r,z,t)
∂t , α2 = k2

ρ2c2

Initial Condition T(r, z, 0) = Tg(z)

Boundary Condition (r3) (a) k2
∂T(r−3 ,z,t)

∂r = k3
∂T(r+3 ,z,t)

∂r
(b) T(r−3 , z, t) = T(r+3 , z, t)

Boundary Condition (r2) (a) k1
∂T(r−2 ,z,t)

∂r = k2
∂T(r+2 ,z,t)

∂r
(b) T(r−2 , z, t) = T(r+2 , z, t)

Tu
bi

ng
(r

1
≤

r
≤

r 2
)

General Equation ∂2T(r,z,t)
∂r2 + 1

r
∂T(r,z,t)

∂r = 1
α1

∂T(r,z,t)
∂t , α1 = k1

ρ1c1

Initial Condition T(r, z, 0) = Tg(z)

Boundary Condition (r2) (a) k1
∂T(r−2 ,z,t)

∂r = k2
∂T(r+2 ,z,t)

∂r
(b) T(r−2 , z, t) = T(r+2 , z, t)

Boundary Condition (r1) (a) −r+1
∂T(r+1 ,z,t)

∂r = β1[Tf (z, t)− T(r−1 , z, t)], β1 = r1h
k1

(b) T(r−1 , z, t) = T(r+1 , z, t)

Fl
ui

d
(0
≤

r
≤

r 1
) General Equation ∂Tf (z,t)

∂t + vmed
∂Tf (z,t)

∂z = 2h
r1ρ0c0

[T(r1, z, t)− Tf (z, t)]
Initial Condition Tf (z, 0) = Tg(z)
Boundary Condition (z0) Tf (0, t) = Tf 0

Boundary Condition (r1) (a) −r+1
∂T(r+1 ,z,t)

∂r = β1[Tf (z, t)− T(r−1 , z, t)], β1 = r1h
k1

(b) T(r−1 , z, t) = T(r+1 , z, t)

As a result, the dimensionless temperature of fluid in the center of the tubing at r = 0
and the dimensionless temperature at r = r1 are given by:

θ f (w, τ) =
1

Tg(w)

[
− awL−1

s→τ

{1− e−g(s)w

sg(s)

}
+ bwθ f 0L−1

s→τ

{ e−g(s)w

s

}]
(31)

and

θ1(w, τ) =
1

Tg(w)

[
− awL−1

s→τ

{
¯̄θ1(w, s)

1− e−g(s)w

sg(s)

}
+ bwθ f 0L−1

s→τ

{
¯̄θ1(w, s)

e−g(s)w

s

}]
(32)

where

g(s) = 2α1β1[1− ¯̄θ1(w, s)] + s (33)
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¯̄θ1(w, s) = c̄11 Io(
√

s)− c̄12Ko(
√

s) (34)

such that:

θ̄1(w, s) = ¯̄θ1(w, s)θ̄ f (w, s) (35)

For Equations (31)–(35), ω is a dimensionless vertical coordinate, aω is the angular
coefficient of geothermal temperature with respect to ω, bω is the linear coefficient of
geothermal temperature with respect to ω, θ̄1 is the dimensionless temperature of medium 1
in the Laplace domain, α1 is the thermal diffusivity of medium 1, and β1 is the Biot number
relative to medium 1.

The function g(s) is used to simplify the notation. The functions I0(
√

s) and K0(
√

s)
are known in the literature as modified Bessel functions of the first and second kind,
respectively, both of zero order. The variables c̄11 and c̄12 are functions in the Laplace
domain, independent of the radial coordinate, r, and related to the mean 1 of the completion
under study, taken as a reference in the process of dimensioning the variables. Their values
are given by a system of linear functions in the Laplace domain, which is a consequence of
the boundary conditions of the problem. See [4] for more information.

In Equations (31) and (32), τ is the dimensionless time, w is the dimensionless vertical
coordinate, θ f 0 is the dimensionless temperature of the fluid at w = 0, aw is the geother-
mal gradient related to the dimensionless coordinate w, and bw is the linear coefficient
of the dimensionless geothermal temperature. The values of τ , w, aw, and bw are given,
respectively, by:

τ =
k1

ρ1c1r1
2 t (36)

w =
k1

vmedρ1c1r1
2 z (37)

aw =
vmedρ1c1r1

2

k1
az (38)

bw = Tg(0) (39)

where k1 is the thermal conductivity, ρ1 is the mass density, c1 is the specific heat related to
medium 1, vmed is the average velocity of the fluid velocity profile, and az is the geothermal
gradient related to independent variable z.

The dimensionless variables represented by Equations (27), (28), (36), and (37) are
consequences of the algebraic manipulations that attempt to reduce the mathematical
complexity of the system of partial differential equations. Among them, the dimensionless
time variable (τ) is known in the literature as the dimensionless Fourier time.

Thus, in addition to Equation (30), the global heat coefficient can be rewritten as:

U(z̃, t) = h−
−awL−1

s→τ

{
¯̄θ1(w, s) 1−e−g(s)w

sg(s)

}
+ bwθ f 0L−1

s→τ

{
¯̄θ1(w, s) e−g(s)w

s

}
−awL−1

s→τ

{
1−e−g(s)w

sg(s)

}
+ bwθ f 0L−1

s→τ

{
e−g(s)w

s

} h (40)

and, finally, the mass flow can be calculated by Equation (10), where the integral limits, z1
and z2, can be chosen in the interval belonging to the transport part of the tubing under
analysis. z̃ can be assumed as an average of z1 and z2. In other words,

z̃ ∼=
z1 + z2

2
(41)
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The inverse Laplace transforms of Equation (40) can be calculated numerically using
the Gaver–Stehfest algorithm [12,13], which was adopted in this article, or other methods
available in the literature.

As seen, it is possible to use a standard script for both approaches by continuing to
use the global heat transfer coefficient as the basis for calculating the flow rate. However,
unlike the previous quasi-static approach, the calculation of the global coefficient given by
Equation (40) also considers the thermal transience in the layers of the well.

5. Computer Simulations

Given the very specific operating conditions regarding data collection and storage in
the first moments of injection in a reservoir with the original initial conditions, the possibil-
ity of the existence of real, unmotivated data from the operation of a well in production
under these specific conditions has proven unfeasible up to the point of the completion of
this article, making it considerably difficult to evaluate the proposed analytical solution.

As a countermeasure to the lack of data for validation, a computerized well simulator
was designed and developed to generate the temporal evolution of the thermal profile of
the injection fluid along the tubing.

Due to its widespread use in the scientific community, the finite difference method,
specifically the explicit Euler method, was used as a numerical tool in the simulator code
development. In this method, the central idea is to replace the differential equations with
algebraic equations, exchanging the derivatives for difference approximations and applying
the resulting equations to each subdivision of the problem domain, referred to in this article
as the control volume (CV). The result is an algebraic equation for each subdivision, making
up a system of linear equations [6].

The code was developed in Phyton, version 3.9.13, from Anaconda Navigator, ver-
sion 2.3.1. The code and packets used can be found in the work of Lima [4].

6. Results

Two computer simulations were carried out to evaluate the proposed method. The
first simulation aimed to verify the alignment of the proposed solution with the classical
quasi-static solutions proposed by Ramey and their successors. To this end, a schematic of a
well without completion was adopted, aligning it with the reference model used to calculate
the transient functions. The second simulation aimed to verify the proposed analytical
solution in a well with simplified completion (tubing and cementing) and compare its
performance with quasi-static solutions.

6.1. Simulation 1: Well without Completion

In this first analysis, the data generated in the simulation of a well without completion
were processed, as shown in Figure 5. This configuration is a good representation of the
prototype well installed at UFRN [14]. Although the prototype has tubing, its high thermal
conductivity means that its presence does not make a noticeable difference to the fluid
temperature evolution, as will be seen below.

Once the oil industry has no wells without completions, the well shown in Figure 5 can-
not be used as a real-world model. However, by processing the fluid temperature evolution
for this configuration, it is possible to evaluate the contribution of the transient functions
to the flow measurement since these functions were derived from a similar schematic of
the well. Furthermore, since water injection wells operate for months, sometimes years,
heat conduction in the formation is the dominant thermal process in flow measurements.
Under these conditions, after the first two weeks of operation, any thermal transient in the
completion that could influence the flow inference becomes insignificant [5]. In this way, a
simulation without completion provides indications and trends for the behavior of the flow
to be measured.
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Figure 5. Well without completion—details of the problem.

6.2. Simulation 1: Simulation Data

Table 2 shows the variables and values used in the simulation of the well shown in
Figure 5. The other variables used in the simulation are functions of the values shown in
the table.

Table 2. Well without completion—data used in the simulation (L = 10 m).

Variable Value Description

G
en

er
al

da
ta

dt0 0.25 s Time step
dz0 0.1 m Space step in the z direction (longitudinal)

tsimu 6 h Simulation time
p_samples_z 0.1 m Sampling period in the “z” direction
p_samples_t 15 s Time sampling period

TAmb 35 ◦C Environment temperature
TgeoType 1 Geothermal temperature type (0 = constant; 1 = linear)

ThermalSource 0 0 = Adiabatic boundary; 1 = Thermal source equal
to Tgeo

G
eo

m
et

ri
c L0 10 m Longitudinal length of the well to be simulated

Tub_Radius 0.0254 m [r1] tubing inner radius
Reserv_Radius 1 m [r2] Reservoir external radius

DIV0 1 Number of region radial divisions 0
DIV1 40 Number of region radial divisions 1

Fl
ui

d

k0 0.636 W/(m·K) Water thermal conductivity
Cp0 4184 J/(kg·K) Water-specific thermal capacity
ro0 1000 kg/m3 Water-specific mass
mi0 0.0006 N·s/m2 Absolute viscosity
f0_ 0.0003 m3/s Volume flow

TF_IN 20 ◦C Inlet fluid temperature

Fo
rm

at
io

n k1 2.42 W/(m·K) Reservoir thermal conductivity
Cp1 1500 J/(kg·K) Reservoir-specific thermal capacity
ro1 2100 kg/m3 Reservoir-specific mass

GradGeo 0.365 ◦C/m Geothermal gradient in the “z” dimension
TSurf TAmb Surface temperature

6.3. Simulation 1: General Results

Figure 6 shows the time evolution of the fluid temperature along the tubing. The curve
for “t ≤ 0 s” corresponds to the geothermal temperature. It is the initial condition used
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in solving the system of nonlinear equations. The curve for “t = 1 min” corresponds to
the temperature profile established after a transit time, which is the time required for the
fluid to travel the total simulated 10 m. It can be seen that the dynamic change in the curve
slows down as the operating time increases. In particular, the curve for 2 h differs little
from the curve for 6 h.

Figure 6. Well without completion—longitudinal temperature evolution.

Figure 7 shows the time evolution of the radial temperature at a depth of 5 m. As can
be seen in the graph, after 6 h, the thermal disturbance was approximately restricted
to a distance of 50 cm from the center of the tubing, validating the external radius of
the reservoir used in the simulation (1 m). Given the simulation time considered (6 h),
using a small value for the outer radius of the reservoir (Reserv_Radius) would result in
overheating/undercooling of the well, saturating the simulation and making the generated
data unrepresentative of the real situation.

Figure 7. Well without completion—radial temperature evolution.

Therefore, for the prototype installed at UFRN, which has an outer radius of approx-
imately 30 cm, we recommend adopting 2 h as the maximum operating time. After this
time, the prototype will overheat, and the generated data will no longer be valid.
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6.4. Simulation 1: Inferred Flow

The graph in Figure 8 shows the evolution of the flow measurement for the methods
and functions presented in this work. As can be seen, all the methods tend to converge
to the reference flow used in the simulation (0.3 × 10−3 (m3/s)). However, the methods
derived from the constant temperature assumption show better results, i.e., a constant
temperature at r1 (curve Constant Temp), a constant fluid temperature with convection
conditions at r1 (curve Convection Condition) and the Hagoort approximations (curve
Hagoort). This greater accuracy of the constant temperature methods is a consequence of
the short transit time of the fluid in the tubing, equal to 1 min, which means that the fluid
temperature at the measurement point has a small time variation compared to the time
variation of the heat flow.

Figure 8. Well without completion—measurement at 9 m.

The graph in Figure 9 shows the evolution of the flow measurement error. As expected,
the choice of transient function will result in a greater or lesser systematic error. Applying
the proposed analytical solution results in a significantly lower systematic error for the
entire simulated operating time.

Figure 9. Well without completion—measurement error at 9 m.
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6.5. Simulation 2: Well with Simplified Completion

This second simulation aims to verify the impact of transient heat transfer in the well
completion on the inference of flow rate using the methods and formulations outlined in
this article. To achieve this, consider the well completion represented in Figure 10. This
completion technique, which involves only tubing and cementation, is widely utilized in
real injector and producer wells.

Figure 10. Completion with two layers—details of the problem.

As in the previous simulation, adiabatic boundaries were used at the edges of the
simulated well, making it easy to detect saturation. A constant temperature was also used
at the inlet of the injection column (tubing).

6.6. Simulation 2: Simulation Data

Table 3 shows the variables and values used in this simulation. Following the same
approach as the previous simulation, the other variables used are functions of the values
presented.

Table 3. Completion with two layers—data used in the simulation.

Variable Value Description

G
en

er
al

da
ta

dt0 0.25 s Time step
dz0 0.1 m Space step in the z direction (longitudinal)

tsimu 6 h Simulation time
p_samples_z 0.1 m Sampling period in the “z” direction
p_samples_t 15 s Time sampling period

TAmb 35 ◦C Environment Temperature
TgeoType 1 Geothermal temperature type (0 = constant; 1 = linear)

ThermalSource 0 0 = Adiabatic boundary; 1 = Thermal source equal
to Tgeo

G
eo

m
et

ri
c

L0 10 m Longitudinal length of the well to be simulated
Tub_Radius 0.0254 m [r1] Longitudinal length of the well to be simulated

Reserv_Radius 1 m [r4] Reservoir external radius
DIV0 1 Number of region radial divisions 0
DIV1 3 Number of region radial divisions 1
DIV2 10 Number of region radial divisions 2
DIV3 30 Number of region radial divisions 3



Sensors 2023, 23, 9465 15 of 20

Table 3. Cont.

Variable Value Description

Fl
ui

d

k0 0.636 W/(m·K) Water thermal conductivity
Cp0 4184 J/(kg·K) Water-specific heat capacity
ro0 1000 kg/m3 Water-specific mass
mi0 0.0006 N·s/m2 Absolute viscosity
f0_ 0.0003 m3/s Volume flow

TF_IN 20 ◦C Inlet fluid temperature

Tu
b

k1 14 W/(m·K) Reservoir thermal conductivity
Cp1 502 J/(kg·K) Reservoir-specific thermal capacity
ro1 8000 kg/m3 Reservoir-specific mass

Tub_Thickness 0.635 cm Tubing thickness

C
em

en
t k2 0.9 W/(m·K) Reservoir thermal conductivity

Cp2 900 J/(kg·K) Reservoir-specific thermal capacity
ro2 2400 kg/m3 Reservoir-specific mass

Cim_Thickness 5.08 cm Cementation thickness

Fo
rm

at
io

n k3 2.42 W/(m·K) Reservoir thermal capacity
Cp3 1500 J/(kg·K) Reservoir-specific thermal capacity
ro3 2100 kg/m3 Reservoir-specific mass

GradGeo 0.365 ◦C/m Geothermal gradient in the “z” dimension
TSurf TAmb Surface temperature

6.7. Simulation 2: General Results

The graph in Figure 11 shows the time evolution of the fluid temperature along the
tubing. As in the previous simulation, the curve for “t ≤ 0 s” corresponds to the geothermal
temperature. It is the initial condition used in solving the system of nonlinear equations.
It can be seen, as before, that the dynamics of the change in the curve lose speed as time
progresses, but with less intensity, resulting in higher temperatures at the end of each
measurement time. As observed in the previous simulation, the fluid temperature curve
for 2 h of operation differs little from the curve for 6 h.

Figure 11. Completion with two layers—longitudinal temperature evolution.

The graph in Figure 12 shows the time evolution of the radial temperature at a depth
of 5 m, half the length of the tubing. After 6 h, the thermal disturbance was restricted to a
distance of 50 cm from the center of the tubing, which shows that the simulation was not
saturated for the time considered.
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Figure 12. Completion with two layers—radial temperature evolution.

6.8. Simulation 2: Inferred Flow

When the flow is measured using the classical methods, simplifications are made in
calculating the global heat transfer coefficient, i.e., the transient heat transfer through the
completion (tubing and cementing) is not considered. When measured using the proposed
analytical method, only the transient effects of the tubing are ignored due to its high thermal
conductivity when compared to the other layers of the well (cementing and formation).
The graph in Figure 13 shows the evolution of flow measurement for the methods and
transient functions presented in this article.

Figure 13. Completion with two layers—measured at 9 m.

As can be seen in Figure 13, as in the previous simulation, all the methods tended
to converge to the reference flow rate (0.3 × 10−3 (m3/s)). However, unlike the previous
simulation, the methods derived from the assumption of a constant heat flow, i.e., constant
heat flow at r1 (Constant Flow curve) and the Hasan and Kabir approximations (Hasan
curve), showed better results. The method based on applying the convection boundary
condition in conjunction with the assumption of a constant fluid temperature (Convection
Condition curve) showed good results in both simulations, given its flexibility in dealing
with heat flow into the reservoir. In the same sense, the proposed analytical solution
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(Proposed Solution curve) enabled flexibility in the fluid temperature and showed visibly
better results than all the other methods studied.

The graph in Figure 13 shows the evolution of the systematic error in flow measurements.
The systematic error resulting from applying the proposed analytical method (Proposed
Solution curve) tends to be less than 1% in the initial moments of the simulation, unlike the
other methods, which require hours or days of operation. The graph in Figure 14 shows the
evolution of the systematic error in flow measurement. The systematic error in the initial
instants of the analytical approach is a consequence of neglecting the heat flow in the vertical
direction, which is significant in the initial moments in the vicinity of the well, and of not
taking into account the effects of the tubing on heat propagation in the system as a whole.

Figure 14. Completion with two layers—measurement error at 9 m.

7. Conclusions

This work proposed an analytical solution to predict the thermal profile of the fluid
inside an injection well during the initial hours of well operation, a period not covered in
the reviewed articles. The intention was to calculate the flow rate inside the tubing, crucial
information for the success of an injection plan, and avoid damage to the oil reservoir.
Unlike other studies, the transient heat flow in the well completion was addressed to
achieve this, resulting in a complex system of partial differential equations.

Due to the absence of real data to evaluate the proposed solution, a computer simulation
was conducted to predict the evolution of the thermal profile of the fluid inside the tubing.
Two simulations were performed. The first, without any completion, was intended to verify
the concordance of the proposed analytical solution with the solutions of Ramey and other
researchers. The second, with a well-completion composed of tubing and cementation, was
intended to verify the superiority of the proposed analytical solution.

Based on the data from the first simulation, it was observed that the proposed analyti-
cal solution is consistent with the quasi-static solution and shows slightly better results than
the other studied solution over the six hours simulated. The error in the calculated flow
rate was 1.8% after one hour and 1.2% after two hours of well operation. The average errors
of the other solution studied were 13.2% and 9.2% after one and two hours, respectively. In
the same way, using the data from the second simulation, the proposed analytical approach
exhibits an error of 0.9% after one hour and an error of 0.5% after the first two hours, much
less than the other solutions studied, which present an average error of 11.4% and 8.3%
after one and two hours, respectively.

In summary, the proposed analytical solution has shown better results compared to
the other solutions studied. Since the proposed solution considers the transient behavior of
the heat flow in well completion, which, as was seen, is significant in the initial hours of
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well operation, these results were expected. However, the solution is more complex and
more difficult to implement.
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Abbreviations
The following abbreviations are used in this manuscript:

α Thermal diffusivity (m2/s)
α1 Thermal diffusivity of medium 1 (m2/s)
α2 Thermal diffusivity of medium 2 (m2/s)
α3 Thermal diffusivity of medium 3 (m2/s)
β1 Biot number relative to the medium 1
β f or Relative Biot number of the formation
µ Absolute viscosity (N·s/m2)
θ1 Dimensionless temperature of the medium 1
θ̄1 Dimensionless temperature of medium 1 in the Laplace domain
θ f Dimensionless injection fluid temperature
θ̄ f Dimensionless temperature of the injection fluid in the Laplace domain
rho ρ Mass density (kg/m3)
ρ0 Mass density of the medium 0 (kg/m3)
ρ1 Mass density of the medium 1 (kg/m3)
ρ2 Mass density of the medium 2 (kg/m3)
ρ3 Mass density of the medium 3 (kg/m3)
ρ f or Mass density of the formation (kg/m3)
τ Shear stress (N/m2)
τ Dimensionless Fourier time
aw Angular coefficient of geothermal temperature with respect to w (◦C)
bw Linear coefficient of geothermal temperature with respect to w (◦C)
c Specific heat (J/(kg·K))
c0 Specific heat of the medium 0 (J/(kg·K))
c1 Specific heat of the medium 1 (J/(kg·K))
c2 Specific heat of the medium 2 (J/(kg·K))
c3 Specific heat of the medium 3 (J/(kg·K))
c f or Specific heat of formation (J/(kg·K))
f Friction factor
f (t) Transient formation function
h Heat convection coefficient (W/(m2·K))
hcomb Combined heat transfer coefficient (W/(m2·K))
I0 Modified Bessel function of first type and order 0
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k Thermal conductivity (W/(m·K))
k0 Thermal conductivity of the medium 0 (W/(m·K))
k1 Thermal conductivity of the medium 1 (W/(m·K))
k2 Thermal conductivity of the medium 2 (W/(m·K))
k3 Thermal conductivity of the medium 3 (W/(m·K))
kcim Thermal conductivity of cementation (W/(m·K))
k f or Thermal conductivity of the formation (W/(m·K))
ktub tubing thermal conductivity (W/(m·K))
krev Casing thermal conductivity (W/(m·K))
K0 Modified Bessel function of second type and order 0
L Length (depth) of the well (m)
ṁ Mass flow (kg/s)
r Radial coordinate (m)
r1 tubing inner radius (m)
r2 tubing external radius (m)
r3 Casing inner radius (m)
r4 Casing outer radius (m)
r5 Cimentation external radius (m)
Re Dimensionless Reynolds number
Pr Prandtl dimensionless number
Q̇ Heat transfer rate (W)
s Transformation variable for the Laplace domain
t Time (s)
T Temperature (◦C)
Tf Average fluid temperature (◦C)
Tg Geothermal temperature (◦C)
U Overall heat transfer coefficient (W/(m2·K))
Ũ Average overall heat transfer coefficient (W/(m2·K))
vmed Average velocity of the fluid velocity profile (m/s)
w Dimensionless vertical coordinate
z Vertical coordinate (m)
z1 Initial vertical coordinate of the region under analysis (m)
z2 Final vertical coordinate of the region under analysis (m)
z̃ Average vertical coordinate (m)
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