
Citation: Garcia-Perez, A.; Miñón, R.;

Torre-Bastida, A.I.; Zulueta-Guerrero,

E. Analysing Edge Computing

Devices for the Deployment of

Embedded AI. Sensors 2023, 23, 9495.

https://doi.org/10.3390/s23239495

Academic Editor: Francesco Longo

Received: 26 October 2023

Revised: 22 November 2023

Accepted: 24 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Analysing Edge Computing Devices for the Deployment of
Embedded AI
Asier Garcia-Perez 1,*,† , Raúl Miñón 1,† , Ana I. Torre-Bastida 2,† and Ekaitz Zulueta-Guerrero 3,†

1 Digital, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava Albert
Einstein 28, 01510 Vitoria-Gasteiz, Álava, Spain; raul.minon@tecnalia.com

2 Digital, TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 700,
48160 Derio, Biscay, Spain

3 System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU),
Nieves Cano, 12, 01006 Vitoria-Gasteiz, Álava, Spain; ekaitz.zulueta@ehu.eus

* Correspondence: asier.garcia@tecnalia.com
† These authors contributed equally to this work.

Abstract: In recent years, more and more devices are connected to the network, generating an
overwhelming amount of data. This term that is booming today is known as the Internet of Things. In
order to deal with these data close to the source, the term Edge Computing arises. The main objective
is to address the limitations of cloud processing and satisfy the growing demand for applications and
services that require low latency, greater efficiency and real-time response capabilities. Furthermore, it
is essential to underscore the intrinsic connection between artificial intelligence and edge computing
within the context of our study. This integral relationship not only addresses the challenges posed
by data proliferation but also propels a transformative wave of innovation, shaping a new era of
data processing capabilities at the network’s edge. Edge devices can perform real-time data analysis
and make autonomous decisions without relying on constant connectivity to the cloud. This article
aims at analysing and comparing Edge Computing devices when artificial intelligence algorithms
are deployed on them. To this end, a detailed experiment involving various edge devices, models
and metrics is conducted. In addition, we will observe how artificial intelligence accelerators such
as Tensor Processing Unit behave. This analysis seeks to respond to the choice of a device that best
suits the necessary AI requirements. As a summary, in general terms, the Jetson Nano provides the
best performance when only CPU is used. Nevertheless the utilisation of a TPU drastically enhances
the results.

Keywords: edge computing; TensorFlow Lite; TPU; device; model; metrics

1. Introduction

Today, we live in a constantly evolving digital age, where connectivity and data
processing capacity are essential to drive innovation and progress in all areas of our society.
In recent years, thanks to technological advances, most of the devices that surround us are
capable of collecting information, which has led to a significant increase in the amount of
data generated. In turn, these devices can send information to cloud platforms where the
information from a large number of devices can be concentrated, allowing more complex
operations to be carried out, such as calculations of aggregates and KPIs or training and
inference of artificial intelligence models.

Given this scenario, it has become necessary to find efficient solutions to handle and
process this growing amount of data. In this context, the Edge Computing (EC) paradigm
arises as a response to the challenges posed. One of the main reasons is the need for
ultra-low latency responses in critical environments. Sending data to the cloud could cause
significant delays due to the hops between nodes required to reach a server [1].

Sensors 2023, 23, 9495. https://doi.org/10.3390/s23239495 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-0800-7944
https://orcid.org/0000-0002-4319-0727
https://orcid.org/0000-0003-3005-1100
https://orcid.org/0000-0001-6062-9343
https://doi.org/10.3390/s23239495
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239495?type=check_update&version=1


Sensors 2023, 23, 9495 2 of 21

Besides low latency, EC offers a series of notable advantages when processing and
analyzing data in devices close to where it is generated. On the one hand, reducing the data
volume transferred to the cloud implies a reduction in the network bandwidth and, in turn,
less infrastructure needed and a saving in energy costs. On the other hand, the more data
that are processed at the edge layer, the less that need to be processed in the cloud. This
also means cost savings when working with a cloud service provider. Another notable
advantage is the improvement in privacy and security by keeping the data in a local
environment, that is, without leaving the facilities of the company or entity that generated
it. The EC also allows applications and services to continue to function even in situations of
disconnection from the cloud or interruptions in connectivity. In addition, data processing
and analysis at the edge enable real-time communication and instant decision-making
without relying on communication with the cloud. Therefore, it is an ideal technology for
environments with extremely limited connectivity such as offshore. Finally, distributing
processing across local devices enables greater scalability and responsiveness [2].

In the last few years, the execution of artificial intelligence models within these devices
has been promoted. In this way, agility and decision-making are boosted in this computing
layer. This area of the EC is referred to as Embedded AI [3]. Consequently, edge devices
with artificial intelligence accelerators integrated are emerging such as Graphical Processing
Units (GPUs) and Tensor Processing Units (TPU).

This research focuses on exploring and analyzing in depth the field of Embedded
AI and its application. Specifically, how well the so-called edge devices behave, at both
hardware and software levels, when running machine learning models. For this purpose,
an experiment has been conducted involving the deployment of different TensorFlow
image classification models in diverse EC devices. Next, significant metrics are acquired
to measure the hardware and performance behavior, as well as the energy consumption.
Along with this, the use of the TPU as an Artificial Intelligence (AI) accelerator is analyzed
in order to observe the improvements and consumption that this entails. By following this
approach, we gain the ability to effectively identify and observe inherent device limitations,
which is crucial for making detailed and insightful comparisons among them. Furthermore,
as part of our methodology, we have developed a set of testing tools that play a vital
role in graphically processing the results we’ve obtained. These tools provide a visual
representation of the data, enhancing our capacity to draw meaningful conclusions from
the analyses conducted. Therefore, the information obtained throughout this research
enables professionals of the sector to acquire a better understanding of the behavior of the
device analyzed and, consequently, it facilitates the decision-making when selecting edge
devices [4,5].

Therefore, the contributions of this research can be summarised as:

1. Provide a deep overview of the embedded AI ecosystem including the different
edge paradigms, the diverse device types, the embedded AI frameworks and the
most utilized adaptation techniques to make an AI model compatible with resource-
limited devices.

2. Analyzing edge computing device behavior with embedded AI models.
3. State key insights to enhance the device selection for embedded AI.

The rest of the paper is organized as follows: a detailed background and the related
work are, respectively, provided in Section 2 and in Section 3. Next, the experiment
conducted is explained and discussed in Section 4. Finally, Section 5 exposes the conclusions
and future work.

2. Background

In this section, the different areas of knowledge that have served as the basis and
inspiration for the research are analyzed. For this reason, the following subsections identify
paradigms of interest related to the edge, analyze different edge device families and present
Embedded AI frameworks and model adaptation techniques for this computing layer.



Sensors 2023, 23, 9495 3 of 21

2.1. Edge Paradigms

The term edge computing [6] arises due to the appearance of applications that require
autonomy, do not tolerate latency, or require a large amount of bandwidth. During the
last decade, there has been a great increase in Internet of Things (IoT) devices capable
of generating data through sensors. Consequently, the processing of the data close to
the source of generation can be more efficient in some scenarios instead of processing
everything in the cloud by default [7].

To address these challenges edge computing paradigm aims to promote data process-
ing and the execution of applications and services near the edge of the network (where
the data are generated). Thus, greater efficiency and improvement in data processing and
storage is achieved, as well as a reduction in latency and transmission [8].

The term edge intelligence [9] refers to the application of analytic techniques such
as making inferences with a machine learning model in an edge device. As defined in
Mwase et al. [10], the type of devices utilized in the edge layer can be very diverse ranging
from resourceful hardware with higher latency to very limited hardware battery-powered
devices that enable ultra-low latency. Consequently, the application of machine learning
techniques in devices with reduced hardware like system on chip (SoC) is denominated
embedded AI [3] and when the hardware is still more constrained like in micro-controller
units (MCUs) is Tiny Machine Learning (TinyML) [11]. The relationship between these
paradigms is illustrated in Figure 1.

Figure 1. Relationship among different Edge paradigms.

2.2. Edge Device Families

There exist numerous embedded devices which can be classified in different ways,
according to the function they perform, their complexity, the supported technology, etc.
For this work, the focus has been put on Integrated Circuits (IC), also known as a chip or
microchip. It is a small structure, normally made of silicon, on which printed electronic
circuits are manufactured. They can be part of a Single-Board Computer (SBC) based on a
System on Chip (SoC) or Field Programmable Gate Array (FPGA) or Microcontroller Unit
(MCU) [12].

Due to the rapid evolution of technology in recent decades, it has been possible to
integrate most of the functional elements of an electronic system on a single chip. SBC
is a whole computer constructed on a single printed circuit board that contains memory,
processor, I/O devices, and other slots. It is based on a SoC which has all the components
integrated into it. A SoC is an integrated circuit that integrates a complete electronic system



Sensors 2023, 23, 9495 4 of 21

into it. The main function of these elements is to reduce the size of the device, decrease the
cost, as well as increase efficiency and performance. The main components that include
these elements are CPU, RAM memory, input and output controllers, GPU, communication
controllers (Wi-Fi, Ethernet, etc.) and even in some cases TPU. In general, SoCs do not have
an operating system built into the chip itself. Instead, the operating system runs on the
SoC’s CPU and is loaded into memory when the device is powered on or rebooted. SoCs
are used in a wide variety of applications such as phones, mobiles, tablets, IoT devices,
game consoles, network equipment, etc. Examples belonging to this family are Google
Coral Dev [13], Google Coral Dev Mini [14], Raspberry Pi4 [15], Nvidia Jetson Nano [16] or
Hummingboard Pro [17].

An MCU [18] could be defined as an electronic device made up of a programmable
integrated circuit capable of executing the logical processes recorded in its memory. The ob-
jective of these devices is to automate processes and process information. They are used in
cases in which it is required to follow an automatic process depending on the information
that arrives from the different input elements. The main components are: CPU, memory,
main clock and input/output peripherals. Nowadays, microcontrollers are used in a vast
number of products such as household appliances, toys, vehicles, hardware devices, control
and measurement devices, etc.

FPGAs [19] are prefabricated silicon devices, made up of multiple complex and pro-
grammable digital circuits. They consist of a two-dimensional array of configurable blocks
that can be connected to each other. Through programming, they can be converted and
customized into almost any type of digital circuit or system. The main advantage of using
FPGAs is their flexibility and scalability since they can be quickly adapted to changes
in requirements. In addition, they are characterized by the high performance they offer,
compatibility with other components and their low consumption and cost. These devices
are used in a wide variety of applications like industry, research and development.

Table 1 shows the main characteristics of these edge device families to better compare
them. It defines the main purpose to utilize a specific device family, the CPU processing
capabilities and architecture, the information about the hardware components integrated,
the computing capacity to quantify the performance, categorizing it as high, variable or
low, the energy consumption rates energy efficiency (crucial for power-constrained devices),
the flexibility to evaluate the adaptability from low to high, the programmability to identify
customization facility and, finally, the financial aspect.

Table 1. Comparison between device families.

Characteristics SBC (SoC) MCU FPGA

Purpose

General purpose
or more
complex

applications.

Low consumption
applications.

Signal processing
and general

purpose logic.

CPU

Powerful CPU
and usually x86

or ARM
architecture.

Simple CPU with
low power and
performance.

No integrated
CPU, uses

gate arrays.

Components RAM, SO,
peripherals, etc.

RAM and
peripherals.

Configurable gate
matrix for

hardware level
design.

Computing
capacity

High computing
capacity, graphic
processing and

memory.

Limited computing
capacity and

memory.

Computational
capacity and

logic are highly
configurable.



Sensors 2023, 23, 9495 5 of 21

Table 1. Cont.

Characteristics SBC (SoC) MCU FPGA

Energy
consumption

Higher power
consumption.

Lower power
consumption.

Variable power
consumption.

Flexibility Less flex.

Less flexibility,
focused on

specific
applications.

Highly flexible
and configurable.

Programmability
Fully programmable,

various OS
and languages.

Programmable
but limited
languages.

Highly
programmable.

Cost Moderate-high
cost.

Low cost. High cost.

2.3. Embedded AI Frameworks

TensorFlow [20] is an open source framework developed by Google and aimed at
building and training ML models and deep neural networks. Its flexible, cross-platform
architecture allows it to work with CPUs, GPUs and TPUs [21]. TensorFlow Lite (TFL) [22]
is an optimized version of TensorFlow for adapting machine learning models for embed-
ded devices. In addition, it can optimise the performance, reduce the consumption and
improve the latency. One of the advantages to highlight is that it provides a set of tools for
optimizing models or applying quantification techniques. In addition, it offers support for
hardware acceleration. In turn, TensorFlow Lite Micro (TFLM) [23] is an optimized version
of TensorFlow Lite designed for very limited embedded systems, such as very simple
IoT devices and microcontrollers. These devices have large power, storage and memory
constraints (just a few kilobytes). That is to say, it has been conceptualized for TinyML.

PyTorch [24] is an open source framework used to develop and train machine learning
models. It allows the creation of deep learning models using a simple syntax and a flexible
architecture. In turn, PyTorch Mobile is an extension of PyTorch that allows running
machine learning models on mobile devices and embedded systems. The main objective
is to be able to run the models on devices with limited resources in an efficient and fast
way [25].

Edge Impulse [26] is a development platform aimed at training and deploying machine
learning models and conducting signal analysis in embedded devices. It provides a usable
graphical interface enabling the building of projects without requiring programming skills.

2.4. Embedded AI Model Adaptation Techniques

Model adaptation techniques for Embedded AI are a set of strategies and tools that
allow adapting AI models in embedded systems with limited resources. These techniques
focus on optimizing and reducing the size of the model. Consequently, it can run on
more reduced hardware requiring less amount of resources, while maintaining acceptable
accuracy.

The most used techniques are Weight Pruning which consists of the elimination of the
weights that contribute least to the precision of the models. To this end, the weights with
values close to zero or having a small influence are removed. This technique can be applied
to different types of AI models, such as convolutional neural networks (CNN) or recurrent
neural networks (RNN). In addition, it can also help to avoid overfitting in AI models, since
reducing the number of parameters reduces the model’s ability to memorize data instead of
learning underlying patterns [27,28]. Compression technique is based on the combination
of adjacent layers in a single layer . Thus, the total number of layers is reduced and, as a
consequence, the model size [29]. The main goal of the quantization technique is to reduce
the precision of model parameter values from high-precision floating-point numbers to
low-precision integers. This is achieved by assigning a limited range of discrete values to



Sensors 2023, 23, 9495 6 of 21

each parameter, which reduces the number of possible values they can take. In most cases,
AI models are trained with high precision and quantized after training. Quantization can
be applied at different stages of the model. It is also possible to use different quantization
strategies, such as uniform quantization or data-aware quantization [30–32].

3. Related Work

In this section, relevant literature related to this research is reviewed. In addition,
specific research efforts that experiment with the behavior of machine learning models
when deployed on edge devices are examined and compared with this analysis. For this
purpose, the main aspects of this study are listed below, and next, Table 2 contrasts them
with the reviewed papers that offer experiments:

• Measurement of different metrics: inference time, consumption of energy, RAM and
CPU. In addition, the inference time of TPU devices is measured in both modes: with
the TPU disabled and enabled. Thus, it can clearly examine the advantages of using
such an AI accelerator.

• Focus on different machine learning models, instead of just on a single model.
• Utilisation of diverse edge devices: Raspberry Pi 4, Google Dev coral and Coral Mini,

Nvidia Jetson Nano and HummingBoard Pro.

A systematic survey of AI accelerators for edge environments is presented in [33].
This article examines both hardware and software criteria and evaluates representative AI
accelerator products. Additionally, it summarizes current trends and future directions in AI
accelerator design. This work is valuable for deeply understanding the edge AI accelerators
alternative, as well as to better learn the state of the art in this area. Sipola et al. [34]
provide a review that analyzes the development of Edge AI applications and offers a
perspective of both the hardware and software alternatives utilized in this area. To this aim,
it discusses hardware products in various categories and also focuses on emerging trends
in Edge AI software, including neural network optimization and software development
for mobile devices and microcontrollers. Imran et al. [35] review the development boards
available for running AI algorithms at the edge, providing valuable insights into the options
available in terms of hardware for Edge AI applications. Merenda et al. [36] provide a
detailed review of models, architectures and requirements for implementing machine
learning in Internet of Things (IoT) devices. Of particular importance is his exploration of
the implementation of machine learning on microcontrollers, using a number detection
model. This review sheds light on the practical requirements of deploying deep learning
on resource-constrained devices, which is consistent with our focus on edge computing
devices. These studies collectively contribute to the understanding of edge computing
device capabilities, performance metrics, and practical considerations for deploying deep
learning algorithms at the edge, providing valuable context for our research on edge-
device analysis.

Regarding the experiments evaluated and contrasted with our research, in
DeepEdgeBench [37], authors present a comprehensive analysis comparing the perfor-
mance in terms of inference time and power consumption of various edge devices, includ-
ing Asus Tinker Edge R, Raspberry Pi 4, Google Coral Dev Board, Nvidia Jetson Nano and
Arduino Nano 33 BLE.

Hadidi et al. [38] characterize various commercial edge devices using popular frame-
works employing well-known convolutional neural networks (CNNs). The research ana-
lyzes the impact of implemented frameworks, software stacks, and optimizations on device
performance. Additionally, they measure power consumption and temperature behavior,
offering insights into the limitations and capabilities of these edge devices. Conversely, this
study considers also the analysis of the underlying hardware behavior.



Sensors 2023, 23, 9495 7 of 21

Table 2. Comparative between different experiments.

ASPECTS DeepEdge
Bench [37]

Hadidi
et al.
[38]

EdgeFaaS
Bench [39]

Yolo
Benchmark

[40]

Kang
et al.
[41]

DL
Bench

[42]

Antonini
et al. [43]

Measure
inference/
execution

time

X X X X X X X

Measure
inference

time in TPU-
devices

both enabling
and disabling

the AI
accelerator

X - X - - X -

Measure energy
consumption X X - X X - X

Measure RAM
memory

consumption
- - X X X - X

Measure CPU
consumption - - X - - - -

Test with
different models - X X - X X X

Test with
Raspberry PI4 X - X X - - X

Test with Google
Coral Dev Mini - - - - - - -

Test with
Google Coral X - - - X - X

Test with Nvidia
Jetson Nano X X X X X X X

Test with
HummingBoard

Pro
- - - - - - -

EdgeFaaSBench [39] is a benchmark suite aimed at testing edge devices under a server-
less computing paradigm. EdgeFaaSBench includes 14 different benchmark applications
and measures various system- and application-level metrics, including system utilization,
application response time, hot/cold start time, and the impact of attendance. Experiments
are performed on widely used edge devices to demonstrate the ability of EdgeFaaSBench to
collect various metrics to understand the effectiveness of serverless computing at the edge.
Nonetheless, this benchmark does not offer the possibility to measure the energy consump-
tion of the underlying devices. In addition, currently, it only supports Raspberry Pi4 or
Jetson Nano as edge devices and, consequently, the analysis of TPU usage is not considered.

Yolo benchmark [40] investigates the inference workflow and performance of the
YOLO object detection model on three accelerator-based edge devices, including NVIDIA
Jetson Nano, NVIDIA Jetson Xavier NX and Raspberry Pi 4B (RPi) with Intel Neural
Compute Stick2 (NCS2). Different video contents with different input sizes are compared
using four different versions of the YOLO model on such three devices. This research
is focused on the evaluation of the Yolo model (including different versions) in different
edge devices. Contrarily, this paper is focused on the behavior of edge devices and, hence,
different algorithms are selected to avoid these biases.

Kang et al. [41] evaluate a set of AI models in two edge devices powered by AI
accelerators: Nvidia Jetson Nano and Google Coral Dev. Authors follow a device ad-hoc
specific process to load the models. Conversely, the experiment of this paper standardizes



Sensors 2023, 23, 9495 8 of 21

such a process and, hence, the comparison among devices is more realistic. Moreover, they
consider only two different devices, instead of five.

The DL models benchmark [42] focuses on studying how the Edge devices NXP i-
MX8M-PLUS and Jetson Nano behave in five different object detection DL models. This
article focuses more on the models themselves, as it describes the process of converting the
models to the format needed for both devices. Furthermore, the only parameter it measures
is time.

Antonini et al. [43] performs a benchmark on seven different platform configurations,
each equipped with one of three edge accelerators: Google Coral, NVidia Jetson Nano,
and Intel Neural Compute Stick. The analysis focuses on latency, memory usage, and power
consumption, and provides empirical insights into how these accelerators specifically
handle deep learning tasks at the edge.

As Table 2 highlights, while all of them measure execution or inference time and most
also measure power consumption, only one of them measures CPU usage. In addition,
this one has only used two devices on which this metric has been analyzed and none of
them are TPU-based. Three of the works use TPU-accelerated devices such as Google Coral.
On the other hand, devices such as Google coral mini and HummingBoard Pro are not
considered in any of these studies. Consequently, there is a gap in conducting this study as
TPU is considered more specifically. On the other hand, in this experiment, we have also
compared how the devices behave when they use the AI accelerator and also when they do
not. This has only been conducted in three of the articles analyzed and not all have used
the same devices. It should also be noted that this article has been the only one that has
measured the RAM memory consumption of Coral devices when the AI accelerator (TPU)
is used and not. Thanks to this, it has been possible to study how the use of TPU influences
RAM consumption. Furthermore, with the rapid advancement of cutting-edge devices and
artificial intelligence models, we strongly believe that these types of research experiments
should be conducted periodically to update this fast-moving state of the art.

4. Experiment

The objective of this experiment consists of evaluating a set of market-used systems
on chip edge devices. Specifically, how they behave when executing machine learning
models. In addition, some of these devices are equipped with AI accelerators and it is
relevant to understand the difference when they are utilized or not. For this purpose, a set
of key metrics are considered to better understand the device behavior, like CPU and RAM
percentage, inference time or energy consumption.

This section details the experiment carried out in this research. Analysis and design
are detailed in Section 4.1. In addition, this subsection also integrates preparation aspects to
simplify reading the article and because some of its contents exceed its scope. Subsequently,
the Section 4.2 explains the execution and the Section 4.3 discusses the results of the
experiment. A global discussion is made in the Section 4.4. Finally, in Section 4.5 the results
obtained in the research studied in Section 3 are analyzed.

4.1. Analysis, Design and Preparation

In order to better explain the process of analysis, design and preparation, this sec-
tion is structured as Section 4.1.1 and examines the devices to select for the experiment,
in Section 4.1.2 the models utilised are detailed, Section 4.1.3 defines the metrics to con-
sider, the data treatment is explained in Section 4.1.4 and, finally, in Section 4.1.5 the
software requirements.

4.1.1. Devices

The device selection is the first step to carry out since the purpose is to analyze specific
devices for embedding AI. For this experiment, only devices from the same family are
utilized to compare devices with similar characteristics, in order to make it as real and
accurate as possible. Specifically, devices from the SoC family are utilized. This is due to the



Sensors 2023, 23, 9495 9 of 21

fact that by comparing the devices at the hardware and software level, the big differences
between SoC and MCU-type devices can easily be observed. For example, RAM memory
is critical when working with artificial intelligence models since it is required to load
the model, its weights, input data, etc. In SoC devices, it ranges from 1 to 8 GB, while
for MCUs the maximum value is 4MB which is a significant difference. Despite existing
many approaches to embed AI in MCUs (the TinyML area), this research is focused on
SoC because of their power to integrate AI models with no or few adaptations from the
original model.

Therefore, the following five market-representative edge devices have been selected:
Google Coral Dev Board, Google Coral Dev Board Mini, Jetson Nano, HummingBoard Pro
and Raspberry Pi 4 Model B. Their main features can be observed in Table 3. The charac-
teristics analyzed in this table are the following: the CPU of the device, the TPU support,
what Clock frequency it has, the GPU integrated and the RAM size and its model, the external
memory support and the market approximate price.

Table 3. Comparison between devices.

Raspberry Pi 4
Model B

Google Coral Dev
Board

Google Coral Dev
Board Mini Humming-Board Pro Jetson Nano

CPU

Broadcom
BCM2711
with four

CortexA72
cores ARM

64 bits

NXP i.MX
8M SOC

(CortexA53
quad-core,

CortexM4F)
ARM 64

bits

MediaTek
8167s SoC

(Cortex-A35
quad-core)

ARM 64
bits

NXP
i.MX6
Cortex-

A9 from
1 to 4 cores ARM

32 bits

Four
CortexA57

MPCore
cores ARM

64 bits

TPU No
ML Google
Edge TPU
accelerator.

ML Google
Edge TPU
accelerator.

No No

Clock frequency 1.5 GHz 1.5 GHz 1.5 GHz 1 GHz 1.43 GHz

GPU
Broadcom
VideoCore

VI

Integrated
GC7000

Lite
Graphics

IMG
PowerVR
GE8300

Vivante
GC880/
GC2000

128-core
NVIDIA
Maxwell

RAM
LPDDR4

2400
SDRAM

8 GB

4 GB
LPDDR4

2 GB
LPDDR3

DDR3
2 GB

4 GB
LPDDR4

External memory MicroSD
card port

8 GB eMMC
Flash

Kingston
eMMC 8 GB

Flash

8 GB
eMMC
Flash

MicroSD
card port

Approximate
price 115 € 160 € 100 € 280 € 220 €

URL

https://www.
raspberrypi.com/

products/raspberry-
pi-4-model-b/

accessed 6 September
2023

https://coral.ai/
products/dev-board/
accessed 7 September

2023

https:
//coral.ai/products/

dev-board-mini/
accessed 6 September

2023

https://developer.
solid-run.com/

knowledge-base/
hummingboard-base-
pro-getting-started/

accessed 8 September
2023

https:
//www.nvidia.com/
es-es/autonomous-

machines/embedded-
systems/jetson-nano/
accessed 7 September

2023

In order to perform the experiment on the devices, they must first be booted and
properly configured. Then, the Python modules defined in Section 4.1.5, the models detailed
in Section 4.1.2 and the input images and labels are copied to each device. The module in
charge of loading the models can easily be configured to enable the TPU AI accelerator or
not. Consequently, each experiment targeted for both Google Corals is executed twice as if
two different devices would be. However, TensorFlow Lite can not make use of the GPU in
Python applications [44] and we did not want to use it for some experiments in TensorFlow
models and for other TensorFlow Lite ones. Consequently, unfortunately, Jetson Nano only

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://coral.ai/products/dev-board/
https://coral.ai/products/dev-board/
https://coral.ai/products/dev-board-mini/
https://coral.ai/products/dev-board-mini/
https://coral.ai/products/dev-board-mini/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/


Sensors 2023, 23, 9495 10 of 21

makes use of its CPU in this experiment. In future work, we will explore the utilization of
the GPU.

Afterward, the libraries and dependencies that must be installed on the devices are:
TFlite to run TensorFlow machine learning models on devices with limited resources. Pillow
provides functions to open, manipulate, and save images in Python and Psutil to obtain
information about the operating system and the use of system resources, such as CPU
or memory.

On the other hand, it is important to note that a separate hardware component has
been utilized to measure the energy consumption on the devices, the Intertek JGQ02S-
01 [45] energy meter model. This device is specifically designed to accurately measure
the power consumption of a device and, hence, provide the necessary information for
our study.

4.1.2. Models

For the model provision, the TensorFlow framework was chosen since it facilitates the
creation of models adapted for this type of device by using TensorFlow Lite. Indeed, two of
them were directly downloaded in TFL-compliant format and the other one was converted
to it.

The three models belong to the deep learning image classification field to subject the
devices to similar conditions during the three experiments. This way, if a model produces
anomalous results, the risk of experiment contamination is balanced by having selected
similar models.

The first time a model is executed, it is loaded in memory, which implies a longer
execution time. Conversely, the execution time is reduced in the subsequent inferences
since the model is already loaded in memory. Therefore, each model is executed several
consecutive times in a loop to clearly identify how much time the model execution takes in
both circumstances.

In Table 4 we see the main features of the chosen image classification deep learn-
ing models:

Table 4. Main features of classification models.

Number
Classifier

Bird
Classifier

Object
Classifier

Description

Load an image
with a number

between 0–9 and
detect the number.

Classify birds
appearing in an

image.

Detects different
types of objects.

Input data
10,000 images

with digits.

100 images
of different

types of birds.

900 images
of different kinds

of objects.

Labels No.

List of 965 labels
with the

types that can
classify.

List of 1001 labels
with the

names of objects
that can classify.

Framework
TensorFlow
converted to

TensorFlow Lite.
TensorFlow Lite [46]. TensorFlow Lite [47].

Number of
layers 15 173 90

4.1.3. Metrics

In order to better investigate the behavior of the edge devices the following metrics
are registered during the experiment execution.

The CPU and RAM are measured to evaluate the efficiency of the devices when
executing the model and analyze their degree of saturation. RAM is mainly used to load the



Sensors 2023, 23, 9495 11 of 21

model (including its weights) and the images to be classified. Five minutes before and after
running the model are also recorded to allow comparison of a device’s hardware resources
when running a model or at rest. To obtain these metrics, the mathematical Formula (1)
for the CPU percentage and the mathematical Formula (2) for the RAM percentage have
been used.

CPU percentage =
CPU usage capacity at a specific time

Total CPU capacity
× 100 (1)

RAM percentage =
RAM usage at a specific time

Total RAM
× 100 (2)

Inference times are registered to assess how fast a device is for executing models.
This metric is very valuable to identify if the performance increases when using TPUs.
Furthermore, energy consumption is taken into account to enable trade-offs between the
power of a device and the energy required to make it work or facilitate decisions such as
enabling or not TPU accelerators.

Unfortunately, it is important to note that these devices do not have a separate Graphics
Processing Unit (GPU) or Tensor Processing Unit (TPU) since it is integrated with the
Central Processing Unit (CPU). As a result, this makes it impossible to measure the GPU
or TPU utilization and, hence, regarding processors only the measurement of the CPU
utilization is considered.

4.1.4. Data Treatment

The data registered (in JSON format) are manually extracted from the devices at the
end of each experiment. This way, it is not required to be programmatically sent over
the network which would significantly increase the hardware measures. Subsequently,
these data are processed by a Python 3.10 application (see Section 4.1.5) and stored into
ElasticSearch [48] (version 7.13.4) which enables the creation of a Kibana [49] graphical
dashboard to boost data comparison and analysis.

This dashboard provides a dedicated graph for each metric defined in Section 4.1.3.
Moreover, a select box element enables the visualization of the data separated by the model
used. Finally, a table is also integrated to consult the original data, including the output
of the inference, and to facilitate data filtering. As a result, the behavior of a model on
different devices can be better analyzed.

4.1.5. Software Requirements

On the one hand, several Python modules have been designed to carry out the follow-
ing experiment features. For this purpose, Python 3.10 version has also been used:

• Model manager module for loading the different TensorFlow Lite deep learning
classification models in a standard fashion. This way, all the models are loaded in
all the devices using the same piece of code and, consequently, avoiding the use of
device-specific wrappers which could modify the experiment results. In addition, this
code will also be in charge of recording the inference time of each input and the total
experiment execution time.

• Metrics manager module for capturing every 0.2 s the hardware resource metrics
both when executing models and at rest (before and after such model executions).
The results will be saved in a JSON file that will be used later to obtain the relevant
conclusions.

• Data manager module for automatically processing the data registered both from
hardware resource metrics and time metrics. In addition, this module is responsible for
creating the relevant ElasticSearch indexes, storing the data and generating statistical
values for each metric (average, maximum, minimum and standard deviation). This
automation task allows us to always process the data in the same way regardless of the



Sensors 2023, 23, 9495 12 of 21

model or the device. This way, new models and devices could quickly be integrated
as an extension of the experiment.

On the other hand, Docker and Docker Compose have been used to quickly make
ElasticSearch and Kibana available for this research context.

Figure 2 shows a global vision of the software components involved in the experiment.
Each device is prepared with the Model and Metrics manager modules (and their required
libraries), the image classification models and the input images and labels. The results
obtained from executing the experiments are manually copied to the laptop where the
data are analyzed. On the laptop, ElasticSearch and Kibana containers are available by
means of using Docker Compose. Next, the necessary Kibana dashboards can be also
prepared. Finally, the Data manager module can be executed to treat the data, create the
corresponding ElasticSearch indices and store the data on them. At the end of this process,
metric dashboards are populated with the experiment data to clearly and quickly analyze
the behavior of the devices when executing the models.

Figure 2. Experiment software requirements.

4.2. Execution

After the definition, design and preparation phases, the experiment execution phase is
conducted for the three models in the five devices. For this purpose, an additional simple
Python module orchestrates the execution of the Model and Metric manager modules on
each device for each model. Thus, both modules are synchronized to manage the measures
acquisition when the models are being executed and the required five minutes before
and after.

Regarding the hardware, the energy consumption device is plugged in during each
experiment to take the corresponding measures. Once all the experiments have been carried
out, the data are manually extracted from the devices to a laptop and the Data manager
module is executed to treat the data, create the ElasticSearch indices and upload the data to
ElasticSearch to feed the Kibana dashboard.

4.3. Results and Discussion

First of all, it is worth mentioning that the experiments have been successfully carried
out on all the devices, except for HummingBoard Pro. After booting it and installing all the
necessary libraries, the execution of the classification process returned an error with the
text: Illegal instruction. Apparently, the cause of this error is that the processor (NXP i.MX 6)
of the HummingBoard Pro does not support TFL. The documentation does not explicitly
state it but, conversely, the documentation for the HummingBoard Ripple device (i.MX8M
processor) clearly states its compatibility with TFL.

Another aspect to mention is that the results obtained with the different models
are equivalent. That is to say, all the machines behave similarly independently of the
deployed model.

The rest section discusses the results obtained through the execution of the experiment
after having analyzed the different proposed metrics. To achieve this, we have structured
the analysis into subsections associated with the diverse metrics studied. Section 4.3.1
delves into CPU usage, in Section 4.3.2 addresses the RAM usage in percentage and the
absolute RAM consumption, in Section 4.3.3 inference and execution times are studied; next,



Sensors 2023, 23, 9495 13 of 21

Section 4.3.4 analyses the energy consumption and, once all the metrics have been studied
Section 4.4 provides a global discussion. It is worth noting that the graphs presented
correspond to a specific model but the behavior resulted to be similar for all of them.

4.3.1. Cpu Percentage

Figure 3 shows the graph with the results of the CPU usage in the object classification
model. Results for the other two models are equivalent. Notably, the Jetson Nano stands
out as the highest CPU consumer, both during the execution of the AI models and when
only acquiring metrics. The Raspberry Pi, on the other hand, takes the second spot in
CPU usage, with occasional minor peaks during the experiment that do not reach the
Jetson Nano’s minimum CPU utilization levels. Additionally, the Raspberry Pi exhibits no
significant CPU spikes during image classification.

In contrast, the two Coral devices exhibit highly similar behavior across different
models. It is worth emphasizing that CPU usage in both Coral devices remains nearly
identical, whether utilizing the TPU or not during image classification.

Figure 3. Graphics with CPU usage.

4.3.2. Ram Percentage and Total

For the analysis of RAM consumption, two approaches have been employed. Firstly,
the percentage of RAM consumed by each device was assessed, in order to see the saturation
to which the RAM was subjected during the experiment. Secondly, since not all devices
have the same amount of RAM, the total amount of RAM consumed was also analyzed.

The analysis of RAM usage percentage, according to the data in Figure 4, which
represents the object classification model, yields the following conclusions. Undoubtedly,
the Raspberry Pi stands out as the device that utilizes the least RAM percentage among the
three models but this is also because it is the one with more RAM capacity. The Coral Mini
device exhibits RAM consumption patterns similar to the Raspberry Pi, although more
frequent spikes in RAM usage are observed during the image classification process.

The next device that records a higher RAM usage percentage is the big Coral device,
consuming just over twice as much compared to the Coral Mini. Furthermore, the spikes in
RAM usage during classification are more pronounced. Similar to CPU usage, minimal
differences in resource consumption metrics are observed when both Coral devices use or
do not use the TPU.



Sensors 2023, 23, 9495 14 of 21

Finally, the Jetson Nano proves to be the device that consumes the most RAM resources
in normal operating conditions. Nevertheless, during image classification, it experiences
fewer significant spikes, occasionally being surpassed by the big Coral device in some cases.

Figure 4. Graphics with RAM percentage usage.

As we mentioned before, not all devices have the same amount of RAM, so we
have also recorded the RAM total consumption, as can be seen in Figure 5, which shows
the results for the object classification model. The conclusions regarding absolute RAM
consumption follow a similar trend to those obtained when assessing the percentage of use.
However, it is noteworthy that, in this case, the Coral Mini emerges as the device with the
lowest RAM consumption, reversing its position in the previous ranking with respect to
the Raspberry. The remaining observations and conclusions concerning the other devices
remain consistent.

Figure 5. Graphics with RAM usage.



Sensors 2023, 23, 9495 15 of 21

4.3.3. Inference Time

The cumulative inference time for each image has also been measured to identify
how much time each device takes to classify the entire set of images for each model.
Figure 6 displays the total time required by each device to complete the classification task
in the object classification model. Unlike other metrics, there is a significant difference
between both Coral devices when using the TPU and when not using it. The difference
is so pronounced that when using the TPU for classification, the Coral Mini becomes the
second-fastest device, being surpassed only by the big Coral. Without TPU utilization,
the device order, from fastest to slowest, is as follows: Jetson Nano, Raspberry, big Coral,
and Coral Mini.

Figure 6. Graph with accumulated classification time.

4.3.4. Energy Consumption

Table 5 presents the average values of the energy consumption of each device (con-
sidering the three models) and the maximum values on each of the three experiments
(birds/objects/numbers). As previously mentioned, the power consumption of the devices
has been assessed in the different experiments using a power meter plug. When no classifi-
cation task is running, it is observed that the most energy-efficient device is the Coral Mini.
In contrast, both the Jetson Nano and the Raspberry Pi consume approximately twice as
much power as the Coral Mini, and their power consumption levels are quite similar to
each other. On the other hand, it is worth noting that the big Coral is the device with the
highest power consumption.

Another significant conclusion is that in both Coral devices, power consumption
remains at similar levels, whether the TPU is in use or not. Therefore, surprisingly, we
can conclude that the use of the TPU does not affect energy consumption. Additionally,
concerning the recorded peaks of maximum power consumption, it is observed that all
devices experience an increase of around 2 watts. This increase is particularly noteworthy
in devices that initially consume less power, as it represents a higher percentage increase in
their total power consumption.



Sensors 2023, 23, 9495 16 of 21

Table 5. Energy consumption.

Standard (W) Maximum (W)
Birds/Objects/Numbers

Google Coral Dev Board Mini TPU 0.9–1.3 1.9/2.7/2.3

Google Coral Dev Board Mini CPU 0.9–1.3 2.2/2.6/2.1

Google Coral Dev Board TPU 4.2–4.4 5.4/6.7/5.5

Google Coral Dev Board CPU 4.2–4.4 5.3/6.4/5.3

Jetson Nano CPU 2.8–3.4 4.9/5.6/4.7

Raspberry Pi 4 Model B CPU 2.6–2.9 4.3/4.5/4.8

4.4. Global Discussion

From the results obtained and from the metrics studied, a general analysis of the
devices can be conducted. The following conclusions can be highlighted:

1. the devices that achieved the best metrics are the Google Coral Dev Board and
the Google Coral Dev Board Mini when utilizing the TPU. These devices are the
fastest in terms of classification time and, in general, do not require very powerful
hardware. Furthermore, their price is relatively affordable compared to other analyzed
devices. Between the two, the Google Coral Dev Board yields slightly superior
results, although it is slightly more expensive than the Google Coral Dev Board Mini.
However, the performance of both devices significantly decreases when the TPU is
not used.

2. the Jetson Nano is the device that obtains the best results when exclusively using the
CPU. Despite not employing an AI accelerator, it demonstrates good performance and
offers solid features. Although its price is somewhat higher and it consumes more
resources under normal conditions, it exhibits a lower number of performance spikes
during image classification, indicating greater resilience.

3. the Raspberry Pi stands out for its low resource consumption in most of the measured
hardware components. However, during image classification, it shows higher resource
consumption and is the slowest device in terms of speed. Its primary advantage lies
in its affordable price.

4. We have not been able to take advantage of all the virtues of the Jetson Nano because
of the TFL limitation with GPU Python delegate but at least the experiments have been
conducted successfully. Conversely, it was an error to include the HummingBoard
Pro in the experiment due to its incompatibility with TFL models.

5. All the edge devices behave similarly to the different models targeted to deal with
image classification problems.

It is important to note that this analysis is specific to the designed use case, and it
is expected that these devices will behave similarly in other environments. Additionally,
consumer choices may depend on their priorities, whether it be speed, price, or other
factors. However, due to the fact that while using the TPU the energy consumption, RAM
and CPU are not affected, we highly recommend its utilization when applicable because of
its satisfactory results.

4.5. Findings in Related Works

This section analyses the results of similar works. Similarly to this study
DeepEdgeBench [37] states that for a Tensorflow model that can be quantized and con-
verted to TFLite format, the Google Dev Coral device delivers the best performance, both
for inference time and power consumption. In Hadidi et al. [38], in most cases, either
GPU-based devices or EdgeTPU provides the best performance. However, this research is
not fully comparable since they test the Jetson Nano with the GPU. EdgeFaaSBench [39]
concludes that the inference times for the Jetson Nano CPU have been better than those of
the Raspberry Pi. Additionally, the inference times for the Jetson Nano GPU are much better



Sensors 2023, 23, 9495 17 of 21

than the Raspberry Pi CPU and the Jetson Nano CPU. Yolo benchmark [40] after performing
the experiment, it concludes that the inference performance of an accelerator-based SBC
depends mainly on the AI model. Kang et al. [41] deduces that Coral Dev Board shows
about 5 times better performance than the Jetson Nano for relatively simple CNNs with a
small number of parameters. Additionally, Coral Dev Board uses an order of magnitude
less memory than Jetson Nano in all tests. The DL models benchmark [42] demonstrates
that the i-MX8M-PLUS device performed slightly better in general. The performance im-
provement of co-processor models compared with CPU models is about 10 times in the
i-MX8M-PLUS and 5 or even worse in the EdgeTPU. Antonini et al. [43] has detected some
interesting findings such as that the execution time is very different, depending on the edge
platform. Overall, the Coral Dev and Coral (RPi 4B) outperform the other devices.

Regarding energy consumption, DeepEdgeBench [37] experiment says that when
using just CPU, the Jetson Nano consumes the least amount of power for all models,
followed by the Raspberry PI. However, the device that consumes the least energy using
dedicated AI is the Coral Dev Board. Hadidi et al. [38] analyzes the results obtained and
concludes that the device that consumes most is the Raspberry Pi and the one that EdgeTPU
less, among both is the Nano Jetson. Yolo benchmark [40] has come to the conclusion that
in terms of RPi + NCS2, it always has lower average power, no matter which model is
running for inference, but its FPS is higher than Jetson Nano, which means it has better
energy consumption performance than Jetson Nano. Kang et al. [41] has determined that
during the benchmark run, the Coral Dev Board used 5.5 watts on average, which is
10 percent less than the Jetson Nano. However, the Coral Dev Board was measured to
use 4.8 watts in idle time, which is more than double the power consumed by the Jetson
Nano. Antonini et al. [43] has found that stand-alone devices (i.e., Coral Dev and Jetson
Nano) consume less power when idle compared to accelerators that require a host device
to operate (i.e., NCS2 and Coral Accelerator).

Concerning RAM memory consumption, EdgeFaaSBench [39] has experienced that,
in general, applications on Jetson Nano use more memory than applications on Raspberry
Pi 4B, and in some cases it is also significantly higher. Additionally, the Jetson Nano uses
a lot of memory in GPU-enabled configurations. Yolo benchmark [40] concludes that the
memory usage of GPU-based SBC (Jetson Nano or Jetson Xavier NX) is much bigger than
the memory usage of Raspberry Pi + NCS2 when using the same AI model. After carrying
out the experiments, Kang et al. [41] has shown how the Jetson Nano consumes 30 percent
of RAM, while the Google Coral Dev Board only 5 percent. Antonini et al. [43] has noticed
that the Jetson Nano device is allocated significantly more memory for GPU runtime.

Finally, the conclusions of the only work that takes CPU consumption into account are
analyzed. EdgeFaaSBench [39] has managed to demonstrate that the Jetson Nano when
using the GPU requires approximately the same CPU usage as the Raspberry Pi. However,
when the Jetson Nano only uses the CPU, it consumes more than twice as much as the
Raspberry Pi.

In this research, we have also demonstrated that Google Coral Mini, which is not
considered in other studies, is in the second position after the other Coral. Furthermore,
it has been possible to study how the use or not of TPU in both Corals affects the RAM
energy consumption in each case. Another point in which this research differs from the
rest is in the behavior of the CPU when the TPU is used and when not in the two Coral
devices. Finally, another different insight reached in this experiment is that the utilization
of the TPU does not affect energy consumption since it remains similar to when TPUs are
not used.

5. Conclusions and Future Work

This article has focused on acquiring a deeper understanding of edge computing
devices, specifically within the area of Embedded AI. For this purpose, a complete back-
ground is detailed in Section 2, where, initially, a comprehensive study of key concepts
and paradigms in this domain was conducted to establish a robust context. Subsequently,



Sensors 2023, 23, 9495 18 of 21

various EC device families were explored in detail, with a specific emphasis on SoC, en-
abling a full immersion in this field and significantly expediting the learning process. Next,
the most common embedded AI frameworks are described and, at the end of this section
the most used model adaptation techniques for edge devices are cited. With the elaboration
of this background, we can determine that a robust baseline in the field of embedded AI
has been established by approaching the area from diverse necessary perspectives.

Subsequently, the foundations were laid to carry out an experiment aimed at collecting
valuable information to select suitable devices for the deployment of Artificial Intelligence
models. Prior to the design of the experiment, a thorough analysis of previous related
work was carried out to underline the distinctive approach, as detailed in Section 3. Next,
a meticulous definition and design of the experiments followed, which involved the se-
lection and analysis of essential components: devices, models, metrics, data management
and required code. After this, the experiment preparation was carried out, the machines
were configured and adjusted, and three Artificial Intelligence models in TFL format were
deployed for image classification. Additionally, two Python modules were installed in the
machines: one to load and run different TFL models while collecting the inference time
and the other to monitor the hardware resources of the EC devices. Then, the experiment is
executed and the results are processed with an additional Python module which also is
in charge of creating ElasticSearch indexes and populate them to fed a Kibana Dashboard
with the data. Finally, analysis and discussion of results were conducted, offering a detailed
breakdown of each metric and a global perspective.

Besides providing a solid context and a software ecosystem to benchmark edge de-
vices for embedded AI, the following specific conclusions have been reached after the
experiment analysis:

1. The experiment has determined that the energy consumption, the RAM and the CPU
are not significantly varied when using or not the TPU accelerator.

2. The utilization of the TPU dramatically reduces the inference time
3. All the devices analyzed except the Humming Board Pro can be utilized to deploy

embedded AI based on TFL.
4. At least for the image classification area, the devices behave similarly to different

models.

Taking these conclusions into account, we must also highlight the effort made to
distance ourselves from the different research analyzed, in order to be able to contribute
new ideas and focus in this area.

As a general summary, we can conclude that this research work offers a significant
contribution to help professionals in the decision of selecting the most adequate edge
computing device for embedding artificial intelligence algorithms.

The future work will address two different directions. On the one hand, the extension
of this study to better evaluate GPU-based devices like the Jetson Nano. On the other hand,
the creation of a modular benchmark application enables users to assess and compare
the performance of EC devices in a more personalized and precise manner. To this end,
a flexible mechanism to integrate new metrics and support for additional devices will
be designed.

Author Contributions: Conceptualization, A.G.-P., R.M., A.I.T.-B. and E.Z.-G.; Methodology, A.G.-P.,
R.M. and A.I.T.-B.; Software, A.G.-P. and R.M.; Validation, R.M.; Investigation, A.G.-P., R.M. and
A.I.T.-B.; Data curation, A.G.-P. and R.M.; Writing—original draft, A.G.-P.; Writing—review & editing,
R.M. and A.I.T.-B.; Supervision, R.M., A.I.T.-B. and E.Z.-G.; Funding acquisition, A.I.T.-B. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially financed by the Basque Government through their Elkartek
program (SONETO project, ref. KK-2023/00038).

Data Availability Statement: Data are contained within the article.



Sensors 2023, 23, 9495 19 of 21

Acknowledgments: We appreciated this work was partically financed by Basque Government
through their Elkartek program (SONETO project, ref. KK-2023/00038).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
EC Edge Computing
GPU Graphical Processing Units
IoT Internet of Things
MCU Micro-Controller Unit
TPU Tensor Processing Unit
RNN Recurrent Neural Networks
SBC Single Board Computer
FPGA Field-Programmable Gate Array
TF TensorFlow
TFL TensorFlow Lite
TFLM TensorFlow Lite Micro
AI Artificial Intelligence
IC Integrated Circuits
ML Machine Learning
TinyML Tiny Machine Learning
CPU Central Processing Unit
RAM Random Access Memory
JSON JavaScript Object Notation
SoC System on chip

References
1. Cao, J.; Zhang, Q.; Shi, W. Edge Computing: A Primer; Springer: Berlin/Heidelberg, Germany, 2018.
2. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE

Access 2017, 6, 6900–6919. [CrossRef]
3. Zhang, Z.; Li, J. A Review of Artificial Intelligence in Embedded Systems. Micromachines 2023, 14, 897. [CrossRef] [PubMed]
4. Hao, H.; Xu, C.; Zhang, W.; Yang, S.; Muntean, G.M. Computing Offloading with Fairness Guarantee: A Deep Reinforcement

Learning Method. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6117–6130. [CrossRef]
5. Luo, R.; Jin, H.; He, Q.; Wu, S.; Xia, X. Cost-effective edge server network design in mobile edge computing environment. IEEE

Trans. Sustain. Comput. 2022, 7, 839–850. [CrossRef]
6. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
7. Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and opportunities in edge computing. In

Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November
2016; pp. 20–26.

8. Hao, H.; Xu, C.; Zhong, L.; Muntean, G.M. A multi-update deep reinforcement learning algorithm for edge computing service
offloading. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020;
pp. 3256–3264.

9. Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge intelligence: Architectures, challenges, and
applications. arXiv 2020, arXiv:2003.12172.

10. Mwase, C.; Jin, Y.; Westerlund, T.; Tenhunen, H.; Zou, Z. Communication-efficient distributed AI strategies for the IoT edge.
Future Gener. Comput. Syst. 2022, 131, 292–308. [CrossRef]

11. Dutta, L.; Bharali, S. Tinyml meets iot: A comprehensive survey. Internet Things 2021, 16, 100461. [CrossRef]
12. Murshed, M.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine learning at the network edge: A

survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]
13. Dev Board. 2023. Available online: https://coral.ai/products/dev-board/ (accessed on 22 November 2023).
14. Dev Board Mini. 2023. Available online: https://coral.ai/products/dev-board-mini/ (accessed on 22 November 2023).
15. Raspberry. Raspberry Pi 4. 2023. Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed

on 22 November 2023).
16. NVIDIA Corporation Jetson Nano from NVIDIA. Available online: https://www.nvidia.com/es-es/autonomous-machines/

embedded-systems/jetson-nano/ (accessed on 22 November 2023).

http://doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.3390/mi14050897
http://www.ncbi.nlm.nih.gov/pubmed/37241521
http://dx.doi.org/10.1109/TCSVT.2023.3255229
http://dx.doi.org/10.1109/TSUSC.2022.3178661
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1016/j.future.2022.01.013
http://dx.doi.org/10.1016/j.iot.2021.100461
http://dx.doi.org/10.1145/3469029
https://coral.ai/products/dev-board/
https://coral.ai/products/dev-board-mini/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-nano/


Sensors 2023, 23, 9495 20 of 21

17. SolidRun Ltd. HummingBoard Pro. 2022. Available online: https://developer.solid-run.com/knowledge-base/hummingboard-
base-pro-getting-started/ (accessed on 22 November 2023).

18. Gudino, M. What is a Microcontroller? Arrow Electron. 2018, 26, 1–8.
19. Farooq, U.; Marrakchi, Z.; Mehrez, H.; Farooq, U.; Marrakchi, Z.; Mehrez, H. FPGA architectures: An overview. In Tree-Based

Heterogeneous FPGA Architectures: Application Specific Exploration and Optimization; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 7–48.

20. WiML. TensorFlow. 2023. Available online: https://www.tensorflow.org/?hl=es-419 (accessed on 22 November 2023).
21. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. {TensorFlow}:

A System for {Large-Scale}Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

22. WiML. TensorFlow Lite. 2023. Available online: https://www.tensorflow.org/lite?hl=es-419 (accessed on 22 November 2023).
23. WiML. TensorFlow Lite Micro. 2023. Available online: https://www.tensorflow.org/lite/microcontrollers?hl=es-419 (accessed

on 22 November 2023).
24. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.
25. Matani, D. Deep Learning on Your Phone: PyTorch Lite Interpreter for Mobile Platforms. 2021. Available online: https://

towardsdatascience.com/deep-learning-on-your-phone-pytorch-lite-interpreter-for-mobile-platforms-ae73d0b17eaa (accessed
on 22 November 2023).

26. Janapa Reddi, V.; Elium, A.; Hymel, S.; Tischler, D.; Situnayake, D.; Ward, C.; Moreau, L.; Plunkett, J.; Kelcey, M.; Baaijens, M.;
et al. Edge Impulse: An MLOps Platform for Tiny Machine Learning. In Proceedings of the 6th MLSys Conference, Miami Beach,
FL, USA, 4–8 June 2023.

27. Hu, W.; Che, Z.; Liu, N.; Li, M.; Tang, J.; Zhang, C.; Wang, J. Channel Pruning via Class-Aware Trace Ratio Optimization. IEEE
Trans. Neural Netw. Learn. Syst. 2023. [CrossRef]

28. Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic sparse connectivity learning for neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 2022, 34, 7350–7364. [CrossRef] [PubMed]

29. Mishra, R.; Gupta, H.P.; Dutta, T. A survey on deep neural network compression: Challenges, overview, and solutions. arXiv
2020, arXiv:2010.03954.

30. Deci. The Ultimate Guide to Deep Learning Model Quantization and Quantization-Aware Training. 2023. Available online:
https://deci.ai/quantization-and-quantization-aware-training/ (accessed on 22 November 2023).

31. Huang, Q. Weight-quantized squeezenet for resource-constrained robot vacuums for indoor obstacle classification. AI 2022,
3, 180–193. [CrossRef]

32. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A survey of quantization methods for efficient neural
network inference. In Low-Power Computer Vision; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 291–326.

33. Li, W.; Liewig, M. A survey of AI accelerators for edge environment. Trends Innov. Inf. Syst. Technol. 2020, 28, 35–44.
34. Sipola, T.; Alatalo, J.; Kokkonen, T.; Rantonen, M. Artificial intelligence in the IoT era: A review of edge AI hardware and

software. In Proceedings of the 2022 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 27–29 April
2022; pp. 320–331.

35. Imran, H.; Mujahid, U.; Wazir, S.; Latif, U.; Mehmood, K. Embedded development boards for edge-AI: A comprehensive report.
arXiv 2020, arXiv:2009.00803.

36. Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [CrossRef]
37. Baller, S.P.; Jindal, A.; Chadha, M.; Gerndt, M. DeepEdgeBench: Benchmarking deep neural networks on edge devices. In

Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021;
pp. 20–30.

38. Hadidi, R.; Cao, J.; Xie, Y.; Asgari, B.; Krishna, T.; Kim, H. Characterizing the deployment of deep neural networks on commercial
edge devices. In Proceedings of the 2019 IEEE International Symposium on Workload Characterization (IISWC), Orlando, FL,
USA, 3–5 November 2019; pp. 35–48.

39. Rajput, K.R.; Kulkarni, C.D.; Cho, B.; Wang, W.; Kim, I.K. Edgefaasbench: Benchmarking edge devices using serverless computing.
In Proceedings of the 2022 IEEE International Conference on Edge Computing and Communications (EDGE), Barcelona, Spain,
11–15 July 2022; pp. 93–103.

40. Feng, H.; Mu, G.; Zhong, S.; Zhang, P.; Yuan, T. Benchmark analysis of yolo performance on edge intelligence devices.
Cryptography 2022, 6, 16. [CrossRef]

41. Kang, P.; Jo, J. Benchmarking modern edge devices for ai applications. IEICE Trans. Inf. Syst. 2021, 104, 394–403. [CrossRef]
42. Cantero, D.; Esnaola-Gonzalez, I.; Miguel-Alonso, J.; Jauregi, E. Benchmarking Object Detection Deep Learning Models in

Embedded Devices. Sensors 2022, 22, 4205. [CrossRef] [PubMed]
43. Antonini, M.; Vu, T.H.; Min, C.; Montanari, A.; Mathur, A.; Kawsar, F. Resource characterisation of personal-scale sensing models

on edge accelerators. In Proceedings of the First International Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things, New York, NY, USA, 10–13 November 2019; pp. 49–55.

44. TensorFlow. GPU Delegates for TensorFlow Lite. 2023. Available online: https://www.tensorflow.org/lite/performance/gpu
(accessed on 22 November 2023).

https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://developer.solid-run.com/knowledge-base/hummingboard-base-pro-getting-started/
https://www.tensorflow.org/?hl=es-419
https://www.tensorflow.org/lite?hl=es-419
https://www.tensorflow.org/lite/microcontrollers?hl=es-419
https://towardsdatascience.com/deep-learning-on-your-phone-pytorch-lite-interpreter-for-mobile-platforms-ae73d0b17eaa
https://towardsdatascience.com/deep-learning-on-your-phone-pytorch-lite-interpreter-for-mobile-platforms-ae73d0b17eaa
http://dx.doi.org/10.1109/TNNLS.2023.3262952
http://dx.doi.org/10.1109/TNNLS.2022.3141665
http://www.ncbi.nlm.nih.gov/pubmed/35073273
https://deci.ai/quantization-and-quantization-aware-training/
http://dx.doi.org/10.3390/ai3010011
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.3390/cryptography6020016
http://dx.doi.org/10.1587/transinf.2020EDP7160
http://dx.doi.org/10.3390/s22114205
http://www.ncbi.nlm.nih.gov/pubmed/35684827
https://www.tensorflow.org/lite/performance/gpu


Sensors 2023, 23, 9495 21 of 21

45. Intertek Group plc. Intertek GS. 2023. Available online: https://www.intertek.es/ (accessed on 22 November 2023).
46. TensorFlow. Google Coral. 2023. Available online: https://github.com/google-coral/pycoral (accessed on 22 November 2023).
47. TensorFlow. TensorFlow. 2023. Available online: https://github.com/tensorflow/tfjs-models/tree/master (accessed on 22

November 2023).
48. Elasticsearch B.V. Elastic. 2023. Available online: https://www.elastic.co/es/ (accessed on 22 November 2023).
49. Elasticsearch B.V. Kibana. 2023. Available online: https://www.elastic.co/es/kibana (accessed on 22 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.intertek.es/
https://github.com/google-coral/pycoral
https://github.com/tensorflow/tfjs-models/tree/master
https://www.elastic.co/es/
https://www.elastic.co/es/kibana

	Introduction
	Background
	Edge Paradigms
	Edge Device Families
	Embedded AI Frameworks
	Embedded AI Model Adaptation Techniques

	Related Work
	Experiment
	Analysis, Design and Preparation
	Devices
	Models
	Metrics
	Data Treatment
	Software Requirements

	Execution
	Results and Discussion
	Cpu Percentage
	Ram Percentage and Total
	Inference Time
	Energy Consumption

	Global Discussion
	Findings in Related Works

	Conclusions and Future Work
	References

