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Abstract: Visual tracking and attribute estimation related to age or gender information of multiple
person entities in a scene are mature research topics with the advent of deep learning techniques.
However, when it comes to indoor images such as video sequences of retail consumers, data are
not always adequate or accurate enough to essentially train effective models for consumer detection
and tracking under various adverse factors. This in turn affects the quality of recognizing age or
gender for those detected instances. In this work, we introduce two novel datasets: Consumers
comprises 145 video sequences compliant to personal information regulations as far as facial images
are concerned and BID is a set of cropped body images from each sequence that can be used for
numerous computer vision tasks. We also propose an end-to-end framework which comprises CNNs
as object detectors, LSTMs for motion forecasting of the tracklet association component in a sequence,
along with a multi-attribute classification model for apparent demographic estimation of the detected
outputs, aiming to capture useful metadata of consumer product preferences. Obtained results on
tracking and age/gender prediction are promising with respect to reference systems while they
indicate the proposed model’s potential for practical consumer metadata extraction.

Keywords: consumer tracking; demographic-data estimation; target detection; motion prediction;
tracklet association; multi-attribute classification; consumer metadata

1. Introduction

Visual tracking of multiple targets, also referred to as multiple object tracking (MOT) [1,2],
since the target can be any moving object or entity, is a well-investigated computer vision
task. Actually, the goal is to detect one or more targets in a time-variate scene and then
obtain their trajectories in terms of following their tracklets, for a given video sequence.
This is completed by associating newly detected instances with current ones. Typically,
the association part assumes a prediction task whose aim is to favor the most possible
correspondence among detections of consecutive frames for a given target. When the
targets of interest are real people, resulting detections from this procedure are usually
post-processed so as to extract useful information related, for instance, with their age or
gender. To that end, novel classification and regression algorithms have been proposed,
mainly relying on representation learning from facial attributes [3]. The real interest in
this framework of distinct computer vision tasks lies at the adaptation flexibility of each
proposed system, to the particularities of a specific visual tracking task (e.g., consumer
tracking), where the results need to be combined with further processing steps so as to
yield meaningful target insights [4].
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1.1. Multiple Object Tracking (MOT)

Multi-object tracking (MOT) has been widely studied in recent years and a large variety
of tracking algorithms have emerged, evolving from methods relying on hand-crafted
image representations (e.g., graphs [5,6], SIFT, HOG-like features), to deep-learning-based
approaches (i.e., graph neural networks [7]) that aggregate information across frames and
objects or even combine tracking and detection techniques [8] to perform joint detection and
tracking [9] so as to improve the tracking performance with multiple frames.

Concerning the motion prediction part, MOT techniques have advanced from standard
Kalman filters [10,11] by incorporating (or even replacing them with) recurrent neural net-
works (RNN) [12] and long short-term memory (LSTM) networks [13] to boost association
performance. LSTMs are also adopted in our proposed system in this fashion.

Tracking multiple objects faces many challenges due to the complex nature of the
problem which involves several steps. Even when objects are accurately detected, iden-
tity preservation for those objects in subsequent frames, or trajectory management (i.e.,
terminating and re-instantiating trajectories when the tracked targets disappear from, or
re-appear in the current frame, respectively), are a few notable challenges that need to be
addressed for accurate tracking. Moreover, target overlaps, background objects as well as
changes in target movement direction and orientation are additional variables that interfere
with trajectory prediction and should not be neglected by a robust MOT system with low
bias in its predictions. No to mention that suboptimal results from each step are transferred
to the remaining components, significantly affecting the overall result. For example, inade-
quate detections or incorrect target associations can lead to substantial variance in tracking
quality. Hence, recent research progress aims to alleviate potential drawbacks bound to the
preliminary parts of the tracking pipeline.

Applications of multiple object tracking are widespread in computer vision. For
instance, apart from video surveillance [14] and pedestrian tracking [15,16], which are
typical use cases, MOT systems can assist in traffic flow analysis [17,18] or autonomous
driving [19] and have even been employed for the tracking of athletes [20].

In this work, we focus on the task of MOT where the objects of interest are retail
consumers. In such cases, additional factors that can potentially hamper tracking per-
formance need to be taken into consideration. Concretely, sequences depicting indoor
retail locations, such as shop hallways, entail additional challenges due to occlusions from
clutter, visual noise in the form of illumination variance from reflections and shadows or
uneven lighting conditions, and several others. Some of these challenges are illustrated
in Figure 1. As a result, prediction accuracy can deteriorate, especially when instances of
multiple consumers might overlap due to their physical positioning or other interactions.
In other words, standard tracking methods employed for consumer tracking might miss an
occluded target (high variance) or detect something that is not actually there (high bias),
and therefore, a specialized approach is necessary.

Apart from those inherent limitations related to visual tracking from video sequences,
we should note that existing literature in ‘multi-consumer’ tracking assumes that proposed
methods have to cope with images compliant to regulations which determine how personal
data are obtained, stored, processed, and shared for research purposes (GDPR regulations).
To this end, a fully GDPR-compliant tracking system should make sure that initial data
are somehow anonymized in due time, before they are further processed by third-party
applications (i.e., metadata extraction from demographic information of tracked targets) or
employed for research purposes (i.e., a public image dataset that can be used for various
computer vision tasks). For this reason, challenges in consumer visual tracking also entail
the data acquisition procedure (secure video capture), as well as their processing and
storage in a protected and anonymized format with only supervised or authorized access.

Finally, several techniques follow a multi-modal approach to MOT by exploiting the
combinatorial power of multiple input data modalities, such as RGB-thermal, RGB-IR,
and other vision-based trackers or even RGB cameras along with sensors. The key idea
behind fusing data from multiple modalities lies in increasing tracking performance, since
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complementary cues might improve the accuracy of detections in highly occluded condi-
tions which could in turn affect the performance during tracklet association [21]. However,
modality embedding in a common subspace to extract meaningful representations yet
remains an under-explored topic, and typically, a simple early fusion technique is adopted
right before feature extraction from the deeper network layers takes place. A similar early
fusion approach is also followed in our work when RGB-thermal modalities are employed.

(a) Ideal detections (b) Missed detections

(c) False detections (reflections) (d) False detections (disappear)

Figure 1. Challenges related to the quality of the multi-object tracking of consumers from indoor
camera images in retail shops. (a,b) Ideal versus standard detection results of occluded consumers.
(c,d) False detections due to reflections (depicted in red color) even after disappearing from the scene.
All instances are taken from our Consumers dataset.

1.2. Demographic Estimation (Age and Gender Prediction)

Within this framework of consumer visual tracking, a computer vision task might
further focus on recognizing attributes of each detected consumer which can be related
to demographic information such as age and gender [22]. This information can be useful
for meta-data extraction, related but not limited to consumers’ preferences according to
some grouping of their age and/or gender cues. Such information could provide further
insight of a consumer’s behavior. In other words, the duration a consumer stares at a
specific product, or the time they stand in front of a shelf containing several products
of the same type, regardless whether a product is selected or not for purchase, might
indicate a preference degree for those products. This in turn allows for a focused product
marketing customization.

Age prediction can be seen as an actual age recognition problem where the real age of a
person is expected as the output of a regression model, not necessarily an integer value but
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also a real one in an acceptable range (e.g., (18–100)) (https://github.com/openvinotoolkit/
open_model_zoo/tree/master/models/intel/age-gender-recognition-retail-0013, accessed
on 26 October 2023). In this case, of course, it is assumed that training data with real target
ages are available beforehand, while age estimates can be obtained only for those ages for
which training images actually include such age values (i.e., child ages cannot be accurately
predicted if no child faces exist in the training set).

Age prediction can be also reduced to a multi-class classification problem where a
person’s age is classified to a specific age group (i.e., within range (18–30)). Herein, age
estimation is considered a more complex task than gender estimation since the target age
groups can be more than those of the gender counterpart. More importantly, its inherent
complexity can be attributed to the high variability introduced by the aging process,
typically reflected by facial attributes [23]. Facial characteristics are generally representative
of a person’s age, and thus, comprise the main attention of an age prediction model,
compared to the rest of the full body image of the detected consumer instance. Therefore,
image features are expected to be more discriminative among different consumer instances,
for the part of the image which contains the unique characteristics of a consumer’s face.
An age estimation system which deals the problem as a multi-class classification task
oriented for audience measurement purposes, is presented in [24]. In addition, a recent
comprehensive study [25] overviews the various families of approaches for facial age
estimation, mainly focusing on machine-learning-based approaches.

Another variation of the first component of demographic cue recognition is apparent
age estimation [26] which differentiates from real age inference in terms of assuming ground
truth data which derive from the annotator’s estimation when the actual age of each
consumer is unknown. In this respect, we can distinguish two main families of approaches.
The first one considers multiple ground-truth labels for the same consumer which are
clustered into age groups, then fed to proposed age prediction models whose goal is to
infer an average age for each tested target [27,28].

The second variation deems that each image (or bounding box detection of consumers)
is annotated by a single annotator, and thus, it is expected that inconsistency in ground-
truth data will be present among different annotators. However, during age inference,
the model is expected to be robust to minor variations in age estimates from different
annotators for consumers which are present in two or more images of the test dataset
assuming a limited number of known ages are provided during training [29].

Existing literature in apparent age estimation [27] suggests that using apparent labels
for training can improve real age estimation rather than entirely training with real ages.
Our approach is more closely related to the second category of apparent age estimation
wherein no actual consumer’s age is known in advance. For this reason, in our work, the
evaluation can be carried out only in a qualitative respect during inference under acceptable
performance since the age ranges selected for our in-house dataset are wide enough to
allow for apparent age error estimates accrued from different annotators.

Gender prediction is a binary classification task which typically assumes facial images
as input. Such images are usually obtained by a face detection step based on hand-crafted
feature representations or trending convolutional neural networks (CNNs) as feature
extractors for face region proposal extraction. The next step is the actual classification of
the representation using either traditional machine (SVMs, decision trees) or deep learning
algorithms. There are several challenges associated with gender estimation from faces,
including variations in facial expression, illumination, occlusion, as well as the presence of
facial hair and cosmetics, often tackled with large training corpora of facial images with
known gender information. Another precaution consists of data augmentation techniques
where initial training images are rotated, scaled, or flipped to increase model robustness to
intra-class variability.

Less frequent approaches consider a full-body image as input of the gender classifi-
cation model usually obtained as a result of an object detection or semantic segmentation
task. Once the body is detected, a subsequent step is to extract relevant features that can

https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/age-gender-recognition-retail-0013
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be used to determine the gender. These features are related to the shape, size, and even
texture of the body. More recent techniques deem clothing and accessories as an additional
discriminative feature in a multi-attribute classification framework [30] or can combine
different modalities such as RGB and thermal imagery [31].

Our approach to gender prediction follows this direction of inferring the estimated
gender from a full-body image corresponding to the outcome of the detector of the multi-
object tracking component. In a similar fashion to age prediction, training images are
bounding boxes labeled with the annotator’s apparent gender estimation, where actual
gender information is unknown in the first place.

Gender estimation from full body images entails challenges such as variations in
pose, clothing, and accessories, as well as the presence of occlusions and clutter in the
background. Not to mention that the face can be entirely occluded in the case of images
containing only the rear view of a person. Normally, to overcome these challenges, large
and diverse datasets are employed.

Again, it should be noted that apparent demographic estimation is not a trivial task.
First, it is not always accurate, since age prediction may be influenced by factors such as
genetics, lifestyle, and environmental conditions, while gender estimation can be affected by
factors such as cultural and personal beliefs, as well as individual self-expression. Second,
in both cases of consumers’ apparent age and gender prediction, it is important to consider
the ethical implications of using personal data for marketing purposes and to ensure
that the information is collected and processed in a responsible and transparent manner.
Especially for the gender information counterpart, its usage in marketing must also comply
with respective regulations, including those related to data privacy and anti-discrimination.

1.3. Motivation and Contribution

The contributions of our work can be summarized in the following. We introduce two
novel datasets of consumers in indoor scenes, the first comprising sequences of video frames
for multi-object tracking purposes, whereas the second entails a full-body image dataset
that can be utilized for generic attribute or apparent age as well as gender estimation. The
datasets feature considerable variability among consumer instances in terms of appearance,
age, and gender cues while raw images are also anonymized with respect to data privacy
regulations. This anonymity step is carried out using two open access software applications
such as deface (https://github.com/ORB-HD/deface accessed on 26 October 2023) and
deep privacy (https://github.com/hukkelas/deep_privacy2 accessed on 26 October 2023).
The first one actually deforms the region corresponding to the consumer’s face, while the
second one replaces the whole face with an artificially generated one based on generative
adversarial learning. By these means, the proposed datasets are readily available for
evaluating numerous computer vision tasks.

Subsequently, our proposed MOT technique relies on a state-of-the-art tracking-by-
detection approach, where standard Kalman filters are replaced with an LSTM network,
leading to considerably superior performance as a result of increased accuracy of motion
estimation by exploiting the network’s capacity to model long-term dependencies. More
specifically, LSTM considers more than one past frames as opposed to its Kalman counter-
part (which only considers its previous and current frame), when regressing bounding-box
coordinates for each detected target between the current and previous frame. Hence, re-
placing Kalman filters with LSTM is expected to yield improved tracking performance.
Moreover, its real-time application capacity is feasible, since the trajectories of all detected
targets are modeled by a single LSTM, and thus, it does not significantly affect running
times. Following this MOT rationale a step further, we adopt a simple method for reliable
estimation of demographic information directly on the detected full-body images without
any facial characteristics. Numerical results validate the effectiveness of our approach for
each distinct task. Finally, since both methods are lightweight in terms of computational
requirements, they can be seamlessly integrated into a single pipeline that can tackle both
tasks simultaneously and runs in real-time speeds, allowing for deployment in practical

https://github.com/ORB-HD/deface
https://github.com/hukkelas/deep_privacy2
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scenarios. To that end, we have built an end-to-end system for multi-consumer detec-
tion, tracking, and apparent age/gender prediction, which can facilitate handful consumer
meta-data extraction for marketing campaign customization.

The remainder of this article is structured as follows: an overview of related work
for the tasks of Multi-Object Tracking (MOT), age estimation, and gender classification is
provided in Section 2. Section 3 introduces our novel datasets, while proposed methods for
MOT as well as age and gender estimation are discussed in Section 4. Experimental results
of our methods are presented in Section 5, followed by a discussion of in Section 6. Finally,
we conclude with Section 7.

2. Related Works
2.1. Multi-Object Tracking

A taxonomy of methods that solve multi-object tracking involve the way an MOT
system processes video sequences, namely, online and offline. Online methods operate on
the video in a frame-by-frame basis, and thus, perform tracking by only using information
up to the current frame, a design principle that makes them suitable for trending appli-
cations. In contrast, offline methods have access to the entire video sequence, including
future frames, as they process videos in batches. While the latter are designed to handle
the problem of data association more efficiently by utilizing future information, they are
limited in their applicability in scenarios with real-time requirements.

A different way to separate methods is the strategy that they follow to handle the
different aspects of the MOT task. Most approaches to the problem of multi-object tracking
(MOT) generally follow the tracking-by-detection design framework. They formulate the
tracking problem as a two-stage workflow. A detection step which localizes targets in an
image and a second data association step, where the goal is to match the detections with
existing, corresponding trajectories, generate new ones in case a new target appears on
the scene, or discard old ones, when a target is no longer visible. The second step in this
paradigm involves the actual tracking part and typically consists of several subtasks, such
as motion forecasting, embedding extraction (image representation), and data association,
among others.

Most approaches that follow this strategy initially utilized two separate models, usu-
ally deep-learning-based architectures for their success in both tasks of detection and
feature extraction. A popular choice is convolutional neural networks (CNNs) [32–34] even
though, more recently, graph neural networks [35,36] and transformers [37–39] have also
been used. The descriptive capabilities of deep networks have enabled these methods to
achieve remarkable results, by continuously improving upon one of the two models, as they
are both important in the final tracking performance. However, using two computationally
intensive models entails some drawbacks. Most importantly, the computational overhead
required to run both models prohibits their application in real-time scenarios because of
slow running speeds. In addition, considering the fact that two resource intensive types
of neural networks are typically used in both steps, this requires two separate training
processes and also results in a significant amount of redundant computations that are
generally similar and can be avoided.

To tackle some of these shortcomings, a similar approach has emerged that utilizes a
single model to perform both steps of detection and target tracking, avoiding some of the
aforementioned issues. Such methods jointly train a unified network to handle both tasks
and are known as joint-detection-and-tracking methods [9,40–42]. Apart from applications
in MOT, this design has also been applied to human pose estimation [43]. Similarly to
the previous strategy, CNNs remain the most prevalent models for this task due to their
significant research improvements over the last few years that enable them to handle both
steps while constantly improving their accuracy and running speeds.

More recently, target association methods that rely solely on detector outputs to
associate all detected bounding boxes have been proposed [44,45]. These methods match
new detections with existing tracklets without the necessity of an embedding extraction



Sensors 2023, 23, 9510 7 of 33

step, which was typically handled by a deep learning network (e.g., [33]). Consequently, the
use of a single computationally intensive module in the overall pipeline leads to a reduction
in the system’s required resources and latency, rendering such methods accurate trackers
with real-time capabilities, depending on detector performance. This design benefits from
a simplified training procedure as well, since the only trainable component is the detector
unit, as without an embedding extraction network, a second dataset is no longer necessary,
reducing the amount of training data and enabling faster deployment.

Our work follows the strategy of online tracking-by-detection, where we employ a
powerful object detector [46] to extract candidate targets in the scene readily available to the
tracking component [44] for accurate consumer tracking in real-time retail video sequences
while producing meaningful tracking outputs.

2.2. Age Estimation

The task of human age estimation has been well studied for a few decades by re-
searchers. Age estimation techniques are often based on shape- and texture-based cues
from faces, which are then followed by traditional classification or regression methods. Ear-
lier approaches to the task utilized classic computer vision methods for feature extraction,
such as Gabor filters [47,48], histogram of oriented gradients (HoG) [49], or local binary
patterns (LBP) [50,51].

Currently, with advances in machine learning research as well as hardware capabilities,
the predominant approach is the application of deep learning methods to solve the problem
of feature extraction. CNNs have been widely adopted for their performance as capable
feature extractors to obtain powerful representations of the input data. For instance,
the works presented in [23,52–54] utilized convolutional-based networks and structures,
whereas, Pei and co-workers [55] proposed an end-to-end architecture that uses CNNs
as well as recurrent neural networks (RNNs). Duan et al. [56] combined a CNN with
an extreme learning machine (ELM) [57], which is a feed-forward neural network that
achieves very fast training speeds and can outperform SVMs in many applications, while
the authors of [58–60] explored more compact and low resource convolutional models.
Other deep learning methods, such as auto-encoders [23] and random forests [61], have
also been adopted.

Most of these works make use of face images due to the fact that they provide more
descriptive information about age ranges, since as people get older, certain common
changes in facial characteristics can be observed, leading to better representations and
higher accuracy of age estimation. Additionally, the majority of available corpora in the
literature comprise media that depict faces exclusively, or at least contain face images,
which are utilized after a detection and cropping step, discarding any other information.

Using images of the full body for this task has largely been an unexplored research
topic, in part because of challenges in associating visual information from the body with
apparent age, but also due to the lack of large publicly available datasets. Consequently,
very few works have been proposed that use whole body images to estimate just the age of
a person, for example, earlier approaches include [51,62,63], in which hand-crafted features
were used. More recently, CNNs have been applied to the problem [53] obtaining accurate
results demonstrating that full body images provide adequate visual information and can
be successfully used to deal with this problem.

A subcategory to this problem is apparent age estimation, meaning that the actual
age of the persons is not known beforehand, but is based on the subjective estimations
of the annotator(s). In these methods, evaluation is performed on apparent ground-truth
data [64]. Due to the nature of real-world data, apparent age estimation is a well-suited
subclass for real-time applications where visual perception of age plays an important role.
To the best of our knowledge, our work is the first to tackle this problem using only images
of the full body as input, instead of the usual datasets of faces.
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2.3. Gender Classification

The task of classifying the gender of people that appear in images is similar in nature
with that of estimating their age. Over the last decades, a few works that focus solely on
this task have been proposed. Conventional methods rely on shallow-learned features,
such as histogram of gradients [65,66] or local binary patterns [67–69] for feature extraction
and support vector machines for classification [30,70] and still remain popular and are
widely used.

As with most image processing and computer vision problems, CNNs have also been
adopted for gender classification, usually to obtain robust representations [71]. For example,
Aslam and colleagues [72] propose wavelet-based convolutional neural networks for gender
classification, while isolated facial features and foggy faces are used as inputs in CNNs
in [73,74]. Ref. [75] provides a comparison of traditional and deep-learned features for
gender recognition from faces in the wild, and [76] explored several popular convolutional
architectures used in other tasks for identifying the gender of humans wearing masks.

Since images of the face contain more relevant information about gender compared to
full body, they lead to better accuracy, and therefore, most methods that have been proposed
for this task utilize datasets that contain images of faces. This reason is also an additional
factor that contributes to the lack of publicly available full-body datasets. In contrast to age
estimation, using full body images for this task has received some attention [30,65,66], but
still remains an open area of research. Some methods deviate from the standard approach
of using two-dimensional images to the application of three-dimensional data for gender
recognition to alleviate some difficulties present in 2D data [77,78].

A different avenue of research for this problem is the combination of different modal-
ities to assist with performance by taking advantage of features from different sources.
More specifically, multi-modal data, such as depth [79] or thermal images [31,80,81], of the
body have also been explored as auxiliary inputs to classification systems for improving
performance and helping to overcome challenges arising when only RGB images of the
body are available.

Apart from aforementioned approaches, a few works have focused on gait [82–84] as
an indicator of gender. Gait-based methods assume information accrued from the gait of a
person, which is related to change of pose in consecutive frames. The typical assumption
is a controlled environment where multiple views of the objects are available so that the
change in pose can be determined [85]. As a consequence, this limitation does not allow
gait-based methods to be employed for practical consumer demographic estimation.

2.4. Related Age and Gender Multi-Attribute Classification Methods

Both the age and gender information about a person can be estimated from face images
with great accuracy, and therefore, several works have been published that attempt to solve
both tasks. Due to challenges present when using body images as previously discussed, as
well as owing to dataset availability, the preferred form of data used by these works favors
facial images. One of the earliest methods can be found in [86,87], where classic image
processing techniques are employed to extract information based on textures of wrinkles
and colors. More recently, Eidinger et al. [88] proposed a SVM-based approach for age and
gender classification from face images in the wild.

With advances in deep learning, various CNNs have been adopted for predicting age
along with gender, replacing older methods, typically comprising feature extractors as parts
of larger systems or end-to-end models that handle the additional process of classification.
For example, all works presented in [89–94] used only convolution-based architectures to
tackle both problems with images of faces as inputs, whereas Uricár and co-workers [95]
proposed a combined CNN feature extractor with a SVM classifier. In a similar fashion,
Duan et al. [96] developed a hybrid technique that utilizes CNNs for feature extraction,
whereas classification is handled by an extreme learning machine (ELM) for faster training
and more accurate predictions. Another hybrid method that leverages non-convolutional
neural networks and CNNs by fusing their decisions for a final prediction is presented
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in [97]. Lately, owing to their success in various tasks, vision transformers have also been
explored for age and gender classification [98].

Using full body images is a much more rare approach, and in this case, most works
that classify age as well as gender do so as part of a multi-attribute classification problem,
where the goal is to predict a larger set of attributes. Analogous to the problem of gender-
only estimation, gait-based methods have also been developed for the combined task,
featuring multiple views of a person’s entire body [99], operating on a single image in
real-time [100], or employing data from wearable sensors [101]. However, such approaches
often assume a controlled monitoring environment of the involved subjects of interest, not
readily applicable in real-time consumer tracking.

3. Materials and Dataset Preparation

In this study, two large datasets are introduced which can be made available upon
email request to the corresponding author. Furthermore, data are uploaded in a privacy-
protected (anonymized) format wherein facial parts are occluded on purpose for compliance
with data privacy regulations. In this respect, we distinguish two types of data sources. The
first type comprises facial blurring of the images where faces are present using deface (see
Section 1.3) software. The latter type is based on deep-anonymity software (see Section 1.3)
that replaces actual faces with artificially generated ones.

3.1. Data Acquisition

To record videos for the dataset, cameras are installed in retail consumer stores in key
positions overlooking the main isles or most of the store where possible. The installation
locations were selected after taking into account the store’s architecture and the cameras’
view areas, with the intent to capture as much movement of consumers as possible. An
additional requirement is to retain visibility of the shelves and in turn their products in
order to extract meaningful associations between consumers and their interactions with
the shelves (e.g., total standing time in front of the shelves, potential purchase, general
preference), their path inside the store, or even achieve the end goal of estimating their
preferences. In total, four cameras are used for one retail store: three conventional RGB
cameras and one thermal. The latter is placed in close proximity with one of the RGB
cameras and physically aligned, in a way so as to depict as much of the same region as
possible as its pair due to differences in their inherent intrinsic parameters (focal length,
zoom, aperture, field of view, etc.).

The cameras use sensors that are motion triggered, which allows for video recording
only when motion is detected and thus control the volume of captured videos so as
to avoid redundant data, especially on busy days where traffic is high. Furthermore,
the recordings can be activated by peripheral movement, i.e., a consumer that briefly
appears in the periphery of the field of view without being fully visible in the frame.
As a result, a significant amount of captured videos contain either a small number of
consumer occurrences or none at all (partial appearances). In order to collect videos with
appropriate amounts of movement and interactions between consumers and products, a
simple heuristic method to discard unwanted videos was devised. First, an automated
script dynamically parses each recorded video by applying a vanilla object detector [102] to
obtain consumer detections in a frame-by-frame basis. Then, the pruning rule determining
which video will be kept for our dataset was based on the average number of detections
being higher than a user-defined threshold (e.g., two or more instances are enough to avoid
video pruning).

The previously described heuristic achieves the goal of filtering videos according
to their content in terms of consumer appearances. After this filtering step, a different
script parses the remaining videos and creates the resulting dataset for the annotation
platform (see Section 3.2). By default, the cameras capture videos at 30 FPS and since
consumers in retail stores tend to move slower compared to outdoor scenes, the frames in
the resulting videos are visually similar with minor movement changes due to the sample
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rate, resulting in an excessive amount of redundant frames that make annotation a cost-
prohibitive process with large overlaps of duplicate ground truth data. For this reason, we
apply subsampling to the original video data by dropping frames without loss of visual
coherence in the final video. In other words, we prune 20 frames per second, thus yielding
approximately 10 frames per second in the subsampled output sequence.

In total, after filtering, 145 video sequences were collected from RGB cameras in
indoor areas of the retail store, 25 of which are used for testing. The same split (120–25)
is followed for both datasets. The videos feature sufficient illumination conditions, with
multiple consumers per frame exhibiting regular or irregular movement patterns along
with potential occlusions due to consumer interactions or their position with respect to the
shelves. In contrast with existing MOT datasets (e.g., MOT16 [103]), the scale of targets is
generally larger, whereas the cameras are static in all sequences. Additionally, a challenge
of this dataset is the presence of reflective surfaces (e.g., glass panels) that can produce
false positive detections. The frame resolution is 3072× 1728 and the average length of
the videos is 60 frames, yielding a total of approximately 8700 images. Example images
showcasing challenges of the Consumers dataset are illustrated in Figure 1.

3.2. Data Annotation

Towards the direction of obtaining training data for our algorithms, we have devel-
oped an annotation platform in Java Spring Boot (https://spring.io/projects/spring-boot
accessed on 26 October 2023) which comprises an open-source framework for scalable ap-
plications that provides an interactive interface. Therein, a registered user can log in using
their credentials, then select a video from a list of videos that are uploaded to the applica-
tion so as to start the annotation task, namely, the creation of ground-truth bounding-box
detections and age/gender estimates for each detected instance.

For each frame of a video sequence, the user actually marks the location of bounding
boxes of potential targets by clicking on the image and surrounding the target boundaries.
Subsequently, the user assigns an ID to each target with a convention followed by all anno-
tator users, i.e., from top-left to bottom-right of the image. This facilitates the consistency
when assessing tracklet association between different IDs during MOT performance eval-
uation. Moreover, the annotator provides a subjective estimate of the targets gender and
age range. Then, the user proceeds to the next frame and repeats this process for all frames
until the end of the video sequence. When a single frame is entirely processed, a cropping
algorithm creates the appropriate body images of each annotated target into a separate
file structure particularly intended for the body image dataset. We should note here that
anonymization takes place right after an annotation task is complete (i.e., the complete
button also triggers the deface algorithm). Upon completion of the annotation procedure,
the platform creates all the necessary files containing the ground-truth coordinates and
demographic information of each bounding box for each frame along with corresponding,
anonymized images. Figure 2 summarizes the annotation pipeline.

Since the procedure to annotate all frames in a sequence can be tedious and time-
consuming, the platform creates files on a frame-by-frame basis, effectively allowing users
to pause their work and resume it later from the same frame, or to examine previous frames
and make corrections in cases of wrong or missing ID assignments. The system keeps
track of all annotation jobs and displays this information to the user in terms of completion
percentage so that no frames are missed.

3.3. Consumers Dataset

In line with the previous section, from the 145 selected sequences in total, 120 form
the training set and the remaining 25 are used as the testing set. To comply with privacy-
respecting regulations, all frames that contain facial information are anonymized by blur-
ring the area of the face or replacing it with an artificially generated one. In cases wherein
a person’s face is missed (not detected) by the automated anonymization software, we
manually perform the blurring, to ensure that all frames are anonymized. In Figure 3, we

https://spring.io/projects/spring-boot
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overview the datasets’ file structure. Consumers is organized as follows: video sequences
are arranged in separate folders each folder corresponding to their sequence IDs. Each
sequence is split into distinct image frames with ascending names, and each image file
is paired with a corresponding text file containing ground truth information about object
instances, if they exist (no detections correspond to empty ground truth text files). Annota-
tions are provided in the form of consumer/target ID number, bounding box coordinates
(center point, box width, and height), as well as demographic information about the con-
sumer (age and gender group) per annotated instance in the frame (see Figure 2b-left), with
the same consumer retaining their identity for as long as they appear in the video sequence.
In cases where the same identity exits and re-enters the scene, the same ID number is used.
Apart from the per-frame annotations, which can be used to train object detectors, a text
file “gt.txt” containing the ground truth for the entire sequence is provided in a subfolder.
This file is formatted in the same way as the MOT benchmarks (e.g., MOT17), and is used
for the evaluation of tracking performance (Section 5).

(a) Annotation platform (b) Complete annotation task—dataset structure

Figure 2. Overview of the Consumers and BID datasets’ creation using the annotation platform
developed for the paper’s needs. (a) Annotation platform (b) Left: File structure of the Consumers
dataset for a given sequence (top) and its corresponding ground truth (bottom). The part on the right
refers to a subset of the BID dataset that is created during the annotation process and consists of
cropped images from that sequence and their respective ground truth representations as vectors.

(a) Consumers file structure (b) BID file structure

Figure 3. Dataset file stucture of Consumers (a) and BID (b).
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3.4. BID (Body Image Dataset)

Using the provided annotations from the annotation platform, croppings of the original
image are created where each cropping corresponds to a single instance of a target consumer,
which is also reflected by the image name (frameID_consumerID, see Figure 2b on the
right). Although the dataset’s intended purpose is apparent demographic estimation,
this information can be also utilized for other computer vision tasks, such as person re-
identification. The cropped images contain the full body of the consumer and any facial
information is expunged as previously. The dataset (see Figure 4, where some examples are
illustrated) features a large diversity of consumer appearances due to clothing and wearable
accessories that create ambiguities with respect to the ground truth of the data (apparent
estimation). Consumers of several age groups are also present, along with permutations
of gender and age group interval. Four age groups that offer a general representation of
consumers in stores were selected: below 12–20 years, 21–36, 37–60, and over 61.

Figure 4. Sample images from the BID dataset showcasing instances of consumers from both genders
and various age groups.

Due to the fact that some frames contain zero instances of consumers, such as the
beginning of a sequence, and multiple instances in some frames, the overall number of
images in this dataset is 6641 with various resolutions and aspect ratios, enabling the train-
ing of models with different input requirements. The file structure is similar to Consumers,
where each sequence uses its own directory and a single text file is provided with ground
truth information about all images in the current directory (see Figure 3b). Annotations are
provided in the form of binary vectors for each target’s apparent gender and age group in
the form: [GENDER AGE_GROUP_1 AGE_GROUP_2 AGE_GROUP_3 AGE_GROUP_4], where
GENDER denotes the target’s gender (1 for female, 0 for male), and the following four
values are a 1-hot representation of the ascending age group. For example, a ground
truth representation of [1 0 1 0 0] denotes a consumer instance of a female in the 21 to
36 age group.

4. Proposed Methods
4.1. Multi-Consumer Visual Detection and Tracking

The problem of multi-object tracking can be formulated as follows: given a sequence
of N image frames with K total targets, the goal of a tracker is to output a set of trajectories
T̂ = {t̂1, . . . , t̂K} for each target in that sequence that is as close to the ground truth
trajectories T = {t1, . . . , tK} as possible. Each trajectory is represented by a series of
bounding box locations B = {b1, . . . , bN}, bi ∈ R4, for that target over the length of the
sequence. Unless provided, the bounding boxes need to be detected using any method of
target detection.

Our work follows the tracking-by-detection approach, utilizing a powerful detection
network [46] to localize targets and corresponding detection scores in a source image,
which are then fed to a robust association strategy (ByteTrack [44]). Following our previous
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work [104], we add an LSTM module for motion forecasting, replacing the conventional
Kalman filters. The resulting pipeline is simple, yet powerful, yielding acceptable run-
ning speeds without compromising tracking performance. By reducing the amount of
parameters in the detection network, accuracy can be slightly lowered in favor of la-
tency, allowing for deployment in various real-world scenarios depending on the available
hardware capabilities.

4.1.1. Target Detection

We employ YOLOX [46] as our base target detection network. YOLOX is a family of
robust and efficient object detectors that builds upon earlier YOLO methods and utilizes
advanced practices from the literature to achieve better performance in terms of detection
accuracy as well as computational requirements. In this subsection, we briefly summarize
some of the key improvements of this detector that enable it to achieve better results
compared to its predecessors.

Anchor-free design. In contrast to anchor-based earlier YOLO methods (e.g.,
YOLOv4 [105]), YOLOX models switch the detection head to an anchor-free design in
order to alleviate some limitations of the anchor mechanism, such as the increased com-
plexity of the detection heads due to multiple anchor points that also need to be computed
before training. Moving to an anchor-free design simplifies the architecture of the de-
tector reducing the amount of parameters required, and therefore, speeding up training
and inference. Even though complexity is reduced, performance remains on par with
anchor-based detectors.

Decoupled detection head. Another significant feature of this model family concerns
decoupled architectures, which replace standard coupled detection heads. The purpose of
this design choice is to reduce the conflict between the tasks of regression and classification
which is present in other detectors, such as the YOLO series, that add coupled detection
heads for both tasks at different feature levels. The decoupled head used in YOLOX has
two separate parallel convolutional branches, one for each task. Benefits of the decoupled
heads include an increased convergence speed and improved performance by simplifying
the training process. A 1× 1 convolution is used to reduce the feature dimensions, followed
by two distinct branches, each with two 3× 3 convolution layers. The lightweight head
used in YOLOX is depicted in Figure 5.

Figure 5. The lightweight decoupled head used in YOLOX. While traditional methods use a single
branch for both tasks of detection and classification, this formulation uses two separate branches to
avoid potential conflicts. The head is added at different feature levels in the backbone network.

Furthermore, the authors adopt a simplified method for label assignment that is based
on OTA [106], dubbed SimOTA. This method treats the label assignment procedure in object
detection as an Optimal Transport problem and simplifies the process by approximating
the solution using a top-k strategy. The simplified assignment strategy reduces training
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time while at the same time increasing average precision (AP). For an in-depth analysis of
SimOTA, as well as other innovations involved in YOLOX, we refer the reader to [46].

Our proposed pipeline is capable of utilizing an additional thermal input modality
when it is available. In this case, two sequences of the same length are used as inputs
and are processed frame-by-frame in parallel. Each frame pair is linearly combined at
the input stage (with the RGB component being more prevalent) and the result is fed to
the detector network. A prerequisite of this function is a preprocessing step performed
in one or both sequences so that they are trimmed to the same length (or number of
frames) and are visually aligned to depict the same area of the store. This form of early
fusion can help prevent visual noise in scenes with reflective surfaces. We should note
here that our approach to multi-modal input fusion is rather straightforward, since both
RGB and thermal modalities are typically linearly combined, as opposed to more refined
and structured data fusion methods which actively learn a common subspace [107–109],
wherein distinct modalities, or multiple views of the same modality, can be aggregated into
discriminative representations. Nonetheless, this is not a hindrance for our problem, since
we observed that thermal modalities did not actually contribute much to the accuracy of the
MOT task, and thus, we did not investigate further possible subspace learning techniques.
The entire pipeline is illustrated in Figure 6.

Figure 6. Proposed system’s pipeline for multi-object tracking with optional thermal modality. The
system’s input is a sequence of images (or pairs). Detections and their corresponding scores are
produced by the detection network and fed to ByteTrack for association to output the final tracks for
the sequence.

4.1.2. Target Tracking

The next step in the visual tracking pipeline for the detected targets accrued from
the previous phase involves the motion prediction part. Therein, our key approach for the
proposed tracker replaces Kalman filters with an LSTM network able to model a sequence
of consecutive t− k past frames up to frame t− 1 to predict bounding-box coordinates for
each detected target between the current (t frame) and previous (t− 1) frame. This in turn
increases tracking performance contrary to Kalman filters that model detected targets only
between the previous and the current frame.

For a given sequence, the tracker maintains information about tracks in the form of lists.
Depending on their tracking state, tracks can be active (tracked) or lost. If, in the current
frame, a detection has been assigned to a track that was previously stored, regardless of its
state, it is considered active for the current frame. Tracks that were previously active but
are not assigned to a detection in the current frame are marked as lost.

The assignment procedure of ByteTrack works as follows: after a frame has been
processed by the detector along with non-max suppression, final detections in the form of
bounding box coordinates and their corresponding detection scores are obtained. Bounding
boxes are separated into two categories depending on their detection score: high score
boxes, if their score is greater than a predetermined tracking threshold, and low score ones, if
that score is lower. Motion prediction is applied to all previously active tracks aiming to
estimate their locations in the current frame. An additional role of motion prediction is to
act as a constraint on the plausibility of associations, rejecting matches between detections
and tracks that are spatially far away.

Following the motion prediction operation, the next step of the tracking pipeline
comprises tracklet association, wherein a first association takes place by assigning high score
boxes with previous tracks. Then, a second association between the remaining tracks and
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lower score bounding boxes occurs. These assignments determine the tracking status of
all tracks:

• For tracks with assigned detections in the previous frame that are matched, they retain
their status as active.

• If a match is found for tracks that have had no detections assigned to them for some
frames (lost), they are now considered as active.

• The remaining tracks after both association operations are marked as lost, since no
matches were made for them in the current frame.

• After these previous checks, all remaining detections initialize new active tracks.

Finally, tracks that have been marked as lost for a number of frames that exceeds a
pruning threshold are removed.

In both association operations, IoU distance is used as a measure to determine the
distance of tracks and detections, and the linear assignment problem is solved using the
Jonker and Volgenant algorithm [110].

4.2. Apparent Age and Gender Estimation or Recognition

The goal of apparent age and gender estimation from full body images is to predict
these attributes with as much accuracy as possible in cases where facial information is not
available. In the absence of face images, only information from the full body can be ex-
ploited, increasing the estimation process difficulty, as discussed in Sections 1.2, 2.2 and 2.3.
In real-world scenarios, such as in retail stores, security cameras are usually used to capture
the movements of consumers while subjecting to privacy respecting laws, resulting in
produced data where the face is unavailable, e.g., blurred video or low resolution. For
applications in such an environment, using cues from the full body is the only avenue to
tackle the problem and therefore a system utilizing full body images as its main source of
data requires a high degree of robustness.

In this section, we discuss the convolutional network architecture, which is also
integrated in our end-to-end system for apparent demographic attribute estimation. The
employed network enables the joint learning of age and gender cues by predicting a holistic
representation for both attributes, without requiring task-specific network architectures,
thereby allowing practical deployment in real-time applications.

Multi-Attribute Classification

To estimate the consumers’ apparent age and gender, we use a simple framework con-
sisting of a feature-pyramid-based backbone network enhanced with additional attribute
localization modules [111] to accurately predict the regions in the image that contribute to
each attribute. The architecture of the network is based on Inception [112], which exploits
the pyramid-based structure to take advantage of features from different depths of layers
from the network that provide complementary information.

At the end of multiple inception blocks where features are accumulated from different
pyramid levels (corresponding to different scales), localization modules are added. By
combining information from different scales, the model can improve its ability to recognize
attributes at various sizes and locations within the image. The localization modules attempt
to detect regions in the image that are responsible for each attribute. These regions are
represented internally as bounding boxes. The architecture of these modules consists of
a simple channel attention network [113] (consisting of global pooling and convolutional
and ReLU layers with sigmoid activation), a spatial transformer [114], simplified to apply
scaling and translation operations to express the bounding box, and a residual connection
to preserve information from the input. The spatial transformer treats regions in the image
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that are responsible for each attribute as simple bounding boxes that can be calculated
using a combination of scaling and translation operations as follows:

(
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)
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]xt
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i

1

, (1)

where tx, ty and sx, sy are, respectively, the translation and scaling parameters that can be
used to calculate the bounding box. In Equation (1), (xs

i , ys
i ) correspond to the source coor-

dinates for the i-th pixel, and (xt
i , yt

i) to the target ones. The values of tx, ty are constrained
to the (−1, 1) range to reduce convergence time. Similarly, and for the same reason, sx, sy
are limited to (0, 1). Each module outputs a prediction for a single attribute. Figure 7 shows
the structure of a localization module.

Figure 7. Depiction of an attribute localization module [111]. The input is a combined feature vector
and the output is a prediction for a single attribute. This module is used in this work.

Training takes advantage of the deep supervision method [115], where ground-truth
data are used as direct supervision for each attribute prediction output from the branches
of the network. A voting scheme is added to leverage the different predictions that are gen-
erated at each feature pyramid level, selecting the best for each attribute region. Weighted
binary cross-entropy is selected as the loss function for each branch of the network (the
forward branch and three groups of localization modules that form the second branch):

Ltotal = L f wd +
3

∑
l=1
Ll , l ∈ 1, 2, 3. (2)

Ll(ŷl , y) = − 1
N

N

∑
n=1

γn(ynlog(σ(ŷn
l )) + (1− yn)log(1− σ(ŷn

l ))) (3)

In the above equations, L f wd indicates the network’s forward branch loss, whereas Ll
indicates the loss for each localization module group, N refers to the number of attributes,
which is dependent on the dataset (for the BID dataset N = 5), σ is the sigmoid activation
function, γn = exp(−αn) is the loss weight for attribute n, αn is its prior class distribution,
and yn and ŷn refer to the ground truth and the network prediction for attribute n, respec-
tively. The total loss is calculated by summing the forward branch loss as well as the loss
for each group of localization modules.

Owing to its relatively simple architecture and low computational cost, the attribute
classification pipeline achieves fast running speeds with acceptable accuracy, and as a
result, can be integrated in the tracking network to output demographic predictions for
the tracked targets in real-time in addition to the bounding boxes without significantly
harming performance. The multi-attribute classification network is illustrated in Figure 8.
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Figure 8. The multi-attribute classification network used in our work. The input is a cropped image of
a single consumer that can be either produced beforehand by data pre-processing or in real-time from
the output of the detector. The four prediction vectors from the architecture are used in maximum
voting to determine the final attribute predictions which is a binary N × 1 vector for N attributes.

5. Experimental Results
5.1. Datasets and Evaluation Metrics
5.1.1. Visual Tracking Evaluation Protocol

We evaluate our proposed tracking framework on our indoor Consumers dataset. We
use six different models from the YOLOX family as detectors for our experiments. Their
size in millions of trainable parameters and computation costs are reported on Table 1.
Weights are initialized by the procedure described in ByteTrack [44] in which a mixed
dataset containing images from the training sets of MOT17 [103], CrowdHuman [116],
ETHZ [117], and Citypersons [118] datasets is created and used to train the detectors when
the objective is testing on the MOT17 test set.

Table 1. Different models of the YOLOX family produced by manipulating the width and depth
factors that control the convolution layer channel dimensionality and bottlenecks in the model
backbone and head. Parameters are measured in millions.

Model Depth, Width Parameters GFLOPS

YOLOX-X 1.33, 1.25 99.1 281.9
YOLOX-L 1.00, 1.00 54.2 155.6
YOLOX-M 0.67, 0.75 25.3 73.8
YOLOX-S 0.33, 0.50 9.00 26.8
YOLOX-Tiny 0.33, 0.375 5.06 6.45
YOLOX-Nano 1 0.33, 0.25 0.91 1.08

1 The Nano model uses depthwise convolutions.

The MOT16/17 datasets contain the same 14 video sequences, 7 of which are used
in the training set and 7 in the testing set, with the difference that MOT17 provides three
sets of public detections for each sequence in the training set improving annotations by
increasing the bounding box accuracy and adding missing detections. Various conditions
are present among scenes, such as several annotation classes or different ambient lighting
depending on the time of day. Large variations in crowd sizes as well as target scales are
also found. An additional challenging factor is related to the recording cameras used for
capturing the scenes, some of them are moving while some are static. Even though most
sequences are from outdoor cameras, there exist a few that depict indoor scenes. The total
number of frames for training amounts to 5316. For each training sequence, its first half is
used in the mixed dataset for training, and the remaining half for validation.

The ETH dataset contains 1804 images in video clips recorded from a camera mounted
on a car or a chariot. Bounding box annotations and scores of pedestrians are provided.
Scenes that overlap with the MOT17 test set are removed from the mixed dataset, following
the literature assumptions.

CrowdHuman (CH) is a large, richly annotated benchmark dataset for evaluating de-
tectors in crowd scenarios. It contains 15,000, 4370, and 5000 images for training, validation,
and testing, respectively, offering a high degree of target variation. There are a total of
470,000 human instances from train and validation subsets and 23 persons per image, with
various kinds of occlusions. Each human instance is annotated with a head bounding-box,
human visible-region bounding-box, and human full-body bounding-box.
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CityPersons (CP) is a subset of the larger Cityscapes dataset that focuses on pedestrian
detection. Bounding box annotations are provided for pedestrians, including riders and
sitting persons. The training subset features various weather and illumination conditions,
with an average density of 7 persons per image. There are 2975 images in the training set
with almost 20,000 unique persons.

We employ ByteTrack’s pre-trained weights for all detector networks and fine-tune for
20 epochs on the raw train set of our Consumers dataset as we found that the initialization
obtained by training on the mixed (MOT-CH-ETH-CP) dataset provides a strong baseline for
target detection that is robust with regard to different scales and appearance scenarios. The
image training size for YOLOX-X, YOLOX-L, and YOLOX-M is set to 800× 1440, while for the
remaining models, it is lowered to 608× 1088. All other training settings and augmentation
protocols remain unchanged, as in [44]. We note that while fine-tuning on the Consumers
dataset is performed using the raw training set data, the evaluation in our experiments uses
the anonymized test set. For reproduction of results, we release the final weights for all models
(Code is available at https://github.com/jpanagos/consumers-bid ).

Considering the motion forecasting module, in order to ascertain the effectiveness of
the LSTM network in tracking performance, several configurations with varying amounts of
neurons and layers were trained, and the best performing setup was selected. The training
procedure of [119] was followed, which employs the Adam optimizer with a starting
learning rate of 0.001 that is multiplied by 0.1 at the 60th epoch. The LSTM networks are
trained on the MOT17 dataset for a maximum of 100 epochs. An ablation analysis of the
effect of the LSTM network in overall MOT performance is included in the Appendix A.2.

5.1.2. Performance Indices

We evaluate the models based on the standard metrics used by the literature for
assessing tracking performance, which are known as the CLEAR MOT metrics [120]. These
include MOTA, MOTP, and IDF1.

MOTA refers to Multi-Object Tracking Accuracy and is one of the most commonly
referred metrics by MOT works. It is defined as:

MOTA = 1− ∑t(FNt + FPt + IDSt)

∑t GTt
, (4)

where t is the frame index and GT is the amount of ground truth objects and FN, FP, and
IDS denote the false negatives, false positives, and identity switches, respectively. A target
missed by any hypothesis is considered a FN, while a target that is wrongly hypothesized
is a FP. An identity switch occurs when a target is given a different ID in the next frame.
True and false positive detections are determined with an IoU overlap percentage greater
than 50% between the predicted bounding box and its corresponding ground truth. MOTA
is expressed as a percentage but it can also be negative when a tracker makes errors that
exceed the number of actual objects in a scene.

Multi-Object Tracking Precision (MOTP) is another index that is regularly used in the
literature. It measures the localization accuracy of the detector in terms of the dissimilarity
between all true positives and their corresponding ground truth targets:

MOTP =
∑t,i dt,i

∑t ct
, (5)

where ct denotes the number of matches in frame t and dt,i is the bounding box overlap of
target i with its assigned ground truth object.

Additionally, we use the identity F1 score (IDF1). IDF1 is the ratio of correctly
identified detections over the average number of ground-truth and computed detections.
This metric focuses more on identity matching ability and data association performance:

IDF1 =
2× IDTP

2× IDTP + IDFP + IDFN
, (6)

https://github.com/jpanagos/consumers-bid
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where IDTP, IDFP, and IDFN represent the true positive ID, false positive ID, and false
negative ID measures, respectively.

For each track within a sequence, the mostly tracked (MT), partially tracked (PT), and
mostly lost (ML) metrics measure the quality of tracking. Each target is assessed using
these metrics according to a tracking percentage:

• Mostly tracked (MT): if it was successfully tracked by the algorithm for more than
80% of its trajectory;

• Mostly lost (ML): if less than 20% of its trajectory is tracked correctly;
• Partially tracked (PT): otherwise.

Ideally, a tracker should achieve high MOTA, MOTP, and IDF1, and most of its
targets should be classified as mostly tracked, while mostly lost targets should be as few
as possible.

As an indicator of latency, we report the total running time of the entire model, which
includes the time required for detection network inference and data association, expressed
as frames per second (FPS). To that end, all tracking experiments are repeated five times
and reported FPS values are averaged. This metric is useful for application deployment in
real-time scenarios where speed is a requirement. Furthermore, it allows us to measure the
impact of the LSTM’s network additional computations on the overall speed of the system.

5.1.3. Age–Gender Recognition Evaluation Protocol

The backbone network of the age and gender prediction model is initialized using
ImageNet pre-trained weights and (whole network) fine-tuning is performed on the raw
BID training set for a maximum of 100 epochs. An initial learning rate of 0.0001 is used and
multiplied by a factor of 0.1 at the 50th epoch. A batch size of 32 is used along with the
Adam optimizer at default settings and a weight decay of 0.0005.

After training, we evaluate the model on the BID test set. Our goal is the accu-
rate estimation of the apparent gender and age group of each target. We report the
following measurements:

• Mean Accuracy (mA) = 1
2N ∑M

i=1(
TPi
Pi

+ TNi
Ni

);

• Accuracy = TP+TN
TP+TN+FP+FN ;

• Precision = TP
TP+FP ;

• Recall = TP
TP+FN ;

• F1 score = 2TP
2TP+FP+FN ,

where N indicates the amount of samples in the dataset, M is the number of attributes
(M = 5 in our case), Pi and Ni are the number of positive and negative examples for the
ith attribute, and TPi and TNi are the correct respective predictions. TP and TN refer to
the true positives and negatives, while FP and FN are the false positives and negatives,
respectively. A retrieved result (classification vector) is considered as TP when both age
and gender are correctly predicted.

5.2. Numerical Results
5.2.1. Multi-Object Tracking

We evaluate our method (see Tables 2 and 3) as well as several recent MOT trackers
on our Consumers dataset after the anonymization process. These include SORT [32],
DeepSORT [33], MOTDT [121], ByteTrack [44], OC-SORT [45], and StrongSORT [122].
A common feature of these trackers is the use of Kalman filters for motion forecasting,
which allows for a comparison with our method for indoor consumer tracking. It should
also be noted that some methods (e.g., DeepSORT), contrary to our approach, require an
additional re-identification module in order to perform tracking. This typically comprises a
CNN-based architecture trained on pedestrian re-identification datasets and introduces
additional computation, which slows down their runtime.
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Table 2. Quantitative results of several MOT methods on the Consumers test set for YOLOX-X,L,M
backbones. Our proposed association method is denoted in bold. ↑means higher values are better.
Measured FPS is the total runtime (detection and association) for all 25 sequences in the test set
averaged across 5 runs on a single NVIDIA RTX2080 Ti GPU.

Backbone Association MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ PT ML ↓ IDSw ↓ Avg. FPS ↑

YOLOX-X

ByteTrack 64.6% 82.8% 63.5% 24 22 3 91 18.41 ± 0.02
ByteTrack + LSTM 82.2% 90.3% 86.3% 35 12 2 8 18.35 ± 0.01
SORT 69.8% 83.5% 77.5% 22 23 4 12 18.56 ± 0.02
DeepSORT 52.8% 76.4% 68.7% 14 31 4 13 9.22 ± 0.01
MOTDT 41.8% 78.9% 58.8% 29 18 2 49 8.70 ± 0.01
OC-SORT 65.0% 90.3% 74.5% 21 21 7 14 17.84 ± 0.43
StrongSORT 74.4% 88.4% 82.2% 28 19 2 8 9.19 ± 0.01

YOLOX-L

ByteTrack 62.3% 82.3% 59.7% 25 21 3 109 29.52 ± 0.02
ByteTrack + LSTM 81.3% 89.5% 86.3% 35 11 3 5 29.38 ± 0.02
SORT 71.0% 82.6% 78.0% 22 22 5 11 29.76 ± 0.04
DeepSORT 53.4% 76.1% 67.9% 17 28 4 14 11.46 ± 0.04
MOTDT 26.0% 77.7% 53.3% 31 15 3 55 10.54 ± 0.05
OC-SORT 66.1% 89.8% 76.0% 20 21 8 10 24.81 ± 0.01
StrongSORT 72.9% 87.9% 80.9% 30 15 4 9 11.29 ± 0.06

YOLOX-M

ByteTrack 63.9% 81.2% 64.0% 22 23 4 94 42.88 ± 0.11
ByteTrack + LSTM 83.2% 89.0% 85.8% 34 13 2 5 42.53 ± 0.11
SORT 70.5% 82.1% 78.4% 24 23 2 11 43.65 ± 0.15
DeepSORT 53.8% 75.6% 70.6% 16 31 2 11 12.89 ± 0.04
MOTDT 25.8% 78.4% 54.0% 32 15 2 51 11.59 ± 0.03
OC-SORT 66.8% 89.2% 75.9% 21 22 6 11 30.55 ± 0.05
StrongSORT 74.2% 86.8% 83.8% 29 18 2 6 12.64 ± 0.03

Table 3. Quantitative results of several MOT methods on the Consumers test set for the more
lightweight YOLOX backbones (“S”, “Tiny”, “Nano”). Our proposed association method is de-
noted in bold. ↑ means higher values are better. Measured FPS is the total runtime (detection and
association) for all 25 sequences in the test set averaged across 5 runs on a single NVIDIA RTX2080
Ti GPU.

Backbone Association MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ PT ML ↓ IDSw ↓ Avg. FPS ↑

YOLOX-S

ByteTrack 65.2% 81.3% 62.2% 26 21 2 115 72.82 ± 0.31
ByteTrack + LSTM 83.6% 88.4% 87.7% 37 10 2 6 71.54 ± 0.25
SORT 74.4% 82.8% 79.7% 26 21 2 17 74.94 ± 0.28
DeepSORT 54.1% 76.4% 69.4% 16 31 2 22 14.73 ± <0.01
MOTDT 26.5% 77.7% 53.2% 35 12 2 62 13.41 ± 0.02
OC-SORT 70.9% 88.7% 78.9% 23 20 6 10 40.83 ± 0.22
StrongSORT 75.0% 86.8% 80.9% 28 19 2 15 14.64 ± 0.01

YOLOX-Tiny

ByteTrack 63.1% 82.1% 65.5% 27 20 2 100 73.62 ± 0.18
ByteTrack + LSTM 82.0% 88.4% 88.0% 38 9 2 5 72.62 ± 0.29
SORT 74.0% 81.5% 81.3% 26 20 3 9 75.63 ± 0.49
DeepSORT 53.7% 77.1% 70.8% 21 25 3 11 14.70 ± <0.01
MOTDT 21.0% 77.5% 52.3% 31 15 3 55 13.30 ± 0.02
OC-SORT 70.5% 88.9% 79.0% 24 19 6 9 41.03 ± 0.51
StrongSORT 74.7% 86.5% 84.0% 34 13 2 5 14.60 ± 0.01

YOLOX-Nano

ByteTrack 62.3% 80.9% 63.0% 26 20 3 105 67.01 ± 0.13
ByteTrack + LSTM 81.9% 86.8% 87.3% 38 9 2 6 66.21 ± 0.20
SORT 71.9% 81.4% 80.8% 26 19 4 9 68.39 ± 0.19
DeepSORT 57.4% 75.8% 71.8% 20 24 5 15 14.47 ± <0.01
MOTDT 42.2% 77.2% 58.3% 30 15 4 52 13.18 ± 0.02
OC-SORT 68.1% 86.9% 77.6% 23 21 5 7 35.16 ± 0.12
StrongSORT 74.6% 85.3% 83.2% 32 13 4 7 14.31 ± 0.03
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5.2.2. Apparent Age and Gender Estimation

We also evaluate the performance of several reference methods primarily developed
for pedestrian attribute recognition [111,123–125] on our BID dataset. All methods are
trained on our BID dataset using their default settings.

Experiments are performed using three data setups. In the first setup, we use the raw
(non-private) data as they are obtained from the annotation platform for both training and
testing in order to establish age and gender estimation baselines without any additional
noise (e.g., face area blurring). Results for the aforementioned methods with different
backbone networks are shown in Table 4.

Table 4. Numerical results of several age and gender estimation methods trained and evaluated on
the raw BID dataset. This setup evaluates the theoretical effectiveness of the methods with raw data.
The method used for estimation in the end-to-end system is highlighted. ↑ indicates that higher
is better.

Method Backbone mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
ALM [111] Inception 0.7770 0.6630 0.6845 0.7905 0.7337

MSSC [123] ResNet50 0.7266 0.6218 0.6436 0.7482 0.6783

SOLIDER [124]
Swin-Base 0.7733 0.6265 0.6668 0.6658 0.6663
Swin-Small 0.7444 0.6010 0.6389 0.6420 0.6404
Swin-Tiny 0.7354 0.6104 0.6545 0.6539 0.6542

ROP [125]
ResNet50 0.7003 0.6201 0.6652 0.6565 0.6608
ViT-Base 0.7323 0.6468 0.6767 0.6936 0.6850
ViT-Small 0.7073 0.6301 0.6571 0.6790 0.6679

In the second setup, two functionally distinct anonymization methods (see Section 3)
are applied to the entire dataset and the final anonymized images are used for training
and testing, allowing a thorough assessment of each method’s robustness to information
loss that occurs when a section of the image is blurred. Table 5 includes the results for the
deface-anonymized data (blurring of the face area).

To ensure that the method we use on our end-to-end system does not rely on any
facial data, we evaluate all methods on the anonymized BID test set while using the
weights obtained from training on the raw dataset. The results of this experiment are
shown in Table 6. We believe this setup to be a more representative use case of the method
in the industry which better reflects real-world conditions, where an application would
potentially blur privacy-sensitive areas of the image before applying any form of estimation.
Regarding the experimental setup with deep privacy anonymization (replacing the face
with an artificially synthesized one), the reader is referred to Appendix B for a similar
analysis of numerical results.

Table 5. Numerical results of several age and gender estimation methods trained and evaluated on
the anonymized BID dataset using the deface software. This experiment evaluates the robustness of
the method when trained and tested on anonymous data to ensure that blurring the face area does
not significantly affect performance. The method used for estimation in the end-to-end system is
highlighted. ↑ indicates that higher is better.

Method Backbone mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
ALM [111] Inception 0.6997 0.6248 0.6597 0.7001 0.6793

MSSC [123] ResNet50 0.6788 0.5600 0.5924 0.7621 0.6459

SOLIDER [124]
Swin-Base 0.7155 0.6258 0.6448 0.6839 0.6637
Swin-Small 0.7395 0.6282 0.6674 0.6636 0.6655
Swin-Tiny 0.7558 0.5874 0.6323 0.6477 0.6399

ROP [125]
ResNet50 0.7015 0.6227 0.6534 0.6680 0.6606
ViT-Base 0.6934 0.5966 0.6240 0.6530 0.6382
ViT-Small 0.6957 0.6036 0.6395 0.6561 0.6477
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Table 6. Numerical results of several age and gender estimation methods trained on the raw BID
dataset and evaluated on the BID test set after anonymization using the deface software. This final
experiment resembles real-world conditions where the method is trained using raw data to obtain a
good set of weights and then deployed in applications, and therefore, inference might be performed
on anonymized data. The method used for estimation in the end-to-end system is highlighted.
↑ indicates that higher is better.

Method Backbone mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
ALM [111] Inception 0.7639 0.6457 0.6771 0.7588 0.7156

MSSC [123] ResNet50 0.7060 0.5836 0.6091 0.7031 0.6389

SOLIDER [124]
Swin-Base 0.7539 0.6096 0.6539 0.6495 0.6517
Swin-Small 0.7295 0.5797 0.6201 0.6213 0.6207
Swin-Tiny 0.7265 0.5837 0.6299 0.6279 0.6289

ROP [125]
ResNet50 0.6968 0.5869 0.6321 0.6376 0.6348
ViT-Base 0.6887 0.6063 0.6384 0.6601 0.6491
ViT-Small 0.6730 0.5722 0.6182 0.6168 0.6175

Finally, an ablative study is presented in Table 7, where we analyze the sensitivity of
the attribute localization module to different attention methods and their parameters and
its effect on the obtained accuracy. We experiment with two different lightweight attention
methods, namely Squeeze-And-Excitation (SE) [113] and Shift-And-Balance (SB) [126]. Both
methods introduce a subnetwork consisting of a global average pooling layer followed
by a bottleneck of two fully-connected layers around a ReLU non-linearity function. The
bottleneck shrinks and subsequently expands the channels back to the original amount,
while the output of each attention method is then combined with the input via a residual
connection. While the former (SE) models the channel-wise relationships by generating
an attention mask which is then multiplied with the layer’s input, the latter introduces a
learnable control factor, which scales the attention output before performing the addition
operation, thus moderating the effect of the attention scores in the input, and thereby
balancing the feature contributions from each component. This design allows the attention
methods to first extract the most relevant information about the channels and then to model
interactions and dependencies between the channels of the intermediate feature vectors.

Table 7. Ablative analysis of the reduction ratio in the attention network used by the attribute
localization module of the apparent age/gender estimation method (Inception backbone). Training is
performed on the raw BID dataset, while testing uses the anonymized test set. ↑ indicates that higher
is better.

Attention Method mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
SE (reduction ratio = 8) 0.6996 0.5692 0.6090 0.6609 0.6339
SE (reduction ratio = 16) 0.7639 0.6457 0.6771 0.7588 0.7156
SE (reduction ratio = 32) 0.7051 0.5806 0.6194 0.6873 0.6516

SB (reduction ratio = 8) 0.7316 0.5965 0.6277 0.7169 0.6690
SB (reduction ratio = 16) 0.7225 0.6019 0.6284 0.7191 0.6707
SB (reduction ratio = 32) 0.7037 0.6102 0.6328 0.7125 0.6703

Since a form of dimensionality reduction which controls information flow is involved
within the bottleneck architectures of both methods, we perform experiments with regard
to the hyperparameter affecting the amount of channel reduction to determine the ideal
value that provides the best results for our BID dataset. More specifically, a reduction ratio
decreases the channel dimensions of the output tensor after the first fully connected layer
is applied. Therefore, manipulating this value regulates the amount of information loss
that occurs at this layer.
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5.2.3. End-to-End Qualitative Results

In this section, we present example qualitative results of the end-to-end system com-
prising the proposed consumer tracking approach combined with the selected demographic
prediction method (Inception-based backbone [111]) on the detected instances, when tested
on challenging out-of-dataset consumer video sequences (see Figure 9).

Figure 9. Qualitative examples (selected frames) of the end-to-end system when applied to out-of-
dataset consumer video sequences, i.e., images not present in the Consumers dataset, but captured
from the same cameras. Images showcase challenging intra-class variations concerning difference in
age or gender, even when facial information is absent. Images are best viewed in color.

6. Discussion

From our experiments, as presented in Tables 2 and 3, the use of the LSTM network
for motion estimation provides a significant benefit for multi-object tracking, improving
all tracking quality metrics, compared to the standard use of Kalman filter (KF). More
specifically, higher improvements are observed for the MOTA and IDF1 scores, while MOTP
improves as well, albeit at a lesser degree. Tracking quality also obtains benefits, with the
amount of mostly tracked trajectories increasing, while simultaneously the partially tracked
ones are reduced, indicating that, with the exception of some trajectories that cannot be
salvaged, the LSTM improves the tracking capabilities of the method by reducing trajectory
ambiguities, an assumption that is also supported by the fact that identity switches reduces
significantly. Compared to the other Kalman-based methods, our proposed tracking method
achieves higher results on all metrics, with the exception of MOTP, which is just <1.0%
lower than OC-SORT.

The same performance gains can be observed for all models in the YOLOX family, with
YOLOX-S achieving the best overall performance in MOTA score, while the larger models
YOLOX-X and YOLOX-L obtain the best results in MOTP and IDF1 scores, respectively. For
the MOTA index in particular, a careful analysis of Tables 2 and 3 reveals that our model
shows an improvement of 18.8% on average (±0.65% std, over all detectors) from the vanilla
ByteTrack model, whereas it consistently outperforms SORT, DeepSort, MOTDT, OC-SORT,
and StrongSORT, with average MOTA improvements of 10.43 ± 1.66%, 28.16 ± 1.74%,
51.82± 8.49%, 14.47± 2%, and 8.07± 0.65%, respectively.

Another observation can be seen with careful tuning of the tracking threshold (see
Section 4.1.2) on a per-video basis, which can potentially yield even higher results. This
hyperparameter is a confidence measure, which determines that detections corresponding
to high score bounding boxes will be considered for assignment to existing tracklets during
the first association step. On the contrary, detections corresponding to lower scores will
be taken into account by the second tracklet association step. By these means, a high
tracking threshold might reject potential correct assignments during the first association.
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In this direction, we refer the reader to Appendix A.1 for an extensive ablative study on the
effects of the various tracking threshold values on the final performance. Table A1 indicates
that for relatively low tracking thresholds (i.e., 0.3 or 0.4), both competing systems (the
vanilla tracker and our proposed ByteTrack+LSTM) with all possible backbone detector
variants (i.e., YOLOX-X, . . . , YOLOX-Nano) regularly show improved performance and
stable difference in the obtained accuracy.

Concerning the effect of the network architecture for the LSTM component, we note
that from the ablation analysis presented in Appendix A.2, all possible network configu-
rations (even a single layer with 128 hidden units) regularly perform well for all indices
regardless of the underlying detector network. One possible explanation might be related
to a relatively low number of consumer instances that need to tracked, in contrast with
other multi-object tracking datasets, for which larger LSTM network architectures might
seem more preferable to obtain increased performance at the cost of running speeds.

As far as practicality is concerned, in the Consumers dataset, the proposed method
achieves competitive overall running speeds with other MOT methods, trailing the vanilla
ByteTrack and SORT by <1–3 FPS, depending on the size of the detector used, while
significantly outperforming both methods in all tracking metrics. Notably, the increased
computational requirements of the LSTM lead to a negligible reduction in running speed,
even in cases where multiple consumer trajectories need to be calculated. The overall
FPS values obtained by our method for several backbone detection networks showcase its
practical applications in real-time scenarios depending on the available resources.

As for the apparent age and gender estimation model, the one selected for use in
the unified model is the Inception-based architecture with the attribute localization mod-
ule, which achieves acceptable performance using just full body images in a challenging
problem where face is an important factor in successful demographic attribute estimation.
In our experiments, this model’s performance is competitive with other larger models,
especially in the case where the raw data is used for training and the anonymized data
for testing, a scenario which reflects real-world conditions. Anonymizing the images does
not significantly affect performance, thereby confirming the method’s robustness in the
absence or distortion of facial characteristics, an important feature for privacy-sensitive
applications, regardless of the employed anonymization method. Finally, the small size
and computational simplicity of this model enables its integration with the multi-object
tracking method in the end-to-end visual tracking and apparent age/gender prediction
pipeline for practical retail applications.

7. Conclusions

In this work, we introduced two novel datasets that can be used for a variety of tasks,
such as (indoor) multi-object tracking or demographic attribute estimation. The datasets
are collected from static cameras and depict indoor scenarios with good lighting conditions
and many instances of occlusions. The Consumers dataset comprises video sequences of
consumers, while the second one (BID) comprises cropped full-body images. To comply
with data privacy regulations, any facial information was thoroughly removed. This
means that potential missed anonymizations of the employed software (e.g., deface) were
manually rectified. Furthermore, we provided extensive experiments on several recent
works on both multi-object tracking and apparent age and gender estimation, thereby
allowing fair comparisons among different approaches, potentially applicable to real-time
scenarios that might favor a computer vision project’s needs. Moreover, the organization of
both datasets follows a consistent sequence-by-sequence, frame-by-frame, and target-by-
target structure. This design facilitates their use in various essential tasks, including but
not limited to indoor person detection and re-identification.

Our proposed approach for consumer tracking wherein the LSTM module replaces
traditional Kalman filters for the task of motion estimation showed significant performance
improvements on our dataset, reflected by the reported numerical results. Finally, owing
to their relatively simple architectures, both methods can be combined in an end-to-end
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system that still retains acceptable performance for deployment in real-world scenarios, as
showcased in the example qualitative results.

Finally, our work aims to act as a both a theoretical and practical standpoint from
which R&D can benefit in terms of selecting the appropriate methods and tools before
developing a computer vision application for retail stores, able to scale in industrial level.
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Appendix A. Additional Tracking Method Ablations

Appendix A.1. Tracking Threshold Analysis

Table A1. Analysis of the effect of the tracking threshold in the final result. We compare our method
(in bold) with the vanilla ByteTrack [44] on our Customers dataset. ↑ indicates that higher is better.

Backbone (Association Method) Tracking Threshold MOTA ↑ MOTP ↑ IDF1 ↑

YOLOX-X (ByteTrack)

0.6 63.8% 82.7% 63.7%
0.5 64.0% 82.8% 64.1%
0.4 63.8% 82.9% 63.6%
0.3 64.3% 82.7% 63.6%

YOLOX-X (ByteTrack + LSTM)

0.6 80.9% 90.4% 84.5%
0.5 81.0% 90.4% 84.4%
0.4 82.2% 90.3% 86.3%
0.3 82.2% 90.3% 86.3%

YOLOX-L (ByteTrack)

0.6 59.1% 83.0% 57.6%
0.5 60.1% 82.5% 58.1%
0.4 60.7% 82.6% 58.4%
0.3 62.3% 82.6% 59.4%

YOLOX-L (ByteTrack + LSTM)

0.6 75.8% 89.7% 82.7%
0.5 77.4% 89.6% 84.7%
0.4 78.4% 89.5% 85.8%
0.3 81.6% 89.5% 88.1%

YOLOX-M (ByteTrack)

0.6 63.2% 82.3% 63.5%
0.5 63.9% 82.2% 62.9%
0.4 64.1% 81.9% 62.7%
0.3 63.8% 81.7% 62.2%

YOLOX-M (ByteTrack + LSTM)

0.6 79.5% 89.2% 84.4%
0.5 80.9% 89.2% 85.1%
0.4 82.3% 89.1% 86.2%
0.3 83.2% 89.0% 85.8%

https://www.kaggle.com/datasets/angelosgiotis/consumers-bid
https://www.kaggle.com/datasets/angelosgiotis/consumers-bid
https://github.com/jpanagos/consumers-bid
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Table A1. Cont.

Backbone (Association Method) Tracking Threshold MOTA ↑ MOTP ↑ IDF1 ↑

YOLOX-S (ByteTrack)

0.6 63.3% 81.4% 62.6%
0.5 64.7% 81.4% 62.5%
0.4 65.0% 81.3% 62.4%
0.3 65.2% 81.3% 62.2%

YOLOX-S (ByteTrack + LSTM)

0.6 81.5% 88.5% 86.7%
0.5 83.0% 88.5% 87.4%
0.4 83.6% 88.4% 87.7%
0.3 83.4% 88.4% 87.3%

YOLOX-Tiny (ByteTrack)

0.6 62.3% 82.3% 64.2%
0.5 63.0% 82.2% 65.1%
0.4 63.1% 82.0% 65.3%
0.3 63.2% 82.1% 65.5%

YOLOX-Tiny (ByteTrack + LSTM)

0.6 78.1% 88.8% 85.9%
0.5 80.4% 88.6% 87.2%
0.4 80.2% 88.5% 86.8%
0.3 81.8% 88.4% 87.7%

YOLOX-Nano (ByteTrack)

0.6 60.3% 80.9% 61.5%
0.5 61.6% 80.9% 61.6%
0.4 61.4% 81.1% 61.9%
0.3 61.8% 80.9% 61.8%

YOLOX-Nano (ByteTrack + LSTM)

0.6 77.3% 87.1% 82.1%
0.5 79.9% 86.9% 85.5%
0.4 80.3% 86.9% 85.4%
0.3 81.9% 86.8% 87.3%

Appendix A.2. LSTM Configuration Analysis

Table A2. LSTM configuration analysis on the Consumers test sequences. In all these experiments, the
association method used is ByteTrack and motion estimation is handled by the LSTM. ↑ indicates
that higher is better.

Backbone LSTM Config
(Layers× Neurons) MOTA ↑ MOTP ↑ IDF1 ↑ Avg. FPS ↑

YOLOX-X

1× 64 82.2% 90.4% 85.5% 18.25 ± 0.02
1× 128 82.2% 90.3% 86.3% 18.27 ± 0.01
1× 256 82.1% 90.3% 86.2% 18.30 ± <0.01
1× 512 82.1% 90.3% 86.2% 18.28 ± <0.01
1× 1024 82.2% 90.3% 86.3% 18.29 ± <0.01

2× 64 82.2% 90.3% 86.3% 18.27 ± <0.01
2× 128 82.1% 90.3% 86.2% 18.28 ± <0.01
2× 256 82.1% 90.3% 86.2% 18.28 ± <0.01
2× 512 82.2% 90.4% 86.1% 18.25 ± 0.01

YOLOX-L

1× 64 81.3% 89.5% 86.3% 28.96 ± 0.03
1× 128 81.6% 89.5% 88.1% 28.97 ± 0.05
1× 256 81.5% 89.5% 88.0% 28.99 ± 0.06
1× 512 81.5% 89.5% 88.0% 28.98 ± 0.06
1× 1024 81.7% 89.5% 88.1% 28.99 ± 0.05

2× 64 81.5% 89.5% 88.0% 28.96 ± 0.02
2× 128 81.5% 89.5% 88.0% 28.96 ± 0.02
2× 256 81.4% 89.5% 88.0% 28.94 ± 0.02
2× 512 81.5% 89.5% 88.0% 28.88 ± 0.04

YOLOX-M

1× 64 82.9% 89.0% 85.0% 41.60 ± 0.03
1× 128 83.2% 89.0% 85.8% 41.75 ± 0.05
1× 256 83.1% 89.0% 85.9% 41.68 ± 0.09
1× 512 83.2% 89.0% 85.8% 41.63 ± 0.08
1× 1024 83.2% 89.0% 85.8% 41.59 ± 0.11

2× 64 83.1% 89.0% 85.9% 41.60 ± 0.07
2× 128 83.1% 89.0% 85.9% 41.64 ± 0.06
2× 256 82.9% 89.0% 85.8% 41.51 ± 0.05
2× 512 83.1% 89.0% 86.6% 41.49 ± 0.09
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Table A2. Cont.

Backbone LSTM Config
(Layers× Neurons) MOTA ↑ MOTP ↑ IDF1 ↑ Avg. FPS ↑

YOLOX-S

1× 64 83.5% 88.4% 86.7% 59.50 ± 0.10
1× 128 83.6% 88.4% 87.7% 59.79 ± 0.19
1× 256 83.6% 88.4% 87.7% 59.64 ± 0.14
1× 512 83.6% 88.4% 87.7% 59.54 ± 0.18
1× 1024 83.4% 88.4% 87.8% 59.43 ± 0.20

2× 64 83.5% 88.4% 87.6% 59.27 ± 0.22
2× 128 83.6% 88.4% 87.7% 59.23 ± 0.19
2× 256 83.5% 88.4% 87.6% 59.36 ± 0.16
2× 512 83.5% 88.4% 87.6% 59.35 ± 0.25

YOLOX-Tiny

1× 64 81.8% 88.5% 87.3% 60.34 ± 0.11
1× 128 81.8% 88.4% 87.7% 60.52 ± 0.35
1× 256 82.0% 88.4% 87.8% 60.35 ± 0.17
1× 512 81.8% 88.4% 87.7% 60.11 ± 0.12
1× 1024 81.9% 88.4% 87.8% 60.30 ± 0.24

2× 64 82.0% 88.4% 88.0% 60.03 ± 0.23
2× 128 82.0% 88.4% 88.0% 60.11 ± 0.09
2× 256 81.8% 88.5% 87.9% 60.16 ± 0.16
2× 512 81.8% 88.4% 87.7% 60.21 ± 0.11

YOLOX-Nano

1× 64 81.6% 86.8% 86.1% 54.60 ± 0.19
1× 128 81.9% 86.8% 87.3% 54.78 ± 0.30
1× 256 81.7% 86.8% 87.2% 54.70 ± 0.11
1× 512 81.8% 86.4% 87.3% 54.66 ± 0.09
1× 1024 81.8% 86.4% 87.3% 54.81 ± 0.22

2× 64 81.8% 86.4% 87.3% 54.57 ± 0.09
2× 128 81.8% 86.4% 87.3% 54.37 ± 0.17
2× 256 81.8% 86.4% 87.3% 54.53 ± 0.11
2× 512 81.8% 86.4% 87.3% 54.38 ± 0.22

Appendix B. Additional Age/Gender Estimation Method Experiments

Table A3. Numerical results of several age and gender estimation methods trained and evaluated on
the anonymized BID dataset using the deep-privacy method which replaces faces instead of applying a
blurring filter. The method used for estimation in the end-to-end system is highlighted. ↑ indicates
that higher is better.

Method Backbone mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
ALM [111] Inception 0.7256 0.6457 0.6678 0.7566 0.7094

MSSC [123] ResNet50 0.6339 0.5342 0.5656 0.7027 0.6098

SOLIDER [124]
Swin-Base 0.7568 0.6245 0.6809 0.6623 0.6715
Swin-Small 0.7600 0.6296 0.6595 0.6772 0.6682
Swin-Tiny 0.7255 0.6165 0.6596 0.6649 0.6622

ROP [125]
ResNet50 0.7063 0.6327 0.6728 0.6795 0.6761
ViT-Base 0.7452 0.6482 0.6849 0.7019 0.6933
ViT-Small 0.6997 0.6171 0.6565 0.6772 0.6667

Table A4. Numerical results of several age and gender estimation methods trained on the raw BID
dataset and evaluated on the deep-privacy-anonymized test set. The method used for estimation in
the end-to-end system is highlighted. ↑ indicates that higher is better.

Method Backbone mA ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑
ALM [111] Inception 0.7363 0.6272 0.6577 0.7420 0.6973

MSSC [123] ResNet50 0.7023 0.5779 0.6064 0.6946 0.6337

SOLIDER [124]
Swin-Base 0.7497 0.6092 0.6496 0.6556 0.6526
Swin-Small 0.7309 0.5935 0.6337 0.6340 0.6339
Swin-Tiny 0.7230 0.5968 0.6424 0.6433 0.6429

ROP [125]
ResNet50 0.6957 0.5944 0.6398 0.6486 0.6441
ViT-Base 0.6964 0.6091 0.6415 0.6601 0.6507
ViT-Small 0.6964 0.6075 0.6509 0.6517 0.6513
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