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Abstract: Microelectromechanical systems (MEMS)-based capacitive pressure sensors are convention-
ally fabricated from diaphragms made of Si, which has a high elastic modulus that limits the control
of internal stress and constrains size reduction and low-pressure measurements. Ru-based thin-film
metallic glass (TFMG) exhibits a low elastic modulus, and the internal stress can be controlled by
heat treatment, so it may be a suitable diaphragm material for facilitating size reduction of the sensor
without performance degradation. In this study, a Ru-based TFMG was used to realize a flattened
diaphragm, and structural relaxation was achieved through annealing at 310 ◦C for 1 h in a vacuum.
The diaphragm easily deformed, even under low differential pressure, when reduced in size. A
diaphragm with a diameter of 1.7 mm was then applied to successfully fabricate a capacitive pressure
sensor with a sensor size of 2.4 mm2. The sensor exhibited a linearity of ±3.70% full scale and a
sensitivity of 0.09 fF/Pa in the differential pressure range of 0–500 Pa.

Keywords: thin film metallic glass; MEMS; capacitive pressure sensor

1. Introduction

Environmental problems such as climate change and abnormal weather have become
global issues [1] which can be attributed to increased emissions of greenhouse gases such
as carbon dioxide, nitrogen oxides, and sulfur oxides [2]. A major source of these emis-
sions is the exhaust produced during power generation, which varies depending on the
energy source. Renewable energy sources such as solar power and wind power are envi-
ronmentally friendly because they result in minimal greenhouse gas emissions. However,
their wider application faces challenges such as a low power output and susceptibility to
weather conditions [3–5]. Nuclear power is also considered environmentally friendly, but it
comes with its own issues such as the need to dispose of radioactive waste and increased
risk in the event of disasters [6,7]. Thus, fossil fuels remain a major contributor to power
generation. Natural gas has lower greenhouse gas emissions than other fossil fuels, which
has increased demand for it [8]. This has spurred the development of infrastructure for
producing, transporting, and supplying natural gas, which has increased the need for
sensors that can accurately measure the gas pressure.

Capacitive pressure sensors are commonly employed for natural gas applications
because of their wide temperature range, high durability, low power consumption, low
hysteresis, and high measurement repeatability [9–20]. These sensors measure pressure
based on the change in capacitance caused by deflection of a diaphragm, which affects the
distance between electrodes. However, nonlinearities may arise with increasing pressure
because the capacitance is inversely proportional to the gap between electrodes. Numerous
attempts have been made to improve the linearity and optimize the structure of micro-
electromechanical systems (MEMS)-based capacitive pressure sensors, but most studies
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have focused on high-pressure measurements [10–18]. Few studies have reported sensors
designed specifically for low-pressure measurements. Of these studies, a common approach
has been to increase the size or decrease the thickness of the diaphragm to increase deflec-
tion [19,20]. However, the growing demand for capacitive pressure sensors has increased
the need to reduce the size and costs while improving performance. Reducing the sensor
size decreases the initial capacitance and thus the deflection of the diaphragm for a given
pressure. This makes it difficult to retain the change in capacitance essential for precise
pressure measurement. Hence, it is necessary to augment the initial capacitance and reduce
the thickness of the diaphragm.

There are two possible approaches to increasing the initial capacitance: inserting a di-
electric material or reducing the gap between electrodes. Inserting a dielectric material can
enhance the permittivity between the diaphragm and fixed electrode. As the diaphragm de-
forms, it contacts the dielectric film, and the contact area increases with the pressure, which
in turn increases the capacitance. This approach is suitable for high-pressure measure-
ments but is inapplicable to low-pressure measurements because the change in capacitance
remains small until contact is established. Meanwhile, reducing the gap between elec-
trodes may lead to them adhering to each other or to the diaphragm during the fabrication
process, which requires internal stress control to reduce the diaphragm thickness. The
diaphragm is conventionally made from silicon (Si), which has a high Young’s modulus
that makes controlling the internal stress difficult. Thus, an alternative material to Si needs
to be identified.

Thin film metallic glasses (TFMGs) have garnered much attention as a novel material
for MEMS applications. TFMGs exhibit a low Young’s modulus and high elastic limit in
contrast to Si [21–24], so they can undergo substantial deformation under low-pressure
conditions, even when the diaphragm size is reduced. In addition, the internal stress
introduced during sputtering can be managed by annealing for structural relaxation [25,26].
In a previous study, Ru-based TFMG was identified as undergoing structural relaxation
by annealing below the glass transition temperature, which can decrease the introduction
of tensile stress due to thermal stress when the diaphragm is flattened. Furthermore, it
has a Young’s modulus of 92.7 GPa and elastic limit of 2.04%, which are suitable for use
as a diaphragm in small sensors for low-pressure measurements [27]. In this study, our
objective was to develop a compact sensor suitable for low-pressure measurements. It
was detailed that a MEMS-based capacitive pressure sensor was fabricated by using a
Ru-based TFMG as the diaphragm and evaluated the measurement performance under
low-pressure conditions.

2. Design

Figure 1 shows the design of the MEMS-based capacitive pressure sensor, which
comprised electrodes and a diaphragm. The central and reference electrodes were on a
glass substrate, and the Ru-based TFMG diaphragm was on a highly doped Si substrate.
The electrodes and diaphragm were bonded by a photosensitive adhesive, and the gap
between the electrodes and diaphragm was controlled by the adhesive thickness. The
sensor was designed to meet the target specifications of a size of 2.4 mm2 and maximum
measurable pressure of 500 Pa. To meet the above specifications, the areas of both electrodes
needed to be determined first. Figure 2 shows the configuration of the electrodes. The
electrode area needed to be maximized to increase the initial capacitance. To prevent
conduction during electrode deposition and keep the bonding stiffness of the adhesive
layer, it was set a clearance of 0.05 mm between the central and reference electrodes and
0.35 mm from the edge of the substrate. The central electrode was circular in shape with
a diameter of 1.2 mm. The reference electrode was 1.7 mm2 and was arranged around
the central electrode with an inner diameter of 1.3 mm. The diaphragm diameter was
set to 1.7 mm to increase the deflection in response to pressure. The gap between each
electrode and the diaphragm was set to 2.0 µm to maximize the initial capacitance while
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ensuring sufficient space to avoid the diaphragm adhering to the electrode during the
bonding process.
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Figure 2. Electrode configuration.

The measurable pressure range was determined from the diaphragm thickness, which
affects the deflection of the diaphragm in response to pressure and in turn the change in
capacitance. The diaphragm thickness was calculated by determining the upper and lower
limits of the change in capacitance. The deflection of the diaphragm when gas pressure is
applied can be estimated by assuming that the diaphragm is a circular disk with a fixed
circumference that is subjected to a uniformly distributed load. The relationship between
the radius of curvature and the deflection can be used to obtain the differential equation
for the deflection at a distance r from the center of the diaphragm due to bending:
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where p is the applied pressure and D is the bending stiffness. The bending stiffness of the
diaphragm is determined by the following formula:

D =
Eh3

12(1− ν2)
(2)

where E is Young’s modulus, h is the diaphragm thickness, and ν is Poisson’s ratio. Under
the initial conditions of a zero-shear force and a finite value for the deflection, the deflection
and deflection angle of the diaphragm are determined by the following formula:
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w(r) =
pr4
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+

c1
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r2 + c2 (3)

dw(r)
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16D
+

c1

2
r (4)

Considering the boundary conditions of zero deflection and zero deflection angle at
the fixed circumference r = a of the diaphragm, it can be obtained the integration constants
c1 and c2. Then, the deflection w(r) is determined by the following formula:

w(r) =
αpa4

64D
·
(

1− r2

a2

)2

(5)

where p is the applied pressure, a is the diaphragm radius, and α is the correction factor.
The values for α, ν, E, and a are already known: α = 9.05 × 10−1, ν = 0.33, E = 92.7 GPa, and
a = 0.85 mm. This deflection is used to determine the capacitance. Because it cannot be
obtained directly, it is calculated by using integration. The microelectrode area dS of the
diaphragm at a distance r from the center is determined by the following formula:

dS(r) =
{
(r + dr)2 − r2

}
·π = 2rdr·π (6)

dr2 can be ignored because it is a second-order infinitesimal term. The gap on the small
area when pressure is applied is shown as d − w(r) where d is the initial gap. Therefore,
the micro-capacitance dC(r) given to the microelectrode surface dS is shown using the
following formula:

dC(r) = ε
dS

d− w(r)
= ε

2r
d− w(r)

dr·π (7)

This formula applies to disks or annular shapes. Therefore, the reference electrode
with a square outer perimeter and circular inner frame must be approximated by a circular
shape for calculation. If the areas before and after approximation are assumed equivalent,
then the outer diameter ar of the annular shape can be calculated as follows:

ar =
L√
π

(8)

where L is the edge length of the reference electrode perimeter (=1.7 mm). Thus, ar was
calculated as 1.92 mm. However, because the diaphragm radius was 0.85 mm, the effective
area of the reference electrode ranged from an inner diameter of 1.3 mm to an outer diameter
of 1.7 mm. The obtained ranges for the central and reference electrodes were used as the
integration limits in Equation (7). Then, the static capacitances Cm and Cr when pressure is
applied are shown using the following formula:

Cm(r) =
∫ 0.6×10−3

0
ε

2r
d− w(r)

dr·π (9)

Cr(r) =
∫ 0.85×10−3

0.65×10−3
ε

2r
d− w(r)

dr·π (10)

The change in capacitance ∆C is then determined by using the following formula:

∆C = (Cm−Cm0)− (Cr − Cr0) (11)

Figure 3 shows the relationship between the deflection of the diaphragm and change
in the capacitance. To ensure linearity, ∆C has a possible range of ≤1.22 pF. The diaphragm
thickness h that satisfies this condition was calculated by using Equations (5) and (9)–(11),
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which resulted in h ≤ 7.5 µm. However, Equation (5) does not account for internal stress in
the diaphragm, so the diaphragm thickness was set to 1.5 µm to allow for deflection.
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3. Fabrication
3.1. Fabrication Process

Figure 4 shows the fabrication process of the capacitive pressure sensor, which com-
prises three steps: fabricating the diaphragm, fabricating the fixed electrodes, and bonding
them together. To fabricate the diaphragm, a Ru-based TFMG was deposited onto a highly
doped Si substrate by using a sputtering system (L-350-C; CANON ANELVA, Kawasaki,
Japan) and utilizing Cr as an adhesion layer. Table 1 details the sputtering conditions.
Adequately cooling the substrate helped reduce the internal stress induced by compression.
The TFMG had a composition of Ru65Zr30Al5 (at%) [27]. Each sample was annealed under a
high vacuum to relieve the initial internal stress and introduce tension. The diaphragm was
fabricated by deep reactive ion etching (DRIE) of the Si substrate underneath the TFMG.
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For the fixed electrodes, through-holes with a diameter of ϕ0.3 mm were made to
connect the wiring between the upper and lower portions. Then, the electrodes were
fabricated by depositing Au onto a glass substrate using a sputtering system (E-200S;
CANON ANELVA, Kawasaki, Japan) and utilizing Cr as an adhesion layer. The backside of
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the substrate was also sputtered with Cr and Au to fabricate the electrode pad and wiring.
Table 2 details the sputtering conditions.

Table 1. Experimental conditions of sputtering Ru-based TFMG.

Target Ru65Zr30Al5 Cr

Ar pressure [Pa] 0.8 0.5
RF power [W] 100 100

Time [min] 40 1

Table 2. Experimental conditions for sputtering Au.

Target Au Cr

Ar pressure [Pa] 1.0 1.0
RF power [W] 200 200

Time [min] 8 1

Finally, the diaphragm and fixed electrodes were joined by an indirect bonding method
using an adhesive. This method was chosen because the common method of anodic bond-
ing to join glass and Si requires the application of high voltage and a temperature of over
200 ◦C. In contrast, the indirect bonding method induces adhesion of the diaphragm due to
compressive stress caused by electrostatic attraction and thermal stress. A photosensitive
adhesive (TMMR SA390N; Tokyo Ohka Kogyo, Kawasaki, Japan) was used to bond the
diaphragm and fixed electrodes, which were bonded at low temperatures of 80–110 ◦C
and could be patterned by lithography without introducing much thermal stress. After
the adhesive was applied to the fixed electrodes by spin-coating and was patterned, the
diaphragm was bonded to the electrode by heating it to 110 ◦C under a pressure of 0.2 MPa
for 2 min. Then, the bonded diaphragm and fixed electrodes were annealed on a hot plate
at 180 ◦C for 90 min. They were then cut into chips to fabricate capacitive pressure sensors.

3.2. Annealing Conditions

In a previous study, the fabricated TFMG diaphragm became a dome because of
compressive stress introduced during sputtering. To flatten the diaphragm, the initial
compressive stress was reduced by annealing utilizing β relaxation [28]. Figure 5 shows an
optical microscopy image and the cross-sectional profile of the backside of the diaphragm
after annealing at 250 ◦C for 1 h. A flat diaphragm was successfully fabricated. Figure 6
shows the bulge test. Samples were prepared by using the same fabrication process as
shown in Figure 4, but the temperature during annealing was varied while the annealing
time was kept constant at 1 h. After a sample was set in the base jig, a stainless-steel
holding jig was used to secure the Si substrate from the top, and the surroundings were
covered with polyimide tape to prevent pressure from leaking and to ensure accurate
measurement. A pressure calibrator was connected to the hose, and pressure was applied
to the diaphragm. The pressure–deflection characteristics were evaluated by measuring the
deflection of the diaphragm using white-light interference. Controlling the deflection of
the diaphragm according to the annealing temperature allowed the change in capacitance
to be regulated. When the change in capacitance exceeds 20% of the initial capacitance, the
linearity of the capacitance–deflection relationship is lost [28]. Therefore, the conditions
under which the deflection of the diaphragm was less than 0.7 µm at the upper limit of the
pressure needed to be determined.

Figure 7 shows the deflection characteristics of the diaphragm at each annealing
temperature. The deflection increased at lower annealing temperatures for a given pressure.
This is because increasing the temperature increased the tensile stress introduced into the
diaphragm by thermal stress during cooling, which made it difficult for the diaphragm to
deform. The annealing conditions were set to 310 ◦C for 1 h, which resulted in a deflection
of 0.6 µm when a differential pressure of 500 Pa was applied.
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3.3. Fabrication Results

Twenty-five MEMS-based capacitive pressure sensors were fabricated from one lot,
of which 21 were found to be viable. Figure 8a,b show optical microscopy images of the
top and bottom of a sensor. No damage was observed for the diaphragm, but a fringe
pattern was observed. Figure 8c shows scanning electron microscopy (SEM) images of
the cross-section. The adhesive thickness ranged from 3.3 µm to 7 µm, which may be
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attributed to insufficient pressure during bonding, the surface roughness of the glass, and a
non-uniform thickness of the adhesive layer.
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4. Performance Evaluation
4.1. Evaluation Method

Figure 9 shows the setup for measuring the capacitance of the pressure sensor. To
prevent parasitic capacitance during measurements, the jig for the mounted sensor was
fabricated using fused deposition modeling 3D printing from ABS resin. Conductive
tape was attached to the top of the jig to extract electrodes from the diaphragm via the
highly doped Si substrate. The insulating tape was attached to the opposite side for angle
correction. A liquid gasket was applied around the sensor to prevent gas leakage. The
capacitance of the pressure sensor was measured by using an inductance–capacitance–
resistance (LCR) meter at a measurement frequency of 100 kHz and applied voltage of
1.0 V. The LCR meter was connected to the wiring pads and conductive tape of the pressure
sensor by conductive wires. There were two wiring pads, each connected to the central
electrode and reference electrode. The applied pressure was increased from 0 Pa to 500 Pa
in increments of 100 Pa and was then decreased to 0 Pa. The capacitance was measured at
both the central and reference electrodes.

4.2. Evaluation Results

Figure 10 shows the initial capacitances of the 21 pressure sensors (i.e., Chips 1–21).
Both the central and reference electrodes exhibited variations in the range of 0.5–4 pF. The
gap between electrodes was calculated from the initial capacitance to be a maximum of
9 µm, which was 4.5 times greater than the design value of 2 µm. This was attributed to
the lack of control over the film thickness of the photosensitive adhesive by spin-coating,
which increased the variability in the thickness of the photosensitive adhesive and resulted
in incomplete bonding across the entire substrate. Table 3 presents the measured and
designed values of the initial capacitance and estimated gap of Chip 1, which had the
highest initial capacitances at the electrodes among the fabricated sensors. Although the
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designed initial capacitances of the center and reference electrodes were 5.00 and 6.91 pF,
respectively, the measured initial capacitances were 2.08 and 3.90 pF, respectively, which
were approximately half the design values. The areas of the central and reference electrodes
were 1.13 and 1.56 mm2, respectively. The estimated gaps for the central and reference
electrodes were 4.82 and 3.53 µm, respectively. The variability in the adhesive thickness
indicates that the gap may not have been constant.
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Table 3. Measured and designed values of the initial capacitance and estimated gap for Chip 1.

Chip Central Electrode Reference Electrode

Designed initial capacitance [pF] 5.00 6.91
Measured initial capacitance [pF] 2.08 3.90

Estimated gap [µm] 4.82 3.53

Figure 11 shows the relationship between the capacitance and applied pressure at the
central electrode of Chip 1. The pressure was increased in increments of 100 Pa from 0 to
500 Pa and then decreased back to 0 Pa. This cycle was repeated 10 times. Figure 11 shows
the data for the 10th cycle. As the applied pressure increased, the capacitance increased
linearly. As the pressure decreased, the capacitance also linearly decreased. Thus, there
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was no hysteresis. The linearity was within ±3.70% full scale (F.S.), and the hysteresis was
2% F.S. The sensitivity of Chip 1 was 0.09 fF/Pa for a pressure range of 0–500 Pa, which
is much lower than the design sensitivity of 0.31 fF/Pa. Figure 12 shows the relationship
between the capacitance and applied pressure at the reference electrode of Chip 1. The
capacitance remained almost constant regardless of the change in pressure, which indicates
that the reference electrode was working well.
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The deflection of the diaphragm in Chip 1 from the capacitance of the central electrode
by using Equation (9) was calculated. Figure 13 shows the estimated deflection of Chip 1,
which was less than the measured deflection in the bulge test. This can be attributed to the
variation in the initial internal stress induced by the sputtering process and insufficient
stress relaxation. The stress relaxation progressed more for the MEMS sensor than during
the bulge test, so a large tensile stress was applied during cooling. Therefore, the annealing
conditions need to be optimized so that the initial internal stress can be relieved at a low
temperature over a long time.
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5. Conclusions

A Ru-based TMFG was used to fabricate a capacitive pressure sensor and its perfor-
mance was evaluated. By adequately cooling the substrate during sputtering, the initial
internal stress could be mitigated and tensile stress was introduced at a low annealing
temperature. Annealing conditions were set to realize a deflection of 0.6 µm at a pressure
of 500 Pa. Utilizing a photosensitive adhesive to bond the diaphragm and fixed electrode
reduced the amount of thermal stress introduced to prevent sticking. The results showed
that a pressure sensor with a flat diaphragm structure that demonstrated a sensitivity of
0.09 fF/Pa, linearity of ±3.70% F.S., and hysteresis of 2% F.S. in the measurement range
of 0–500 Pa was successfully fabricated. However, the sensor performance deviated from
the designed characteristics, which was attributed to variation in the induced internal
stress during sputtering and the annealing conditions being insufficient to relax the initial
internal stress.

Although the sensor performance was not satisfactory, the results indicate that the
fabrication of a capacitive pressure sensor from a TFMG is feasible. In future works, an
attempt to improve the sensor performance will be made by determining suitable annealing
conditions to achieve sufficient stress relaxation and reviewing the bonding process to
control the gap size.
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