
Citation: Chen, Q.; Qin, J.; Wen, W.

RepECN: Making ConvNets Better

Again for Efficient Image

Super-Resolution. Sensors 2023, 23,

9575. https://doi.org/10.3390/

s23239575

Academic Editors: Antonio

Fernández-Caballero

and Byung-Gyu Kim

Received: 9 October 2023

Revised: 22 November 2023

Accepted: 30 November 2023

Published: 2 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

RepECN: Making ConvNets Better Again for Efficient
Image Super-Resolution
Qiangpu Chen 1 , Jinghui Qin 2,* and Wushao Wen 1

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
chenqp8@mail2.sysu.edu.cn (Q.C.); wenwsh@mail.sysu.edu.cn (W.W.)

2 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: qinjinghui@gdut.edu.cn

Abstract: Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution
(SR) methods have lower computation costs, making them more friendly for real-world scenarios.
However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based
SR methods have achieved impressive performance recently, but these methods often suffer from
high computation costs and model storage overhead, making them hard to meet the requirements
in practical application scenarios. In practical scenarios, an SR model should reconstruct an image
with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient
Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off
between performance and efficiency. A stage-to-block hierarchical architecture design paradigm
inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured
by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the
block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a
shallow feature extraction module, a deep feature extraction, and an image reconstruction module.
The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing
6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The
RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning
long-range dependence. In the image reconstruction module, an upsampling module consisting of
nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain
reconstruction performance, while bicubic interpolation on another branch allows the backbone
network to focus on learning high-frequency information. The extensive experimental results on
multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-
of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating
that our RepECN can reconstruct high-quality images with fast inference.

Keywords: image super-resolution; ConvNet; structural re-parameterization

1. Introduction

Single Image Super-Resolution (SISR), which aims to reconstruct a high-resolution
(HR) image from a low-resolution (LR) image, is an ill-posed problem without one unique
solution. As an efficient data-driven technology, deep learning-based SISR methods have
shown promising results and achieved better quantitative and qualitative performance
than traditional methods. These super-resolution (SR) models can be divided into three
categories, including convolutional neural network-based SR methods [1,2], Transformer-
based SR methods [3,4], generative adversarial network-based SR methods [5,6].

However, deep learning-based methods require significant computation costs and
storage resources to provide high reconstruction accuracy, hindering them from being
deployed in resource-limited platforms or scenarios, such as live streaming [7], phone
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imaging [8], etc. Therefore, an SR model with high super-resolving performance and fast
inference is urgently required to meet the requirements of resource-limited scenarios.

Lightweight SR models have recently been proposed, but they still face challenges
in how to make a better trade-off between inference speed and reconstruction perfor-
mance. Transformer-based methods, such as SwinIR [4], ESRT [9], and LBNet [10], have
shown better performance than CNN-based lightweight models, like ESRN [11], LBFN [12],
and ShuffleMixer [13]. However, the multi-head self-attention and encoder–decoder de-
signs overlook the actual inference latency caused by a large amount of memory access
cost (MAC) and the parallelism degree of network structure. Our statistical experiments
demonstrate that Transformer-based methods suffer from high latencies even with small
parameter sizes, as illustrated in Figure 1. In contrast, CNN-based methods infer much
faster than other designs with simple structures but suffer from lower reconstruction per-
formance. Thus, ConvNet is often adopted to build efficient and lightweight models for
improving inference speed. SR-LUT [14] and SPLUT [15] can reconstruct images faster at
the expense of severe performance degradation. Wu et al. [16] explored a compiler-aware
SR neural architecture search (NAS) framework to achieve real-time inference on GPU/DSP
platforms for mobile devices. However, this work faces difficulties deploying or directly
transferring pre-trained models to different hardware platforms with varying instruction
architectures. With these considerations, RepSR [17] aims to improve the performance of
VGG-like [18] CNN-based models but still has a low-performance cap.

0 100 200 300
Latency on GPU (ms)

32.25

32.50

32.75

33.00

33.25

33.50

33.75

34.00

PS
N

R
 o

n 
M

an
ga

10
9 

(3
×)

ShuffleMixer-Tiny

RepECN-T (Ours)

LapSRN

ShuffleMixer RepECN-S (Ours)

IDN

IMDN
LAPAR-A

ESRT

LatticeNet

SwinIR-SRepECN (Ours)

MACs (G)
20
40
60
80
100
120
140
160
180

200

400

600

800

1000

1200

N
um

be
r o

f P
ar

am
et

er
s (

K
)

Figure 1. Qualitative trade-off comparison between the performance and the latency of SR models
(e.g., SwinIR [4], ESRT [9], ShuffleMixer [13], IDN [19], IMDN [20], LatticeNet [21], LapSRN [22]) on the
Manga109 (3×) benchmark dataset. The color normalized mapping represents the model’s parameter
number, and the circle’s area represents the Multiply-Accumulates (MACs) of a model. Our proposed
models are marked in the red label and line. The comparison results show the superiority of our method.

To make a better trade-off between reconstruction performance and inference latency
for practical scenarios, we propose a pure CNN-based Efficient Residual ConvNet with
structural Re-parameterization (RepECN). The architecture is investigated by the stage-to-
block hierarchical design of the ViT-based model to offer both fast speed and high-quality
image reconstruction capabilities. The RepECN has three key structural components:
a shallow feature extraction module, a deep feature extraction module, and an image
reconstruction module. The deep feature extraction module comprises several ConvNet
Stages (CNS), each containing six Re-Parameterization ConvNet Blocks (RepCNB), a head
layer, and a residual connection. By employing the Transformer-like stage-to-block design,



Sensors 2023, 23, 9575 3 of 17

this module allows for learning channel and spatial information by different convolution
structures, enabling faster processing speeds, while maintaining similar parameter numbers
and performance compared to the Transformer-based models. In addition, we propose
a novel image reconstruction module based on nearest-neighbor interpolation and pixel
attention to save parameters and maintain reconstruction performance. The extensive
experimental results show that our RepECN can achieve 2.5∼5× faster inference than the
state-of-the-art ViT-based SR model with better or competitive super-resolving performance,
indicating that our RepECN can achieve a better trade-off between super-resolution quality
and inference latency for resource-limited scenarios.

In summary, the main contributions of this paper are as follows:

• We propose an efficient and high-accuracy SR model RepECN to offer fast speed and
high-quality image reconstruction capabilities using the Transformer-like stage-to-
block design paradigm.

• To further improve performance, we employ a large kernel Conv module inspired by
ConvNeXt and an Asymmetric Re-Parameterization technique, which is proven to
perform better than other symmetric square Re-Parameterization techniques.

• To save parameters and maintain reconstruction performance, we propose a novel im-
age reconstruction module based on nearest-neighbor interpolation and pixel attention.

• Extensive experimental results show that our RepECN can achieve 2.5∼5× faster
inference than the state-of-the-art ViT-based SR model with better or competitive
super-resolving performance.

2. Related Work
2.1. CNN-Based Efficient SR

FSRCNN [2] uses upsampling at the end of the model and optimizes the width and depth
of convolutional layers from the pioneering model SRCNN [1]. However, the performance
is not competitive nowadays. Inspired by residual learning, VDSR [23] and EDSR [24] were
proposed to allow deeper networks and avoid gradient disappearance and degradation
problems. Later, a series of SR methods proposed by increasing the depth and width of the
network (e.g., RCAN [25], RDN [26]) achieved state-of-the-art (SOTA) performance. However,
huge Multiply-Accumulates (MACs) and parameters limit their deployment on hardware-
limited platforms. To solve this problem, some SR methods [19–21,27] focus on improving
efficiency. IDN [19] and IMDN [20] use a channel-splitting strategy to reduce computational
complexity with redundant parameters. Luo et al. [21] utilize the proposed lattice block
to combine residual blocks and introduce a network LatticeNet for fast and accurate SR.
MIPN [27] polymerizes multi-scale image features extracted by convolutions with different
kernel sizes. The MAI 2021 Challenge [28] brings some extremely lightweight model
works [29,30] with real-time inference latency. However, most are optimized for specific
NPU mobile platforms, while the SR performance is insufficient. Wu et al. [16] use a
neural architecture search (NAS) framework with adaptive SR blocks to find an appropriate
model to achieve real-time SR inference. However, it needs to retrain the model when the
environment changes, which cannot be used on new devices directly. Unlike these methods
that mainly focus on efficiency, we aim at the trade-off of latency and accuracy.

2.2. Transformer-Based Efficient SR

Dosovitskiy et al. [31] firstly applied a vision transformer to image recognition. Since
then, high-accuracy image SR methods based on transformers became popular. IPT [3] uses
a pre-trained vanilla Vision transformer (ViT) on the ImageNet dataset. SwinIR [4] brings
Swin Transformer [32] to image restoration tasks and achieves state-of-the-art performance.
However, having fewer parameters and MACs does not necessarily result in faster infer-
ence latency because other factors, such as memory access cost and degree of parallelism,
can also affect latency. The Transformer-based methods suffer from time-consuming and
memory-intensive operations, including quadratic-complexity Multi-Head Self-Attention
(MHSA) and inefficient non-parallelized window partition. Therefore, some works fo-
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cus on designing lightweight Transformer-based methods [10,33,34]. A2N [33] obtains
lightweight by studying the effectiveness of the attention mechanism. LBNet [10] uses a
hybrid network of CNN and Transformer to build an efficient model. SMN [34] simplifies
MHSA by separating spatial modulation from channel aggregation, hence making the
long-range interaction lightweight. However, there is still potential for improvement in
terms of accuracy.

2.3. Large Kernel ConvNet

After the introduction of VGG [18], large kernel ConvNets lost popularity due to
the higher number of parameters and MACs they require, which is not appropriate for
lightweight model designs. However, large kernel convolutions have regained their im-
portance with the development of novel efficient techniques and structures such as trans-
formers and MLPs. Then, ConvMixer [35], ConvNeXt [36], and RepLKNet [37] utilize the
large kernel depth-wise convolutions to redesign ConvNet, which achieve competitive
performance compared to Transformers. In addition, LKASR [38] also explores the possibil-
ity of using a large kernel for lightweight models in the image SR task. However, there is
still potential for improvement in terms of SR performance. In this paper, we explore the
combination of large kernel convolution and the Structural Re-parameterization technique
to further improve performance without a computational cost at the inference phase.

2.4. Structural Re-Parameterization

Structural Re-parameterization [39–41] equivalently converts model structures via
transforming the parameters between training and inference time. These structures en-
hance the off-the-shelf models without modification of the CNN architecture. Specifically,
Ding et al. [39] improve the performance without any inference-time costs by using Asym-
metric Convolutional Block (ACB). ACB uses 1D asymmetric convolutions to strengthen
the square convolution kernels within a single convolution block. It also uses batch normal-
izations (BN) [42] in training time to reduce overfitting and accelerate the training process
on high-level vision tasks. Besides, Ding et al. [40] designs a more complex version (DBB)
that utilizes the symmetric square kernel in the branch during training. DBB performs
better in high-level tasks but worse in SR tasks than ACB. RepSR [17] and RMBN [43] use
the variants of DBB on VGG-like CNN for SR. However, the SR quality of RepSR is much
lower than Transformer-based models. RepSR also introduces the artifacts problem when
using BN in a VGG-like SR model. This paper explores the usage of asymmetric structural
re-parameterization with BN on large kernel convolutions for image SR.

3. Methods

In this section, we first outline the architecture of the proposed Efficient Residual
ConvNet with structural Re-parameterization (RepECN) and then introduce the ConvNet
Stages (CNS), Re-Parameterization ConvNet Blocks (RepCNB), and the lightweight upsam-
pling module.

3.1. Network Architecture

We leverage the high-performance, Transformer-like stage-to-block design paradigm
and lower computation cost of a pure convolution structure to explore the efficient and
high-accuracy network for image super-resolution. As shown in Figure 2, RepECN mainly
consists of three modules: shallow feature extraction, deep feature extraction, and high-
quality image reconstruction. Different demands of the network sizes employ the same
structure, while only different in the number of CNS and backbone channels. The network
should also be doing well on other tasks of image resolution.
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Figure 2. The architecture of the Efficient Residual ConvNet with structural Re-parameterization
(RepECN).

3.1.1. Shallow and Deep Feature Extraction

Given a low-resolution (LR) image input ILR ∈ RH×W×Cin (H, W, and Cin are the
numbers of the LR image height, width, and input channels, respectively), we use ASF(·) to
denote an ACB with a 3× 3 kernel size. The corresponding shallow feature O0 ∈ RH×W×C

is extracted as
O0 = ASF(ILR), (1)

where C is the number of output feature channels. Such ACB enhances the standard
square-kernel convolution layer. So, it provides a better and simple way to map the
input low-dimensional image space to a high-dimensional feature space than conventional
shallow feature extraction. In the next module, we extract the deep feature ODF ∈ RH×W×C

from O0 as
ODF = FDF(O0), (2)

where FDF(·) denotes the entire deep feature extraction module, which consists of K
ConvNet Stages (CNS), a LayerNorm (LN), and an ACB. Specific for Equation (2), the in-
termediate outputs {O1, O2, . . . , OK} of CNS and the final output OF of the entire feature
extraction module are calculated stage-by-stage as

Oi = FCNSi (Oi−1), i = 1, 2, . . . , K,

ODF = ADF(LN(OK))

OF = ODF + O0,

(3)

where FCNSi is the i-th CNS and ADF is an ACB with a 3× 3 kernel at the end of the module.
Such an ACB could bring the inductive bias into the depth-wise ConvNet-based network,
which helps aggregate shallow and deep features. Meanwhile, the long skip connection
aggregates the shallow and deep features, bringing the low-frequency information directly
to the next module.

3.1.2. Image Reconstruction

The input LR image has the most primitive information, which should guide the
reconstruction output. Additionally, bicubic interpolation can upsample the LR image
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directly and maintain the original information. Considering that, we reconstruct the super-
resolution (SR) image ISR as

ISR = UF(OF) + ULR(ILR), (4)

where UF(·) and ULR(·) denote the upsampling of the extracted feature and the bicubic
interpolation of the LR image, respectively. The benefit of the aggregation is that the
backbone network could focus on learning the high-frequency information of tuning the
conventional upsampling of the LR image to a high-qualitative SR image. The upsampling
of the extracted feature is implemented by nearest-neighbor interpolation, ACBs, and pixel
attention (PA) described in Section 3.3.

3.1.3. Loss Function

The parameters of our network are optimized by smoothL1 loss

L =

{
0.5× ‖ISR − IHR‖2, i f ‖ISR − IHR‖1 < 1

‖ISR − IHR‖1 − 0.5, otherwise
(5)

where IHR denotes the corresponding ground-truth HR image, and ISR is the output of
RepECN that takes ILR as the input. The smoothL1 loss converges faster than the naive L1
pixel loss.

3.2. ConvNet Stages

The ConvNet Stages (CNS) is a residual block consisting of six Re-Parameterization
ConvNet Blocks (RepCNBs), a LayerNorm, and an ACB, as shown in Figure 2a. Each CNS
of Equation (3) takes a feature as the input. For the specific i-th CNS, we use Oi,0, taking
the place of input Oi−1 for convenience. Inside such CNS, we obtain intermediate outputs
{Oi,1, Oi,2, . . . , Oi,L} by L RepCNBs as

Oi,L = FRepCNBi,j(Oi,j−1), j = 1, 2, . . . , L, (6)

where FRepCNBi,j(·) denotes the j-th RepCNB. Then, a RepCNB is added before the residual
connect. The total output of i-th CNS is formulated as

Oi = FACBi (LN(Oi,L)) + Oi,0, (7)

where FACBi (·) is the ACB at the end of the i-th CNS. The ACB could be treated as a
standard convolution, while the RepCNB consists of depth-wise and point-wise convo-
lutions. The standard convolution with a small and spatially invariant filter brings a
different vision, which benefits the translational equivariance. In addition, the residual
connection aggregates different hierarchies of features to let the block fit more complex
feature mappings.

3.2.1. Re-Parameterization ConvNet Blocks

The Re-Parameterization ConvNet Blocks (RepCNB) are based on a residual block
inspired by the ConvNeXt [36]. The main difference is that we use ACB to enhance the
square convolution kernel inside RepCNB. As shown in Figure 2b, given an input with x
channels, a RepCNB first uses a depth-wise ACB with a 7× 7 kernel to extract a feature with
the x channels. A layer normalization (LN) layer is added behind it. Then, two point-wise
convolutional layers are added to learn features across the channel before the residual
connection, with GELU non-linearity between them. The first point-wise layer accepts the
output of LN with an x channel as the input and obtains a feature with 4x channels. The
corresponding second point-wise layer takes the feature above as input and obtains the
final output with x channels.
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3.2.2. Asymmetric Convolutional Block

An asymmetric Convolutional Block (ACB) is a block using the structural re-para-
meterization technique [39], the same as a standard convolution at inference time while
different at training time. Figure 3 compares standard convolution (Conv) and ACB with
a kernel size of 3× 3. The ACB or Conv takes a feature IACB as the input. At training
time, ACB uses three no-bias convolutional layers {Fconv1 , Fconv2 , Fconv3}with kernel sizes of
3× 3, 1× 3, and 3× 1, respectively. After batch normalization (BN) for each convolutional
layer above, ACB obtains the output OACB by merging three outputs by element-wise
summation as

OACB =
3

∑
c=1

((Fconvc(IACB)− µc)
γc

σc
+ βc) (8)

where µc, σc, γc, and βc denote the channel-wise mean, standard deviation, learned scaling
factor, and bias term, respectively, while ∑3

c=1 means element-wise summation for several
features. At inference time, ACB first merges channel-wise BN with Conv kernel by BN
fusion and then merges three Conv by branch fusion as

OACB =
3

∑
c=1

(IACB × (
γc

σc
Kc)−

µcγc

σc
+ βc)

= IACB ×
3

∑
c=1

γc

σc
Kc −

3

∑
c=1

(
µcγc

σc
+ βc),

Kin f =
3

∑
c=1

γc

σc
Kc, bin f =

3

∑
c=1

(
µcγc

σc
+ βc)

(9)

where Kc denotes the kernel of no-bias convolutional layer Fconvc . The ACB is finally
converted to a standard convolutional layer with kernel Kin f and bias bin f .

Asymmetric Convolution Block

Training-Time

fusion fusion fusion

Inference-Time

Kernels

Input

Output
equal

Standard 
Convolution

BN BN BN

Figure 3. The comparison between Asymmetric Convolutional Block (ACB) and standard Convolution.

3.3. Lightweight Upsampling Module

As shown in Figure 4, we choose the nearest-neighbor interpolation to upsample the
input feature, followed by an ACB. Rather than sub-pixel convolution like pixel shuffle,
such upsampling choice saves the parameter number without performance degradation.
We first use an upsampling operation to transfer the feature OF from the entire feature
extraction module in Equation (3). The upsampling operation consists of several pairs of
nearest-neighbor interpolation and ACB. Each pair only upsamples on scale factor 2 or
3, limiting the whole module to accept scale factor 2N or 3. The module should support
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varying scale factors by adopting the interpolation scale factor. Then, inspired by PAN [44],
we employ a pixel attention (PA) layer and an ACB to reconstruct the SR feature. The PA
can enhance the reconstruction and improve the SR quality. Finally, a second ACB layer
generates the output UF(OF) of the upsampling module in Equation (4).

Lightweight Upsampling Module
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Figure 4. Illustration of the proposed upsampling module.

4. Experiments

This section uses several commonly used benchmark datasets to compare the proposed
network with effective and state-of-the-art SISR models. In addition, some ablation studies
are used to analyze the rationality of our proposed modules.

4.1. Experimental Settings
4.1.1. Datasets and Indicators

We train the proposed network using the DIV2K dataset [45] while validating it on the
Set5 [46] dataset. The 800 training and 100 validation image pairs in DIV2K are used as the
training dataset. The indicators of evaluation for SISR performance are peak signal-to-noise
ratio (PSNR) [47] and structural similarity index (SSIM) [48] on benchmark datasets Set5,
Set14 [49], B100 [50], Urban100 [51], and Manga109 [52]. We use MATLAB to calculate
them on the Y channel of the YCbCr space converted from the RGB space of the image.

4.1.2. Training Details

We group the efficient models into three level sizes according to the parameter number.
The parameter number of extremely tiny, small, and base size is smaller than 100 K, 500 K,
and 1500 K, respectively. The settings of the training hyperparameters for our RepECN-T
(tiny), RepECN-S (small), and RepECN (base) models are described in Table 1. The RepCNB
and channel in the table denote the RepCNB number in each CNS and the channel number
of each intermediate feature, while the patch denotes the size of RGB patches cropped from
LR images as the input. The total training epochs of RepECN-T, RepECN-S, and RepECN
are set to 3000, 2000, and 1500, respectively. Each minibatch comprises 32 patches for
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training all three models. The learning rate is set to 2 × 10−4 and reduced by half at
[ 1

2 , 4
5 , 9

10 , 19
20 ] of the total epoch.

Table 1. Hyperparameter settings of different-sized RepECN.

Model CNS RepCNB Channel Patch Epoch

RepECN-T 2 6 24 64× 64 3000
RepECN-S 3 6 42 64× 64 2000
RepECN 5 6 60 48× 48 1500

The latency of inference on the CPU and GPU platform are measured for generating
a 720P SR image (the width and height are 1280× 720) on an Intel Xeon Gold 5118 CPU
(12 cores, 2.30 GHz, and 6 load-data threads) and Nvidia Titan V (12 GB of HBM2 memory
and 5120 CUDA cores) GPU acceleration, respectively. Each latency takes an average of
50 running results. The multiply-accumulates (MACs) are also measured for generating a
720P SR image (1280× 720).

4.2. Experimental Results
Performance and Latency Comparison

To show the effectiveness of our RepECN fairly, we chose the state-of-the-art Transformer-
based models with similar parameter numbers, which are trained on the same DIV2K
dataset. Table 2 shows the quantitative performance comparisons between the proposed
RepECN and state-of-the-art Transformer-based models: SwinIR [4], ESRT [9], and LBNet [10].
As for the models with parameter numbers less than 1500 K, RepECN achieves the best
or second-best performance on five benchmark datasets for three standard scale factors
with much less latency. Specifically, compared to the state-of-the-art SwinIR-S with similar
PSNR/SSIM, RepECN only needs one-fifth of the latency for a scale factor 2 on the platform
with GPU. Especially, LBNet and ESRT cannot do inference for a scale factor of 2 on our
platform with GPU because of memory resource limitations.

Table 2. The performances of PSNR (dB) and SSIMs on standard benchmark datasets for our RepECN
models trained on DIV2K compared with Vision Transformer-based models. The best and second-best
SR performances are marked in red and blue, respectively. Blanked entries denote unavailable.

#Latency Set5 Set14 BSD100 Urban100 Manga109
Methods Scale #Params #MACs

GPU(ms) CPU(s) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LBNet-T ×2 407K 22.0 G - 241.29 37.95 0.9602 33.53 0.9168 32.07 0.8983 31.91 0.9253 38.59 0.9768
ESRT ×2 677K 161.8 G - 55.00 38.03 0.9600 33.75 0.9184 32.25 0.9001 32.58 0.9318 39.12 0.9774
LBNet ×2 731K 153.2 G - 314.27 38.05 0.9607 33.65 0.9177 32.16 0.8994 32.30 0.9291 38.88 0.9775

RepECN-S (Ours) ×2 411K 117.5 G 145.2 2.96 38.10 0.9607 33.68 0.9187 32.24 0.9004 32.30 0.9301 38.76 0.9773
SwinIR-S ×2 878K 195.6 G 1074.3 13.61 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783

RepECN (Ours) ×2 1262K 336.5 G 242.6 6.66 38.20 0.9612 33.85 0.9199 32.32 0.9013 32.68 0.9337 39.11 0.9777

LBNet-T ×3 407K 22.0 G 1551.5 49.80 34.33 0.9264 30.25 0.8402 29.05 0.8042 28.06 0.8485 33.48 0.9433
ESRT ×3 770K 82.1 G 372.0 12.62 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
LBNet ×3 736K 68.4 G 2099.6 65.25 34.47 0.9277 30.38 0.8417 29.13 0.8061 28.42 0.8559 33.82 0.9460

RepECN-S (Ours) ×3 411K 69.9 G 70.3 1.38 34.47 0.9277 30.41 0.8439 29.15 0.8064 28.30 0.8551 33.72 0.9456
SwinIR-S ×3 886K 87.2 G 323.8 5.10 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478

RepECN (Ours) ×3 1262K 185.1 G 111.4 2.82 34.67 0.9291 30.48 0.8459 29.25 0.8089 28.65 0.8628 34.09 0.9482

LBNet-T ×4 410 K 12.6 G 567.5 18.29 32.08 0.8933 28.54 0.7802 27.54 0.7358 26.00 0.7819 30.37 0.9059
ESRT ×4 751K 58.6 G 135.7 4.92 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
LBNet ×4 742K 38.9 G 714.6 21.83 32.29 0.8960 28.68 0.7832 27.62 0.7382 26.27 0.7906 30.76 0.9111

RepECN-S (Ours) ×4 427K 57 G 45.7 1.03 32.32 0.8964 28.69 0.7833 27.62 0.7375 26.19 0.7889 30.54 0.9099
SwinIR-S ×4 897K 49.6 G 176.1 2.97 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151

RepECN (Ours) ×4 1295K 140 G 72.0 1.98 32.48 0.8985 28.76 0.7856 27.67 0.7395 26.45 0.7971 30.92 0.9139

To show the high SR quality of our RepECN structure, we chose the current CNN-
based models in different sizes of parameter numbers. Specially, the training dataset of
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ShuffleMixer and LAPAR is DF2K (a merged dataset with DIV2K [45] and Flickr2K [53]),
which contains much more image pairs. Table 3 shows the quantitative performance
comparisons between the proposed RepECN and CNN-based models: SRCNN [1], FSR-
CNN [2], ShuffleMixer [13], IDN [19], IMDN [20], LatticeNet [21], LapSRN [22], EDSR [24],
DRRN [54], and LAPAR [55]. Our RepECN family achieves state-of-the-art performance
in all tiny, small, and base sizes. Specifically, RepECN-T (less than 100 K) outperforms
ShuffleMixer-Tiny with a 0.45 dB gain on Urban100 (2×). RepECN-S (less than 500 K)
outperforms ShuffleMixer with a 0.41 dB gain on Urban100 (2×) using similar parameter
numbers. In addition, RepECN-S also outperforms LatticeNet with a 0.06 dB gain on Ur-
ban100 (2×) using about half the parameter numbers. It proves that our design of ConvNet
outperforms all of the previous designs. In conclusion, our model achieves state-of-the-art
performance with a better trade-off between inference speed and performance.

Table 3. The performances of PSNR (dB) and SSIMs on standard benchmark datasets for CNN-
based models. The best and second-best SR performances are marked in red and blue, respectively.
Blanked entries denote unavailable.

Set5 Set14 BSD100 Urban100 Manga109
Methods Scale Dataset #Params #MACs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 - - - 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN ×2 T91 69K 63.7G 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

FSRCNN ×2 T91 25K 15.1G 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
ShuffleMixer-Tiny ×2 DIV2K+Flickr2K 108K 25G 37.85 0.9600 33.33 0.9153 31.99 0.8972 31.22 0.9183 38.25 0.9761
RepECN-T (Ours) ×2 DIV2K 104K 31.6G 37.90 0.9601 33.41 0.9164 32.09 0.8984 31.67 0.9239 38.30 0.9763

LapSRN ×2 DIV2K 435K 146.0G 37.52 0.9591 32.99 0.9124 31.80 0.8952 30.41 0.9103 37.27 0.9740
DRRN ×2 DIV2K 298K 6.8T 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.88 0.9749
IDN ×2 DIV2K 553K 174.1G 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 38.01 0.9749

EDSR-baseline ×2 DIV2K 1370K 316.2G 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.54 0.9769
IMDN ×2 DIV2K 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LAPAR-A ×2 DIV2K+Flickr2K 548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
ShuffleMixer ×2 DIV2K+Flickr2K 394K 91G 38.01 0.9606 33.63 0.9180 32.17 0.8995 31.89 0.9257 38.83 0.9774

LatticeNet ×2 DIV2K 756K 169.5G 38.06 0.9607 33.70 0.9187 32.19 0.8999 32.24 0.9288 38.93 0.9774
RepECN-S (Ours) ×2 DIV2K 411K 117.5G 38.10 0.9607 33.68 0.9187 32.24 0.9004 32.30 0.9301 38.76 0.9773
RepECN (Ours) ×2 DIV2K 1262K 336.5G 38.20 0.9612 33.85 0.9199 32.32 0.9013 32.68 0.9337 39.11 0.9777

Bicubic ×3 - - - 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
SRCNN ×3 T91 69K 63.7G 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117

FSRCNN ×3 T91 25K 13.6G 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210
ShuffleMixer-Tiny ×3 DIV2K+Flickr2K 114K 12G 34.07 0.9250 30.14 0.8382 28.94 0.8009 27.54 0.8373 33.03 0.9400
RepECN-T (Ours) ×3 DIV2K 104K 19.9G 34.20 0.9259 30.25 0.8405 29.03 0.8031 27.86 0.8453 33.13 0.9419

LapSRN ×3 DIV2K 435K 98.6G 33.81 0.9220 29.79 0.8325 28.82 0.7980 27.07 0.8275 32.21 0.9350
DRRN ×3 DIV2K 298K 6.8T 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.71 0.9379
IDN ×3 DIV2K 553K 105.6G 34.11 0.9253 29.99 0.8354 28.95 0.8013 27.42 0.8359 32.71 0.9381

EDSR-baseline ×3 DIV2K 1555K 160.1G 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439
IMDN ×3 DIV2K 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LAPAR-A ×3 DIV2K+Flickr2K 544K 114.0G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
ShuffleMixer ×3 DIV2K+Flickr2K 415K 43G 34.40 0.9272 30.37 0.8423 29.12 0.8051 28.08 0.8498 33.69 0.9448

LatticeNet ×3 DIV2K 765K 76.3G 34.40 0.9272 30.32 0.8416 29.09 0.8047 28.19 0.8511 33.63 0.9442
RepECN-S (Ours) ×3 DIV2K 411K 69.9G 34.47 0.9277 30.41 0.8439 29.15 0.8064 28.30 0.8551 33.72 0.9456
RepECN (Ours) ×3 DIV2K 1262K 185.1G 34.67 0.9291 30.48 0.8459 29.25 0.8089 28.65 0.8628 34.09 0.9482

Bicubic ×4 - - - 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN ×4 T91 69K 63.7G 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

FSRCNN ×4 T91 25K 13.6G 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
ShuffleMixer-Tiny ×4 DIV2K+Flickr2K 113K 8G 31.88 0.8912 28.46 0.7779 27.45 0.7313 25.66 0.7690 29.96 0.9006
RepECN-T (Ours) ×4 DIV2K 110K 17.1G 32.05 0.8930 28.52 0.7791 27.52 0.7335 25.84 0.7772 30.09 0.9038

LapSRN ×4 DIV2K 870K 182.4G 31.54 0.8852 28.09 0.7700 27.32 0.7275 25.21 0.7562 29.09 0.8900
DRRN ×4 DIV2K 298K 6.8T 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.45 0.8946
IDN ×4 DIV2K 553K 81.9G 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 29.41 0.8942

EDSR-baseline ×4 DIV2K 1518K 114.2G 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067
IMDN ×4 DIV2K 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

LAPAR-A ×4 DIV2K+Flickr2K 659K 94.0G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
ShuffleMixer ×4 DIV2K+Flickr2K 411K 28G 32.21 0.8953 28.66 0.7827 27.61 0.7366 26.08 0.7835 30.65 0.9093

LatticeNet ×4 DIV2K 777K 43.6G 32.18 0.8943 28.61 0.7812 27.56 0.7353 26.13 0.7843 30.54 0.9075
RepECN-S (Ours) ×4 DIV2K 427K 57G 32.32 0.8964 28.69 0.7833 27.62 0.7375 26.19 0.7889 30.54 0.9099
RepECN (Ours) ×4 DIV2K 1295K 140G 32.48 0.8985 28.76 0.7856 27.67 0.7395 26.45 0.7971 30.92 0.9139
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To evaluate our RepECN qualitatively, we also show visual comparisons in Figure 5,
including three different sizes of RepECN and the corresponding size state-of-the-art
models for scale factor 4 SISR on benchmark images. All three sizes of RepECN can
restore higher frequency detailed textures and alleviate the blurring artifacts with more
visually pleasing images. In contrast, most other models produce incorrect textures with
blurry artifacts. Furthermore, we evaluate our model on real LR images from a historical
dataset [22], as shown in Figure 6. RepECN can generate smoother details with a clearer
structure than other models. This indicates the high effectiveness of our proposed RepECN.

Urban100 (4×): img076

HR

EDSR-baseline

IMDN

ESRT

LBNet

LatticeNet

SwinIR-S

RepECN (Our)

Urban100 (4×): img092

HR

EDSR-baseline

IMDN

ESRT

LBNet

LatticeNet

SwinIR-S

RepECN (Our)

Urban100 (4×): img093

HR

EDSR-baseline

IMDN

ESRT

LBNet

LatticeNet

SwinIR-S

RepECN (Our)

Set14 (4×): ppt3

HR

LapSRN

DRRN

LBNet

ShuffleMixer

RepECN-S
(Our)

Urban100 (4×): img074

HR

Bicubic

SRCNN

FSRCNN

ShuffleMixer-
Tiny

RepECN-T
(Our)

Figure 5. Visual qualitative comparison of the efficient state-of-the-art models (e.g., SwinIR-S [4],
ESRT [9], LBNet [10], IMDN [20], LatticeNet [21], EDSR-baseline [24]) on Set14 [49] and Urban100 [51]
benchmark datasets for 4× single image super-resolution (SISR). Zoom in for the best view.
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Historical (3×): img004

Bicubic

CARN

EDSR

LatticeNet

LBNet

RepECN (Our)

Figure 6. Visual qualitative comparisons on a real-world historical image dataset for 3× SR. The pro-
posed ALAN generates a cleaner view than other methods (e.g., LBNet [10], LatticeNet [21], EDSR [24],
CARN[56]) with fewer artifacts.

4.3. Ablation Study and Analysis

For the ablation study, we train RepECN family models on DIV2K [45] with 1000 epochs
for 2× SISR in Sections 4.3.1, 4.3.3 and 4.3.4, progressively adding useful elements to con-
struct RepECN-T. Then, we train RepECN with CNSs, RepCNBs, channels, and epochs
setting to 4, 6, 60, and 1500 epochs for 2× SISR as the baseline model and modify the first
three hyperparameters individually in Section 4.3.5. In addition, we train FSRCNN variants
on DIV2K [45] with 3000 epochs for 2× SISR in Section 4.3.2. In all sections, the performance
comparison uses the PSNR on benchmark dataset Set5 [46].

4.3.1. Impact of Normalization in CNS and ACB

To explore the effect of layer normalization (LN) in each CNS, we remove the head
layer in CNS and batch normalization (BN) inside ACB to reduce their effects. Table 4
firstly shows that LN is necessary for better performance, as the SR quality of RepECN-T-A
is lower than RepECN-T-B and RepECN-T-C. Then, the table illustrates that LayerNorm
before the residual connection in CNS further improves the PSNR than LN after the
residual connection.

Table 4. Ablation study on the several designs of RepECN, including layer normalization in CNS,
batch normalization in ACB, head layer in CNS, and upsampling design. The best SR performances
are marked in red.

Design Name LayerNorm BN in ACB Head in CNS Upsampling ParamsPSNR

RepECN-T-A 7 75K 37.78
RepECN-T-B After Connect 7 75K 37.80
RepECN-T-C Before Connect 7

7
75K 37.81

RepECN-T-D 3 7 75K 37.82
RepECN-T-E Three 3× 3 ACB

Nearest (PA)

99K 37.84
RepECN-T One 3× 3 ACB Nearest (PA) 104K 37.86

RepECN-T-F Nearest (no PA) 103K 37.84
RepECN-T-G

Before Connect
3

One 3× 3 ACB Pixel Shuffle 114K 37.83

In addition, we compare using batch normalization (BN) inside ACB. The no-BN
variant RepECN-T-C skips normalization and generates a bias for each convolutional layer
in ACB during training. When switching to inference, add the weight and bias of three con-
volutional layers in ACB to the single convolutional layer used as the inference ACB layer.
Table 4 shows that the normalization inside ACB is important as RepECN-T-D improves
the PSNR performance by 0.01 dB. Apart from that, the training with normalization in ACB
will not converge when removing the residual connection of LR input to the output while
using the pixel shuffle upsampling.
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4.3.2. Impact of Structural Re-Parameterization

To demonstrate the effectiveness of structural re-parameterization for image super-
resolution (SR), we trained multiple variants of FSRCNN, a model with ample room for
improvement. We first replace the upsampling module of FSRCNN with our proposed
lightweight upsampling module as a variant FSRCNN-N, which improves the PSNR per-
formance by 0.31. Then, we use a symmetric square kernel structural re-parameterization
technique DBB [40] for each ConvNet layer in FSRCNN-N, a similar but more complex
technique as used in RepSR [17]. FSRCNN-N-DBB can improve the SR performance by a
0.16 dB gain on PSNR. Finally, we replace the DBB with the asymmetric kernel structural
re-parameterization technique ACB. FSRCNN-N-ACB further improves the SR quality by
a 0.09 dB gain on PSNR. In conclusion, structural re-parameterization can improve the
performance of CNN-based SR models, while the asymmetric kernel technique is better
than a symmetric square one.

4.3.3. Impact of the Head Layer in CNS

The effect of using a head layer (the last ACB before the residual connection) in CNS
is shown in Table 4. The base version RepECN-T is designed as one 3× 3 ACB. With this
version, the performance gains on PSNR by 0.4 dB. Furthermore, the table shows that one
3× 3 ACB is better than three 3× 3 ACB (whose channel number of the second layer is
one-fourth of the input and output channel number). RepECN-T-E saves a few parameters
(5K) with 0.02 dB performance degradation on PSNR compared to RepECN-T. To achieve
higher performance, we finally choose to use one 3× 3 ACB as the head layer in CNS.

4.3.4. Impact of Nearest-Neighbor Interpolation with Pixel Attention in
Upsampling Module

Tables 4 and 5 show the performance improvement of the proposed upsampling
module in Section 3.3 with pixel attention (PA). In Table 4, The pixel shuffle of the variant
RepECN-T-G is the same as the image reconstruction module in SwinIR [4]. The nearest-
neighbor without PA of variant RepECN-T-F removes the PA block from the proposed
upsampling module. The table shows that the nearest-neighbor interpolation saves param-
eters with performance improvement, and the PA is necessary, as it improves the PSNR by
0.02 dB. Table 5 shows that the proposed upsampling module can significantly improve the
performance of FSRCNN by a 0.31 dB gain on PSNR.

Table 5. Ablation study on the structural re-parameterization and upsampling design for the simple
3× 3 ConvNet model FSRCNN to prove the effectiveness. The best SR performances are marked
in red.

Design Name Upsampling Re-Parameterization PSNR

FSRCNN Deconvolution 7 37.00
FSRCNN-N Nearest (PA) 7 37.31

FSRCNN-N-DBB Nearest (PA) DBB 37.47
FSRCNN-N-ACB Nearest (PA) ACB 37.56

4.3.5. Impact of CNS, RepCNB, and Channel Numbers

The effects of CNS numbers, RepCNB numbers in each CNS, and channel numbers
of each layer are shown in Figure 7, respectively. We observed that the performance is
positively correlated with such three hyper-parameters. In addition, as the number of
settings increases, the performance growth tends to flatten out. As a result, it is a trade-off
between the performance and the model’s size. To achieve high performance and fast
inference, we choose the point with the maximum change in slope as the setting. Especially,
the RepCNB number of each CNS is fixed to 6, as the performance is more sensitive when
reducing it than the others.
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Figure 7. Ablation study on different number settings of the RepECN structure. The illustrations are
tested on Set5 [46] for 2× SISR.

5. Conclusions and Future Works

In this paper, we propose a pure CNN-based SR model, Efficient Residual ConvNet
with structural Re-parameterization (RepECN), with fast speed and high quality. The model
contains three modules: shallow feature extraction, deep feature extraction, and image
reconstruction. We borrow the stage-to-block hierarchical design of the ViT-based model
to keep the SOTA performance using ConvNet. Specifically, we proposed the ConvNet
Stages (CNS) for deep feature extraction. Each CNS comprises six Parameterization Con-
vNet Blocks (RepCNB), a basic ACB, a LayerNorm, and a residual connection. We also
introduce a lightweight upsampling module containing nearest-neighbor interpolation
and pixel attention, which saves parameters without performance degradation. We eval-
uate the proposed RepECN for different sizes on commonly used benchmark datasets.
Experiments show that RepECN achieves state-of-the-art performance while providing
much faster inference than Transformer-based models and much better performance than
CNN-based models.
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