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Abstract: The proliferation and great variety of low-cost air quality (AQ) sensors, combined with
their flexibility and energy efficiency, gives an opportunity to integrate them into Wireless Sensor
Networks (WSN). However, with these sensors, AQ monitoring poses a significant challenge, as
the data collection and analysis process is complex and prone to errors. Although these sensors
do not meet the performance requirements for reference regulatory-equivalent monitoring, they
can provide informative measurements and more if we can adjust and add further processing to
their raw measurements. Therefore, the integration of these sensors aims to facilitate real-time
monitoring and achieve a higher spatial and temporal sampling density, particularly in urban areas,
where there is a strong interest in providing AQ surveillance services since there is an increase
in respiratory/allergic issues among the population. Leveraging a network of low-cost sensors,
supported by 5G communications in combination with Artificial Intelligence (AI) techniques (using
Convolutional and Deep Neural Networks (CNN and DNN)) to predict 24-h-ahead readings is
the goal of this article in order to be able to provide early warnings to the populations of hazards
areas. We have evaluated four different neural network architectures: Multi-Linear prediction (with a
dense Multi-Linear Neural Network (NN)), Multi-Dense network prediction, Multi-Convolutional
network prediction, and Multi-Long Short-Term Memory (LSTM) network prediction. To perform the
training of the prediction of the readings, we have prepared a significant dataset that is analyzed and
processed for training and testing, achieving an estimation error for most of the predicted parameters
of around 7.2% on average, with the best option being the Multi-LSTM network in the forthcoming
24 h. It is worth mentioning that some pollutants achieved lower estimation errors, such as CO2 with
0.1%, PM10 with 2.4% (as well as PM2.5 and PM1.0), and NO2 with 6.7%.

Keywords: air pollution; neural networks; low-cost sensors; IoT; WSN; forecasting; artificial
intelligence; LSTM

1. Introduction

Citizens living in cities are constantly facing air pollution levels that are violating
the human health safety thresholds defined by the World Health Organization (WHO) [1].
Based on recent studies issued by Eurostat [2], almost half a million EU residents die every
year due to respiratory diseases in the group of 28 European countries. This reveals a huge
number of deaths due to air quality (AQ) conditions in urban areas. Moreover, more than
90% of citizens are exposed to concentrations of toxic air pollutants above the WHO AQ
Guideline (AQG) [3]. The WHO AQG defines the maximum levels of these pollutants to
which humans should be exposed to avoid diseases and thus protect their health. Moreover,
the problem is even worse when considering that the main part of the population has or
may show respiratory and skin problems or allergies [4].
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These environmental changes, due to urbanization and human impact, have effects
on the atmosphere with three different aspects that are studied in different research fields:
greenhouse gases, chlorofluorinated gases, and pollutants. Pollutants are the most critical
since they are in contact with citizens, which include carbon monoxide (CO), ozone (O3),
nitrogen dioxide (NO2), sulfur dioxide (SO2), as well as particulate matter (PM), with
all of them in cities coming from the combustion of fossil fuels. The most harmful gases,
according to the WHO, that citizens are exposed to in urban environments are PM, CO, O3,
NO2, and SO2 [5]. Table S1, in the Supplementary Materials, lists these air pollutants, with a
short explanation of their effects on human beings as well as the maximum levels proposed
by AQG [3]. In Europe, we must stress that AQ is regulated by Directive 2008/50/EC and
2004/107/CE.

According to these directives, in particular, Directive 2008/50/EC on ambient AQ and
cleaner air for Europe, the number of AQ monitoring points in each urban area should
be at least one per 2 million inhabitants or one per 50,000 km2, where the latter criterion
results in a higher number of monitoring points, but not less than one per area. To fulfill
these rules, an official surveillance AQ monitoring network based on stations responsible
for measuring polluting gases is deployed. In particular, in the Valencian Community
(Spain), this network is operated by the Generalitat Valenciana [6] jointly with City Hall
(for the stations deployed within cities). In particular, the official AQ stations in Valencia
city are made available as open data through the Valencia minute-by-minute dashboard [7].
In Figure 1, some examples of these official AQ monitoring stations are shown, located in
Burjassot and Valencia (Bulevar Sud) in the Valencian Community (Spain).

(a) (b)

Figure 1. Example of official AQ monitoring stations: (a): Burjassot city (Spain) and (b): Valencia city,
Bulevar Sud (Spain).

However, based on this information, the number of monitoring points is very small
for estimating the pollution concentration on a street or in an area close to a citizen to assist
them in their daily walks. This is the main reason that the deployment of low-cost AQ
sensors is required. Moreover, this challenge is exacerbated when the system to address
these problems needs to support city-scale wide-area coverage.

In this scenario, the utilization of 5G technologies, as shown in Figure 2 (with sup-
port to LoRa/Sigfox, WiFi, Bluetooth, Long-Term Evolution (LTE) for machines (LTE-M)
and Narrow-Band IoT (NB-IoT)), along with Artificial Intelligence (AI) methods, in con-
junction with the Internet of Things (IoT) have become crucial technologies to achieve
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these goals. Notice that in 2022, Sigfox went into bankruptcy proceedings, and Unabiz has
taken control at the time of writing. Thus, by utilizing Wireless Sensor Networks (WSN) to
monitor AQ with access to the Internet, under the requirements of low-cost deployments,
a comprehensive system that focuses on the health concerns of citizens can be established.

IoT node

Sensors/
Actuators

Figure 2. Proposal of a generic IoT node for AQ monitoring and its communications support.

Nevertheless, addressing AQ poses a significant challenge as the process of measuring,
analyzing data across various locations is complex and prone to errors [8]. Therefore,
in this article, we present enhancements made to traditional monitoring systems by taking
advantage of existing infrastructures and optimizing them with our bespoke collection
network. This integration incorporates low-cost components to significantly improve the
spatial sampling density, processing raw data with AI techniques and providing a more
comprehensive and detailed view of AQ. The AI-driven proposed framework allows the
prediction of the values of the pollutants up to 24 h ahead to provide the population with
early warning of potential exposures to pollutants.

The rest of the paper is structured as follows. Section 2 introduces a thorough revision
of the state-of-the-art and related work regarding AQ sensors, solutions, and similar results
or research projects. Section 3 shows the architecture of the proposed system for collecting
measurements from low-cost sensors. Section 4 focuses on the explanation of the use
cases envisaged for the AI-IoT system. Section 5 describes the process of predicting raw
measurements supported by AI algorithms to improve the performance of the IoT system.
Finally, Section 6 concludes the paper and describes future work.

2. State of the Art

As seen in the previous section, increased awareness of AQ due to its health effects
has led to a boom in low-cost sensors to increase AQ monitoring density. Due to their ease
of installation and low power consumption, they are interesting in terms of integration
into WSN.

Since there are many types and models of low-cost AQ sensors, it is difficult to review
all of them in detail. Moreover, this market is highly dynamic. These low-cost AQ sensors
can measure pollutants, such as the ones mentioned before, along with temperature (T),
atmospheric pressure (AP), and relative humidity (RH). Figure 3 shows examples of these
low-cost sensors; from left to right, (MiCS5524) [9], PM (Plantower PM2.5) [10], and/or
low-cost CO2 sensors (MHZ19B) [11], that can measure PM (PM2.5, PM10) and gases (O3,
total nitrogen oxides (NOx) (nitrogen monoxide (NO), nitrogen dioxide (NO2)), SO2, CO2,
and CH4.
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(a) (b) (c)

Figure 3. Examples of low-cost sensors. From left to right, air quality (MiCS5524) [9], PM (Plantower
PM2.5) [10], and/or low-cost CO2 sensor (MHZ19B) [11]. (a) AQ (MiCS5524); (b) PM2.5 (Plantower);
(c) CO2 (MHZ19B).

Also, these low-cost sensors are embedded in ad hoc modules, such as the ones
shown in [12,13], known as Real-time Affordable Multi-Pollutant (RAMP) sensor packages,
that can measure CO, NO2, O3, and CO2 components, making them easier to use and
therefore more attractive. Other commercial alternatives to these modules and their main
characteristics, as well as the type of data connection, are shown in Table 1. From all of
these options, we have chosen the module ZPHS01B [14] because it has an attractive set
of already embedded sensors, is ready to use, and provides the largest number of gases
(with support to detect CO2, CO, CH2O, NO2, O3 and TVOC sensors and PM) for AQ
monitoring, as well as the best quality/price ratio. Figure 4 shows a picture of this ZPHS01B
AQ module sensor.

Figure 4. Photo of the low-cost module ZPHS01B AQ sensor board [14] with support to detect PM,
CO, NO2, SO2, O3 and Total Volatile Organic Compounds (TVOCs) sensors.

Table 1. Sensor comparison for AQ.

Module Detected Gases and PM Connectivity

SDS011 [15] PM, T, HR, PA UART
DL-LP8P [16] CO2, T, HR, PA LoRAWAN
MiCS-6814 [17] CO, NO2, C2H5OH, NH3, CH4 I2C, SPI
ZPHS01B [14] PM, CO2, CO, CH2O, O3, NO2, TVOC, T, HR UART

It is worth mentioning that, depending on their operating principle, these sensors are
available in different technologies to react to the presence of different pollutants: electro-
chemicals, metal oxide semiconductors, photoionization detectors, non-dispersive infrared,
and light scattering, among others. A review of the performance of these low-cost sensors
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can be found in [8]. In this study, the Pearson Correlation Coefficient is used to describe
how well the response of these sensors correlates to the reference instruments.

Although these low-cost sensors do not meet the performance requirements in terms of
accuracy and electromagnetic compliance for reference regulatory-equivalent monitoring,
they can provide informative measurements and more if we can adjust and add further
processing to their raw measurements. However, a notable development in this context is
the release of the standard CEN/TS 17660-1:2021 [18], which outlines the criteria speci-
fied by Directive 2008/50/EC for assessing the equivalence of sensor systems employed
in outdoor settings to conventional instruments used for indicative measurements and
objective estimation [8].

In practice, these sensors offer the capability to provide a rough estimate or general
understanding of AQ and enable the identification of areas with high pollution levels.
However, to improve the accuracy of the readings, the measurements obtained from
these sensors can be incorporated into the modeling process alongside other data, such as
measurements of additional pollutants and ambient conditions, such as T and RH. This
integration of data sources helps to improve the reliability of the overall assessment, as we
will see in Section 5 using AI techniques to improve the performance of the IoT system by
applying forecasting techniques for their estimation.

It is worth mentioning that to use AI techniques, we should consider and follow the
recommendations given in [19]. In this reference, the best practices and common pitfalls
in the use of machine-learning techniques for environmental research are suggested. It is
suggested that it is good practice to compare at least two supervised learning methods to
justify the method selection. Also, the process of creating the dataset and data-splitting
into three different sets for training, validation, and testing is defined. Moreover, other
issues are discussed, such as the proper sample size and feature size, data enrichment and
feature selection, randomness assessment, data leakage management, method selection and
comparison, model optimization and evaluation, and model explainability and causality as
well as benchmarking metrics related to the error estimation techniques, based on Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and R2. Thus, good practice
involves using more than one metric to comprehensively assess the model performance.

In particular, AQ forecasting for environmental pollution monitoring with low-cost
AQ sensors can be applied in combination with AI techniques. A number of publications
have envisaged this issue, considering different points of view. In [20], the authors made a
bibliometric literature review of the applications for air quality forecasting with AI. They
conclude that although the applications are growing, the number of publications is still
limited. In [21], the authors did a narrative review of the state-of-the-art in AQ metrics
forecasting. In [22], the authors used Long Short-Term Memory (LSTM) and Convolutional
Neural Networks (CNN) approaches for AQ metrics prediction. In [23], the authors
developed an AQ IoT system with AI predicting features, but they are more focused on
machine-learning techniques rather than on CNN or Deep Neural Networks (DNN).

Regarding AQ applications, based on these low-cost sensors, we can see interesting
use cases as shown in [24]. This application is oriented to measure ventilation quality by
measuring CO2 levels and T/RH values. Also, applications to estimate and analyze healthy
routes for pedestrians and bikers, based on the AQ information gathered by the proposed
AQ monitoring network, are shown in [25,26].

Finally, we can mention commercial initiatives, such as [27,28], based on a similar
approach, although with a purpose limited only to the monitoring of pollutant gases,
without attempting to cover and analyze the problem posed at the urban level as a
whole holistically.

3. Design Alternatives and Techniques to Be Used in the AQ Monitoring Network and
Its Architecture

The proposed monitoring network is composed of wireless AQ sensor nodes based on
a microcontroller connected to the AQ module ZPHS01B [14], enabling the use of any of the
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communication technologies depicted in Figure 2. These nodes also incorporate real-time
clocks, external memory cards, and watchdog mechanisms.

In particular, the ESP32 microcontroller has been selected due to its performance and
good quality/price ratio. It must be stressed that based on this microcontroller, we have
commercial modules, such as FiPy module [29,30] by Pycom Ltd, which includes onboard
technologies such as LTE-M/NB-IoT, LoRa/Sigfox, WiFi, and Bluetooth.Notice that Pycom
Ltd. went into administration in September 2022, but the newly created Pycom BV has
taken over this company to prevent the products from going to end of life at the time
of writing.

In Figure 5, we show a picture of this microcontroller with the detail of the connection
to the ZPHS01B sensor module, and in Figure 6, the proposals of our low-cost indoor and
outdoor prototypes are shown, with their cases for AQ monitoring. Both prototypes use the
same circuit board and sensor module, with a small fan at the top of the plastic tube and an
air inlet at the bottom of the tube that draws in air. This fan creates an airflow, according to
the specifications [14], to create a gentle air pressure on the sensors. Moreover, to protect
the whole system outdoors, we keep the head of the system with a lid or cover, as shown
in Figure 6b, allowing air circulation. The microcontroller is within a sealed plastic box.

Figure 5. Example of two bare AQ monitoring nodes with ESP32 microcontroller connected to the
AQ module ZPHS01B [14] sensor board.
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(a) Indoor prototypes. (b) Outdoor prototype.

Figure 6. Low-cost AQ monitoring indoor and outdoor prototypes

Figure 7 shows the system architecture of the whole system. The communication
scheme between the IoT node and the infrastructure relies on the IoT Message Queue
Telemetry Transport (MQTT) protocol, which enables the transmission of information
through messages exchanged between the nodes and the MQTT broker. It is important to
emphasize that MQTT offers three levels of Quality of Service (QoS) to ensure message
delivery and incorporates various security mechanisms for data transmission. In our
implementation, we have opted for the highest QoS level, QoS-2, which guarantees the
delivery of messages. Also, we employ username and password-based authentication for
both the broker and the clients, using SSL-certified encryption to safeguard the transmitted
data. The received data are locally stored in a database. To facilitate the publishing
process, nodes can create new topics simply by publishing them. This feature allows for the
easy integration of additional nodes into the IoT system, greatly enhancing its scalability.
This MQTT-based architecture allows direct integration with LTE-M. NB-IoT and WiFi.
For Bluetooth and LoRa, an inter-medium gateway is being used to receive these messages
and relay them to an IP-based network using LTE-M, NB-IoT, or WiFi.

Figure 7. Overview of the system architecture and the IoT platform.

On the server side, we run an IoT platform. Within the IoT platform, we use an
ingestion server to manage the metrics transmitted through the communication protocol
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used, MQTT, and to store this information in the InfluxDB database in order to be able
to operate with the metrics. For this purpose, we use Telegraf [31], in charge of receiving
the metrics and collecting them into the DB. The InfluxDB database is an open-source
no-SQL time-series database that allows the management of information in a more agile
and accessible way since the way of operating does not consist of the classic primary key
in tables, but the indexing is conducted by means of a tag and a timestamp [32]. For the
visualization part, we use Grafana [33], an open-source multiplatform web application for
the analysis of metrics that allows the creation of graphs from various sources in an easy,
convenient, and simple way.

It should be noted, as mentioned before, that these direct measurements (raw readings)
taken from the sensors, in order to be considered valid, are also inserted in the training
server to perform the training of an AI model used for the prediction for the next day
(24 h). Such a model is being used in the inference server to perform the forecasting of such
metrics values, and it is being updated at constant interval rates.

For management purposes, Figure 8 shows a screenshot of the interface connection
via Bluetooth to check locally and directly the status of each IoT node. This information
can also be accessed remotely. The information shown is sent periodically every 10 min. It
includes ten samples (raw readings) from all AQ sensors embedded in module ZPHS01B
with the measurements from the different sensors [14]. In this Figure 8, the raw readings
from the low-cost module ZPHS01B AQ sensor board with 11 different sensors are shown.
These readings are PM (1.0, 2.5, 10), CO2, TVOC, T, RH, CH2O, CO, O3, NO2, and hours
and minutes in this order. In ug/m3, PM (1.0, 2.5, 10) and CH2O are given. CO2, CO, O3,
and NO2 are given in parts per million (ppm). T and RH are given in degrees (Celsius) and
%, respectively.

Figure 8. Screenshot of the management interface to access the IoT AQ nodes.



Sensors 2023, 23, 9585 9 of 19

From a practical point of view for the deployment, when we connect these sensors
off the shelves, we place them next to the AQ official monitoring station. These low-cost
sensors need calibration. We perform the calibration process for each one of the different
sensors using these official measurements. Notice that we only focus on the usual values
as the ones we obtain from these stations, i.e., we do not perform a complete whole range
calibration in the lab using an air quality calibration camera with the different gases.
The calibration process is checked and adjusted every day to prevent variances. It is worth
mentioning that the lifetime of these sensors is short, usually between 12 and 15 months,
depending on the exposure and conservation. In practice, we periodically replace these
modules with new ones when we see that the calibration process does not work. This
usually happens after approximately one year of use. The power consumption for these
low-cost AQ monitoring nodes is approximately 200 mA with 5 V (1 W). In this case, we
use a direct power supply from the station.

We use 24-h forecasts for several reasons, although a similar approach could be done
for 1 and 6 h. On the one hand, these low-cost nodes require periodic calibrations every
24 h to maintain the accuracy of the measurements. On the other hand, we must stress that
in 24 h, we can monitor the complete cycle of pollutants as well as the complete cycle of
citizen movements, which are highly correlated with the pollutant emissions that allow us
to model the forecast prediction properly.

4. Use Cases

The AQ application designed to assist citizens is shown in [25,26]. This application
analyzes, evaluates, and processes the air pollution estimation along a specified route.
When the user (citizen) requests a specific route to this application, from a source to a
destination, initially, we check his/her user profile (medical history) to extract information
about the risks given to this citizen for each air pollutant. These risks, for this user, are
given in percentages according to their danger to him/her. These percentages are specified
for the different pollutants that determine a weighted value associated with the total risk.
These total values are mapped over a grid using interpolation techniques that are later
placed into Open Street Maps to determine a complex metric to search for the route with
less pollution or to analyze the pollution along a given route.

Thus, our purpose for the use of the AQ IoT monitoring system in combination
with the AQ application is envisaged in two use cases that have been previously studied.
These are:

1. Early-warning system and location: this use case was studied in [25], where we
established a route and analyzed the statistics of exposure to different air pollution
metrics. The use of an AQ forecasting module will help detect specific hot areas for
air pollutants in the following hours and send warnings to citizens.

2. Pollutant-aware route planning: this use case was studied in [26], where we applied
the AQ monitoring and spatial statistics to the evaluation of the best routes for air
pollution minimization. Also, the use of an AQ forecasting module will help schedule
a route previously and select the best route option to minimize exposure.

5. Use of Neural Networks to Forecast Air Pollution Data Metrics

This section describes the process for enhancing and predicting valid AQ measure-
ments from raw sensor readings supported by AI algorithms. Notice that as stated
in Section 1, for this process, we use the information coming from two different data
sources: our proposed AQ collection network and the official AQ measurements. These
two data sources are used to train Neural Networks (NNs)—in particular, CNN and DNN.
Once the CNN or DNN is trained, parameter forecasting is achieved and enabled in the
proposed architecture.
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The selection of the appropriate NNs will help to ensure the reliability of the low-cost
sensor data, which remains one of the main challenges, as mentioned above. To address
this issue, it is crucial to establish data consistency between sensor measurements (raw
readings) and those obtained through standard measurements, a process commonly known
as Quality Assurance (QA). For this process, we must place the proposed AQ nodes next to
the official AQ monitoring stations. Figure 9 shows two examples of the nodes deployed
to collect raw data and compare it with these stations. As we can see in this figure, our
prototypes are placed on the top and next to the official AQ station. Calibration techniques
are frequently used to compare sensor readings with those of reference-grade instruments,
as explained in Section 3.

(a) Prototype on the top of the station (b) Prototype next to the station

Figure 9. Deployment of low-cost AQ monitoring nodes for calibration and training in the official
AQ station at Bulevar Sud (Valencia), (a): on the top and (b): next to. The yellow arrow indicates the
exact location of the low-cost node.

In this context, NNs have proven to be very useful in enhancing measurements
from low-cost sensors and forecasting values to enable proactive actions over pollutant
exposure, as explained in Section 2. This is due to the ability of CNN and DNN (in
particular, we use LSTM networks [34]) to learn behaviors that appeared during the training
process to forecast them. We can see a NN as a combination of different layers of neurons.
With adequate training, this combination of layers learns a mapping from inputs to outputs
according to the training set. These layers individually provide us with an output (i.e., the
forecasted metric values) as a function of an input (i.e., the measured metrics), and since
they are interconnected, we can obtain a given output as a function of a given input to
the NN.

CNNs are based on the utilization of convolutional layers, which execute various filter-
ing processes. The filters applied at each layer are determined through the training stage by
adjusting the network weights that try to minimize a predefined loss function. It generates
internal representations based on a set of optimized network weights, representing learned
filters focused on a certain issue. The raw readings (raw samples) from low-cost sensors
serve as the input to the model. Thus, this network analyzes and extracts relevant features
across successive stages, resulting in relevant representations from these learned filters.
The filters within the convolutional layers have a length given by the local receptive field of
a single unit within that layer. The application of these filters to the input samples produces
the layer’s output, also called feature maps. The key aspects of CNNs include parameter
sharing (weights shared by all neurons on a specific feature map) and local connectivity
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(each neuron is connected to only a subset of input nodes). The reduction of the model
parameters contributes to maintaining the same feature detector in different sections of the
input data.

DNNs, and in particular LSTM networks [34], are a type of Recurrent Neural Network
(RNN) architecture designed to address the vanishing gradient problem in traditional
RNNs. LSTM networks are equipped with a more complex and efficient gating mechanism
that allows them to capture and remember long-term dependencies in sequential data.
This gating system, which includes the input, forget, and output gates, controls the flow
of information through the network, enabling it to update and retain information over
extended sequences selectively. LSTM networks are particularly suited for tasks involving
time-series data, natural language processing, and any problem where the context from
previous time steps is critical for making accurate predictions or classifications, as our
proposed AQ predicts and improves the process.

It is worth mentioning that we address the design for parameter predictions of the
CNN and DNN as a regression problem. Thus, the objective is to obtain an accurate end-to-
end architecture capable of predicting the whole set of parameters from raw AQ inputs.

5.1. Dataset

To carry out the training of the NN, it is necessary to have a large database of different
metrics involved in the AQ measurements. For this, we use the available variables given by
the proposed AQ monitoring nodes, as well as the official AQ monitoring stations (operated
by the Generalitat Valenciana [6] and the City Hall of Valencia [7]), such as T (◦C), RH (%),
PM (PM1.0, PM2.5 and PM10.0), VOCs, Formaldehyde (CH2O), CO2, O3 and NO2, with a
lot of timely variations, since the parameters we want to enhance depend on many external
and environmental factors. As mentioned before, they have been measured in two specific
locations within the station, as depicted in Figure 9, as close as possible to those at which
the measurements are done. These measurements were made between 26 June 2023 and
3 September 2023, with 10 sensor readings every second. Notice that the CO sensor was
not considered as it was not functional in this case. Thus, we only work and forecast with
10 different sensors, namely PM(1.0, 2.5, 10), CO2, TVOC, T, RH, CH2O, O3, and NO2.
Then, we obtained 100,7540 samples of each one of the previous metrics for the whole
period. Figure 10 shows the measurement record of the different metrics used. ug/m3

are given PM(1.0, 2.5, 10). and CH2O. CO2, CO, O3, and NO2 are given in PPM. T and
RH are given in degrees Celsius (◦C) and %. In addition, they have been averaged hourly
(every 600 samples), obtaining 1680 samples. Figure 11 shows the violin diagram of the
normalized different readings used to train the NNs. Table 2 depicts the mean, standard
deviation, min, and max values of the raw readings from these sensors.

Table 2. Statistics of the different metrics used to train our DNN, based on an LSTM network. In
ug/m3 are given PM(1.0, 2.5, 10) and CH2O. CO2, CO, O3, and NO2 are given in ppm. T and RH are
given in ◦ and %.

Mean Std Min Max

Temp (◦) 24.86 5.17 14.5 43.6
Hum (%) 72.67 14.63 33 115
PM1.0 15.68 3.27 9 34
PM2.5 19.43 3.81 12 42
PM10.0 21.29 4.41 14 47
TVOC 0.03 0.24 0 3
CH2O 0.02 0.02 0.01 0.26
CO2 436.57 20.63 400 557
O3 0.04 0.03 0.02 0.21
NO2 7.72 3.73 0.01 10
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Figure 10. Measurement record of the different metrics used to train our DNN based on an LSTM network.

Figure 11. Violin diagram showing the statistics of the different metrics used to train the NNs.
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To facilitate the training and evaluation of the NN, the complete dataset was divided
into three distinct partitions: training, validation, and testing. The training and validation
datasets were exclusively used during the training phase, consisting of 70% of samples
for training and 20% for validation. Additionally, a separate test partition comprising
5000 samples was included to conduct a more comprehensive assessment of CNN perfor-
mance. It is important to note that the samples within this final test partition were not
involved in the training or validation processes.

5.2. Design, Configuration, and Training

A good practice to analyze the different AI models is to compare at least two su-
pervised learning or statistical methods to justify the method selection. In our case, we
used four [19]. Thus, the evaluation of the four different options for our dataset will help
us to select our best option for environmental pollution forecasting. In this case, we use
Multi-Linear prediction (with a dense Multi-Linear NN), Multi-Dense network prediction,
Multi-Convolutional network prediction, and Multi-LSTM network prediction, denoted as
Linear, Dense, Conv., and LSTM, respectively. All hyperparameters associated with each of
these AI models are depicted in Tables 3–6, in the same order given before, with details of
the layer type, output shape, number of parameters, and size (KB).

Table 3. Multi-Linear network definition (Linear).

Layer (Type) Output Shape Param #

lambda (Lambda) (None, 1, 10) 0
dense (Dense) (None, 1, 240) 2640
reshape (Reshape) (None, 24, 10) 0

Total params: 2640 (10.31 KB)

Table 4. Multi-Dense layer network definition (Dense).

Layer (Type) Output Shape Param #

lambda (Lambda) (None, 1, 10) 0
dense (Dense) (None, 1, 512) 5632
dense (Dense) (None, 1, 240) 123120
reshape (Reshape) (None, 24, 10) 0

Total params: 128,752 (502.94 KB)

Table 5. Convolutional network layers definition (Conv.).

Layer (Type) Output Shape Param #

lambda (Lambda) (None, 3, 10) 0
conv1d (Conv1D) (None, 1, 256) 7936
dense (Dense) (None, 1, 240) 61680
reshape (Reshape) (None, 24, 10) 0

Total params: 69,616 (271.94 KB)

Table 6. LSTM network layers definition.

Layer (Type) Output Shape Param #

lstm (LSTM) (None, 32) 5504
dense (Dense) (None, 240) 7920
reshape (Reshape) (None, 24, 10) 0

Total params: 13,424 (52.44 KB)
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The training process was limited to a maximum of 20 epochs with a mechanism of
Early Stopping (ES), which monitors the “validation loss” to minimize it and escape from
this training process before reaching Epoch 20. MAE was chosen as the loss function
to be minimized. It was computed by calculating the average value of the differences
between the predicted and actual values. We must stress that in both the loss model for the
training and validation process, we see a convergence to a minimum MAE by increasing
the number of epochs. However, in the validation process, we notice an added variability
to this convergence process due to the quality of these AQ sensors.

To prevent overfitting, an ES technique was employed, which saved the best-performing
model based on its performance on the validation partition. The ES event took place at
Epoch 10. Figure 12 shows the MAE of the test and validation for multimetric training.
In this figure, we can see that the best option to do the multimetric environmental pollution
forecasting is provided by the LSTM network, with an MAE equal to 0.5166 with the test
dataset, which is lower than the other ones.

Figure 12. MAE with different NN (such as Linear, Dense, Conv. and LSTM) for AQ metrics
forecasting using the validation and test datasets.

The subsequent results obtained from testing the model on the separate test partition,
as well as its performance during a real deployment of the AI-IoT network, are shown in
Figures 13–17. In particular, these figures are a sample to show the T, RH, PM.25, CH20,
and CO2 forecasting, respectively, for 24 h with the trained LSTM model. At each figure,
we plot three different time slots as examples, with time offsets of 100 h between them.

The summary of the evaluation in the training, validation, and inference process,
as well as the size of the weights obtained for each network, is depicted in Table 7. From this
table, we can see that LSTM is the most cost-effective network for use in AI-IoT devices,
followed by Convolutional, Multi-Linear, and Multi-Dense. For instance, for the T pre-
diction with the LSTM model, we obtain an MAE of 0.5166, which is a 2.0% relative error
with a mean T of 25.65◦. In detail, for each parameter, we can see in Table 8, the MAE
achieved, that on average, shows an estimation error of around 7.2%. Notice that the
achievement of an AI model that fits both in an inference server and IoT devices indistinctly
is another achievement of our contribution, and it allows the future exploration of dynamic
computational movements between the inference server and the IoT devices. Moreover,
Table 9 adds more quantitative performance metrics to strengthen the results, including
MAE, MSE, and RMSE, in order to better characterize the model accuracy. As we can see,
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the behavior of the LSTM network is better in terms of MAE, MSE, and RMSE compared
with the other alternatives.

Furthermore, as we can see in Table 7 if we compare the model size, the LSTM model
with 189 KB has a larger size than Multi-Linear (52 KB) but lower than Convolutional
(842 KB) and Multi-Dense (1535 KB). For the inference time, all of them have a similar time
response. However, for the training and validation process, the LSTM model is the most
time-consuming, 7.34 s compared with 2.61, 2.91, and 4.40 s for Convolutional, Multi-Dense,
and Multi-Linear, respectively. They all provide very acceptable MAE levels, showing
interesting alternatives to be used as a trust estimator of the potential forecasting of the
values related to the pollutants, but the LSTM model gives the lowest MAE. Thus, we can
consider it to be the most accurate network for our purpose.

Figure 13. Example of T forecasting for 24 h with the trained LSTM model.

Figure 14. Example of RH forecasting for 24 h with the trained LSTM model.
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Figure 15. Example of PM2.5 forecasting for 24 h with the trained LSTM model.

Figure 16. Example of CH2O forecasting for 24 h with the trained LSTM model.

Figure 17. Example of CO2 forecasting for 24 h with the trained LSTM model.
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Table 7. Summary of the performance in the Training/Validation (T/V) and inference process with
the different NN (Linear, Dense, Conv. and LSTM) for T forecasting.

Multi-
Linear

Multi-
Dense Convolutional LSTM

MAE test 0.5643 0.5742 0.5458 0.5166
Model size (KB) 52 1535 842 189
T/V time (s) 4.40 2.91 2.61 7.34
Inference time (s) 0.11 0.12 0.13 0.12

Table 8. Summary of MAE evaluation for every metric in the test phase with the different NN models.

Temp Hum PM1.0 PM2.5 PM10.0 TVOC CH2O CO2 O3 NO2

MAE/mean norm 2.0% 0.7% 3.3% 2.7% 2.4% 17.3% 26.0% 0.1% 12.8% 6.7%
MAE Linear 0.5638 0.564 0.5638 0.564 0.5643 0.5642 0.5633 0.5647 0.5649 0.5645
MAE Dense 0.5719 0.5544 0.5751 0.5689 0.5654 0.5659 0.5567 0.5594 0.5599 0.5652
MAE Conv 0.5494 0.5598 0.5498 0.5467 0.5464 0.5496 0.5412 0.5423 0.5442 0.5417
MAE LSTM 0.516 0.5204 0.5198 0.5155 0.5153 0.5197 0.5159 0.5211 0.5103 0.5199

Table 9. Summary of the performance metrics MAE, MSE, and RMSE among the different NN (Linear,
Dense, Conv. and LSTM).

MAE MSE RMSE

Linear 0.6831 1.0354 1.0175
Dense 0.6661 1.0208 1.0104
Conv 0.635 0.9439 0.9716
LSTM 0.6214 0.9053 0.9515

6. Conclusions and Future Work

Generally, low-cost AQ sensors do not meet regulatory requirements for equivalent
monitoring. Their sensitivity, time response, and accuracy are very limited, but through
data augmentation with official open data coming from official AQ monitoring stations and
AI techniques, we can improve their measurements to increase the accuracy of pollutant
distribution and forecast these environmental pollution metrics to achieve early-warning
systems for hazard pollutant exposure of the population.

The use of DNN techniques, in particular LSTM networks, has been proven to be
effective in forecasting pollution metrics with an averaged estimation error of 7.2%. Notice
that the behavior of the LSTM network is better in terms of MAE, MSE, and RMSE com-
pared with the other alternatives. It is worth mentioning that some pollutants have lower
estimation error, such as CO2 with 0.1%, PM10 with 2.4% (as well as PM2.5 and PM1.0),
and NO2 with 6.7%, as shown in Table 8. However, the AQ monitoring performance for
some pollutants registered by ZPHS01B [14] was not good, which was the case for VOC
and CH20 components.

Thus, we must stress that with a deployed WSN for AQ monitoring, like the one
proposed in [26] and its collected information, we can inform citizens of potential exposure
to dangerous pollution levels before they are even being exposed, as well as to help and
assist them to plan pollutant-aware routes in order to minimize their impact and exposure
to pollution.

Notice that the achievement of an AI model that fits both in an inference server and
IoT devices indistinctly is another achievement of our contribution, and it allows the future
exploration of dynamic computational movements between the inference server and the
IoT devices.

As future work, we are currently preparing enhanced datasets and analyzing their
behavior so that we can extrapolate improved metrics using AI techniques for the entire
sensing network. In addition, we are considering using better AQ monitoring modules.
Finally, it must be noticed that there are other alternative and complementary metrics,
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such as subjective noise annoyance, which can be part of these route planning algorithms
too [35].
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