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Abstract: Optimization of the structure of piezoelectric transducers such as the proper design of
matching layers can increase maximum wave energy transmission to the host structure and transducer
sensitivity. A novel configuration of an ultrasonic transducer, where elastic metamaterial insertion
is introduced to provide bulk wave mode conversion and to increase wave energy transfer into a
substrate, is proposed. Configurations of layered elastic metamaterials with crack-like voids are
examined theoretically since they can provide wide band gaps and strong wave localization and
trapping. The analysis shows that the proposed metamaterial-based matching layers can sufficiently
change wave energy transmission from a piezoelectric active element for various frequency ranges
(relatively low frequencies as well as higher ones). The proposed configuration can also be useful for
advanced sensing with higher sensitivity in certain frequency ranges or for demultiplexing different
kinds of elastic waves.

Keywords: elastic metamaterial; piezoelectric transducer; elastic waves; voids; periodic array; mode
conversion; wave energy; laminate

1. Introduction

For the routine nondestructive inspection of metallic and composite structures, ul-
trasonic methods relying on elastic waves as a physical basis are widely adopted [1–5].
A common way for the excitation of wave motion in the examined construction is to use
piezoelectric transducers of different types. Typical commercially available ultrasonic
probes could provide only narrowband excitation and are not designed for the simultane-
ously efficient generation of all necessary kinds of elastic waves [6,7]. At the same time,
increasing complexity of the materials from which modern structures are made, dictates the
necessity of the advancements in the transducer design which could address these issues.

Progress in additive manufacturing and computations has stimulated the design and
engineering of various advanced materials that have led to the rapid development of many
novel structures and systems with previously unforeseen characteristics or superior per-
formance [8,9]. Metamaterials, which can be referred to as rationally designed composites
with properties exceeding those of their constituents [9,10], are among them. In particular,
elastic metamaterials (EMMs) are composite elastic materials with artificial microstructures
made to exhibit unusual mechanical wave characteristics such as waveguiding, wave
focusing and lensing, energy conversion etc. An original metamaterial classification for
civil engineering applications was recently presented based on the types of waves targeted
for mitigation Contreras et al. [11]. On the other hand, ultrasonic waves have been widely
applied for non-destructive evaluation (NDE) and structural health monitoring (SHM)
of engineering structures because of their considerable sensitivity to possible faults such
as cracks, pitting corrosion, voids and delaminations [12,13]. Since EMMs can be used
to manipulate elastic wave propagation, EMM employment as elements of transducers
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and sensors seems to have a significant potential. The latter is beyond the usual scope of
NDT and SHM, whereas EMMs can be designed and optimized to provide the required
properties, e.g., wider band-gaps, specific resonances or negative refractive index [14].

Common ultrasonic transmitting and sensing transducers can consist of actuating
piezoelectric elements and wedges introduced to target elastic wave energy in the preferable
direction. However, there is still a lack of proper design to bridge the energy generated by a
piezoelectric actuator and the target elastic medium over the wide operating spectrum [15].
The design of such devices needs to be optimized in order to maximize the energy transfer
efficiency [16]. Thus, Li et al. [16] developed an anisotropic cone-structured EMM layer for
matching piezoelectric actuator and substrate for improvement of broadband ultrasound
transducers. Mohammadgholiha et al. [17] presented a frequency steerable acoustic trans-
ducer with spiral electrodes based on the frequency-dependent spatial filtering effect to
generate directional guided waves in a host structure.

Since mode conversion can drastically change elastic wave energy transfer, many
recent studies were focused on the conversion efficiency increase and the integration of con-
verters as parts of devices and structures [18–20]. Methods based on Snell’s law showed full
mode conversion for double-negative and triple-negative transmitted media [21], but they
are strongly restricted by the conditions needed to be satisfied [22]. Perfect transmodal
Fabry–Perot interference theory and impedance matching theory were later proposed to
implement high mode-conversion induced by stiffness anisotropy [23,24]. For longitudinal
and transverse waves, Chai et al. [25] proposed asymmetric mode-converting EMM for
full conversion of one mode to another in one direction and severely restricted the wave
transmission in the opposite direction. Chai et al. [26] have demonstrated numerically full
mode-converting transmission between longitudinal and bending waves in thin plates
and Euler–Bernoulli beams in narrow low frequency ranges. Lee et al. [27] presented a
theory for full wave energy transmission through solid–solid interfaces and proposed a
non-resonant anisotropic single-phase EMM, which realizes the theory. Anisotropic mass
density can be based on non-resonance mechanism, which are mostly used in fluid–solid
metamaterials, whereas local resonances are usually employed in purely elastic metama-
terials [22]. Piao et al. [19] demonstrated that EMM in the form of two periodic arrays of
slits can completely convert wave longitudinal waves into transverse waves in the forward
direction and forbid longitudinal wave transmission in the inverse direction. Therefore,
they showed that such EMM can improve mode-converting transmission efficiency.

Nevertheless, the EMM mentioned above and many others can support wave phe-
nomena (conversion, focusing etc.) in relatively narrow frequency ranges, usually not more
than 10–20 kilohertz [19] or even less [25]). The optimization of the structure of ultrasonic
transducers (e.g., proper design of matching layers between piezoelectric active element
and substrate) could provide maximum wave energy transmission and increase transducer
sensitivity [28]. We propose and numerically examine here a novel configuration of a wedge
transducer, where EMM insertion is introduced to provide mode conversion and to increase
the wave energy transfer into a substrate. Configurations of layered EMMs with crack-like
voids are compared here with a traditional configuration with a single piezoelectric actuator
since this kind of inhomogeneity can provide strong wave localization and wave energy
trapping [29,30] as well as wide band-gaps [31], which might be employed to enhance the
characteristics of ultrasonic transducers.

2. Formulation of the Problem
2.1. Aim and Design

The aim of this study is to consider the employment of EMM for providing advanced
characteristics of wedge transducers. A schematic design of the considered transducers
with EMM is depicted in Figure 1. Here, EMM intermediate is inserted between the
piezoelectric active element and the wedge to change the impedance and to manipulate the
excitation of the required kind of elastic waves in the media.
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Figure 1. An example of possible design of the proposed configuration of the ultrasonic transducer
with the piezoelectric actuator and EMM intermediate.

For wave propagation analysis, efficient and accurate mathematical models and nu-
merical simulation tools should be developed for fast parametric studies at the develop-
ment stage or the implementation in real electromechanical devices and systems. Let us
consider wave excitation in the wedge by the rectangular piezoelectric actuator with an in-
termediate laminated rectangular EMM block as schematically shown by a dashed circle in
Figure 1. In the present study, we employ the boundary integral equation method [29,32,33],
the semi-analytical hybrid approach [34,35] and the finite element method to solve the
boundary-value problem described in the following subsection.

2.2. Mathematical Statement of the Problem

The elastic isotropic half-space with a surface-mounted layered elastic block is con-
sidered. The rectangular block of width wEMM consists of N unit-cells composed of two
elastic layers (A and B) with thicknesses hA and hB (H = hA + hB) and may include a
system of crack-like voids of widths l with spacing s at the layer interfaces (Figure 2).
Elastic waves are excited by the piezoelectric actuator of width wP and height hP situated
at the top surface of the EMM intermediate block. Let us assume that EMM is symmetric
with respect to the Ox2 axis, so one can define arrays of voids of thickness h0 as follows:
Ω±m,j = {|x1 ∓ am ∓ js| ≤ l/2, |x2 − hA − (j− 1)H| ≤ h0}.

The governing equations in an isotropic elastic media have the following representa-
tion in terms of displacement vector u:

(λ + µ)∇(∇ · u) + µ(∇ · ∇)u− ρ
∂2u
∂t2 = 0. (1)

The traction vector τn at the plane with the normal n can be expressed in terms of the
displacement vector u and Lame constants µ and λ as follows:

τn = λn∇ · ∇u + 2µ
∂u
∂n

+ µ(n×∇× u)

Elastic waves are excited in the considered assembly by the input electric voltage
V0 p(t) applied at the electroded upper surface of the piezoelectric actuator

ϕ(x1, H · N, t) = 0, ϕ(x1, H · N + hP, t) = V0 · p(t),
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where ϕ is the electric potential and p(t) is the finite function of time. Wave motion in the
piezoelectric material is governed by the following equations:

σij,j − ρ̂
∂2ui
∂t2 = 0, Di,i = 0. (2)

Here,
σij = Cijkluk,l + ekij ϕ, k,

Di = eikluk,l − εik ϕ,k,

Cijkl are the elastic constants, ekij and εij are the piezoelectric and dielectric constants,
respectively, whereas ρ̂ is the mass density of the material.
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Figure 2. Geometry of the structure with a piezoelectric actuator and EMM with periodic arrays of
interfacial voids.

Displacement u and traction τ2 vectors are continuous at all of the interfaces x2 = zn
between layers (including the piezoelectric actuator and the elastic half-space), as in the
following:

[u] = 0, [τ2] = 0 at x2 = zn.

The tension τn is zero at free surfaces of the block and the half-space, as well as it is
zero at faces of the crack-like voids. Finally, the principle of limiting absorption [36] as the
radiation conditions is assumed at infinity x2 → −∞ in the half-space.

Due to linearity of Equations (1) and (2), the integral transform with respect to time t
in the form

u(x, ω) =

∞∫
0

u(x, t)eiωtdt.
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can be used to exclude time derivatives and to consider separately steady-state harmonic
motion with the angular frequency ω = 2π f related with frequency f . It should be noted
that the inverse Laplace transform

u(x, t) =
1
π

Re

 ∞∫
0

u(x, ω)P(ω)e−iωtdω

.

is applied to the time-harmonic solution u(x, ω). Here, P(ω) is the Laplace transform of
the input voltage signal p(t).

In the case of harmonic motion with the angular frequency ω, Equations of motion (1)
and (2) have the following form for elastic isotropic and piezoelectric media [37,38]:

(λ + µ)∇(∇ · u) + µ(∇ · ∇)u + ρω2u = 0,

σij,j + ρω2ui = 0, Di,i = 0.

Material parameters of the elastic isotropic sub-layers and piezoelectric actuator made
of PIC155 (modified lead zirconate titanate) from PI Ceramic [39] used in the numerics
below are given in Table 1.

Table 1. Material parameters.

Material
Elastic

Constants
Piezoelectric

Constants
Dielectric
Constants Density [kg/m3]

[GPa] [C/m2] 10−9[F/m]

Aluminium λ = 51.1 — — 2700
(Material A) µ = 26.3

Epoxy λ = 0.227 — — 1200
(Material B) µ = 1.396

PIC155 C1111 = 120 e211 = −7.24 ε11 = 9.12 7800
C1112 = 67.3 e212 = 13.77 ε22 = 7.55
C2222 = 94.4 e112 = 11.91
C1212 = 22.3

3. Transducer with EMM Intermediate without Voids
3.1. Plane Wave Propagation through a Periodic Layered Medium

First, let us consider the interaction of the piezoelectric active element with the EMM
intermediate without voids. Though the wave propagation in the elastic block of finite
width has specific features due to reflections from its side surfaces, band-gaps and pass-
bands in the periodically laminated block can be determined via the consideration of
unbounded periodic media. Namely, plane wave propagation through an unbounded
multi-layered structure, i.e., wEMM = ∞, can be considered here.

To predict the allocation of pass-bands and forbidden zones, one can study the plane
wave propagation through a typical one-dimensional phononic crystal (PnC) or layered
EMM composed of elastic layers

LA,n = {(x1, x2) | x1 ∈ R, H(N − n) + hB < x2 6 H(N − n + 1)}

and
LB,n = {(x1, x2) | x1 ∈ R, H(N − n) < x2 6 H(N − n) + hB},

which are made of materials denoted A and B, respectively. The layered periodic structure
of N unit-cells is assumed to be situated between two elastic half-planes, whose properties
are the same as those of the half-space. The steady-state harmonic motion in the structure
is excited by a normally incident plane wave propagating from the top half-plane.



Sensors 2023, 23, 9747 6 of 18

3.1.1. Transfer Matrix Method

The transfer matrix method is more suitable for analysis of plane wave propagation
in the considered structure since it gives simple expressions for elastic wave motion in
homogeneous elastic sub-layers Lk = {(x1, x2) | x1 ∈ R, zk 6 x2 6 zk−1} in terms of the
generalized state vector v(x2) = {u, τ2} as follows:

v(zk) = Tkv(zk−1), (3)

where Tk is the transfer matrix-function of the layer Lk. The transfer matrix can be expressed
explicitly in terms of the elastic constants and the angular frequency ω; see, for instance [40,41]
for more details. Using the definition (3) of the transfer matrix and the continuity of the
displacement vector v(x2) at the interfaces, the transfer matrices of the unit-cell Tc and a
matrix TPnC of the whole PnC composed of N unit-cells are written as matrix product

Tc = TBTA,

TPnC = (Tc)
N = G−1ΛNG,

where TA and TB are the transfer matrices of the layers LA and LB, respectively, G is a
change-of-basis matrix to the Jordan diagonal form

Λ = exp(i H diag{ζ1, ζ2,−ζ1,−ζ2})

of the unit-cell matrix Tc:
|Tc − exp(iζk H)E| = 0.

Here, E is the identity matrix 4× 4, wavenumbers ζk are chosen in accordance to the
following rule: Reζm > 0, Imζm > 0, ζm+2 = −ζm and m = 1, 2.

Then the generalized state vector in the half-planes has the following view

v(x2) =

{
M+r + vinc, x2 > HN,
M−t, x2 6 0,

where M± are known matrices [41] of the eigensolution for P- and SV- waves in the
corresponding half-planes, vinc is the incident field, t and r are amplitude coefficient
vectors of waves transmitted and reflected by the laminated periodic structure that can be
defined from the equation

v(0) = TPnCv(HN).

The amplitudes t of the transmitted waves can be expressed in terms of eigenvalues
of the transfer matrix as follows

t = b1eiζ1 H N + b2eiζ2 H N , (4)

where components of vectors bk are bounded at N → ∞, see [41,42] for more details.

3.1.2. Energy Transmission Coefficient and Localization Factor

Relation (4) allows us to analyze the structure of band-gaps. Thus, if one of the
wavenumbers ζ1 or ζ2 is not purely real (attenuation is observed if Imζk > 0) in a certain
frequency domain, the forbidden zone for the corresponding wave is observed (so-called
longitudinal or transverse wave band-gap). If both wavenumbers ζ1 or ζ2 are complex
numbers for a given frequency ω, this frequency corresponds to a band-gap.
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For convenience and clarity, wave energy characteristics are further employed. The Umov-
Pointing vector e is the time-averaged power density vector, whose components are expressed
in terms of the dot product of displacement and traction vectors as follows: [43–45]

ei = −
ω

2
Im[u · τi], i = 1, 2.

The energy transmission and reflection coefficients κ± = e±2 /e0
2 are written in terms

of the energy flux e0
3 of the incident wave at the top half-plane, the energy flux e−2 of the

reflected waves and the energy flux e+3 is the elastic wave energy transferred through the
periodic structure. The energy conservation law is held as

κ+ + κ− = 1.

For the wave energy transmission coefficient, the following estimation is valid

κ+ = O
(

max
n=1,2
|bn|2e−2Imζn HN

)
.

Moreover, the localization factor showing the exponential decaying in the band-gaps for
waves propagating through the EMM can be introduced

γ = − lim
N→∞

lnκ+

2H N
.

The localization factor γ depends on the type of incident wave. Therefore, the linear
independent generalized state vectors vinc,P and vinc,SV for incident P-waves or SV-waves
produce given localization factors γP = Imζ1 and γS = Imζ2, respectively, for longitudinal
and transverse waves. Frequency bands with nonzero localization factor γP are called
longitudinal band-gaps, while frequencies where γS > 0 belong to transverse band-gaps.
The ranges, where the both of γP and γS are nonzero, correspond to band-gaps.

The influence of aluminium layer width hA in the unit-cell of total width H in the
EMM on the localization factors γP and γS are shown in Figure 3. One can see that they
intersect, i.e., band-gaps should also be distinguished. Figure 4 shows only band-gap
locations for the three considered kinds with respect to the width hA/H. With aluminum
layer thickness increasing hA, the band-gaps shift to higher frequencies and become wider.

Without loss of generality, the case of a unit-cell with equal thickness of aluminium
and epoxy sub-layers (hA = hB) is considered. Indeed, the change in the ratio hA/hB does
not sufficiently influence wave phenomena, but changes the frequency ranges and values
of the corresponding localization factors. Thus, localization factors γP and γS for hA = hB
are presented in Figure 5.
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Figure 3. Localization factors γP( f , hA/H) (a) and γS( f , hA/H) (b).
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Figure 4. Longitudinal and transverse band-gaps dependence on hA/H.
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Figure 5. Localization factor γ( f ) and band-gaps; hA = hB.

3.2. Wave Propagation Excited by Piezoelectric Transducer through a Half-Plane with EMM Layers
3.2.1. Semi-Analytical Hybrid Approach

The next model describes more accurately the stated boundary-value problem for
a piezoelectric active element mounted on the surface of the EMM block. In this model,
the block made of N unit-cells has infinite width (wEMM = ∞), while the transducer is of
finite size. To solve this boundary-value problem of wave excitation and propagation for
harmonic motion, the semi-analytical hybrid approach has been applied. Wave motion
of a piezoelectric transducer with given voltage on surface electrodes is simulated using
the spectral finite element method. Wave-field in the layered waveguide with regular
boundaries is obtained in the integral form using the Fourier transform of the Green’s matrix
of the layered structure and a load generated by the transducer [34,35]. The employed
numerical algorithm for the evaluation of the Green’s matrix of layered elastic structures
including periodic ones can be found in [33,46].

Displacement vector in the isotropic elastic half-plane has the following integral
representation

u(x) =
1

2π

2

∑
n=1

∫
Γ

Kn(α, x2)Q(α)eσnx2−i αx1 dα

where K1 and K2 are the parts of Green’s matrix responsible for body P- and SV-waves,
respectively, Q is the Fourier transform of the surface load vector, σn =

√
α2 −κ2

n as well as

κ1 = ω/
√

λ + 2µ

and
κ2 = ω/

√
µ

are wavenumbers of the P- and S-waves, respectively.

3.2.2. Wave Energy Flux in Far-Field Zone

Applying the method of the stationary phase [47], the following asymptotics can be
derived for the far-field displacement amplitudes uP = u1 and uSV = u2 [48]:

un = C ·Kn(−κn cos φ, 0)Q(−κn cos φ)
exp(iκn r)

√κn sin φ√
2πi r

, κn r � 1. (5)

Here, the matrix C = [nr; nφ]T is composed of the normal vector nr = {cos φ; sin φ} and the
tangential vector nφ = {sin φ,− cos φ} in the polar coordinates (x1 = r cos φ, x2 = r sin φ).
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The energy fluxes of body waves are independently separated in the isotropic half-
plane, similar to the body wave displacements. So, the energy flux through the circle sector
between angles (−φ0, φ0) is given as

EV(φ0) = EP(φ0) + ESV(φ0),

where

Eγ(φ0) =

φ0∫
−φ0

eγ(r, φ)r dφ, γ ∈ {P, SV},

Here, eP and eSV are the projections of the Umov-Pointing vector e onto the normal to
the circle of radius r with the center in the origin for longitudinal (P-waves) and transverse
(S-waves) waves, respectively. Therefore, asymptotics for energy flux densities eP and eS
can be expressed as

eP =
ω

2
κP(λ + 2µ)|uP|2,

eSV =
ω

2
κSVµ |uS|2

at r → ∞ employing asymptotic (5).

3.3. Analysis of Elastic Wave Energy Flux

In the simulations presented below, the width and height of the piezoelectric actuating
element have been chosen as wP = 30 mm and hP = 0.25 mm, respectively. Figure 6
demonstrates the frequency dependence of the elastic wave energy transferred from the
piezoelectric transducer into the vertical direction

Efocus =
∫

lfocus

e2(x1, x2)dl.

The latter is calculated as the integral along the horizontal line

lfocus = {x1 ≤ wP, x2 = −bP},

so Efocus is the total amount of the wave energy passed though lfocus. Since Efocus is directly
related to the acoustic impedance, these values might serve as an equivalent and more
general value revealing intensive energy transfer from the transducer to the substrate for
the investigated frequency ranges.

One can see in Figure 6 that the amount of wave energy transferred in a vertical
direction with the EMM is larger compared to the case of the single piezoelectric actuator,
mostly in some transverse or longitudinal band-gaps. For example, such a longitudinal
band-gap can be clearly seen for f H ∈ [4.52, 4.75] and transverse band-gap takes place if
f H ∈ [4.78, 5.49] MHz mm. Figure 7 shows the power density vector |e(x)|, the horizontal
and vertical components |uk(x)| of the displacement vector in the case of the single piezoac-
tuator and the setup with the EMM without voids at ω = 1144 kHz (ωH = 4.57 MHz mm).
Figure 7 illustrates the fact that the horizontal component of the displacement vector and
energy flux into the structure become much larger if the EMM is situated between the
piezoelectric actuator and the substrate.

The same conclusion regarding much higher horizontal displacements can be drawn
considering averaged horizontal (dash-dotted line) and vertical (dashed line) displacements
ûk, see Figure 8. These integral characteristics describe the amplitudes of the wave-fields
corresponding to the wave energy transfer in the vertical direction. They are computed in
the area

Sfocus = {x1 ≤ wP, |x2 + bP| ≤ εb}
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situated in the vicinity of lfocus, i.e.,

ûk =
∫

Sfocus

|uk(x)|dS.

Figure 6. Elastic wave energy Efocus( f ) generated by the piezoelectric transducer in the substrate V0

and transferred in vertical direction for hA = hB = 2 mm.

Figure 7. The power density vector |e(x)|, the horizontal and vertical components |uk(x)| of the
displacement vector in the substrate in the case of the single piezoelectric actuator without EMM
intermediate (a–c) and with EMM without voids (d–f) at ω = 1144 kHz.
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Figure 8. Averaged horizontal (dash-dotted line) and vertical (dashed line) displacements ûk
corresponding to the wave energy transfer in the vertical direction.

The snapshots of the transient solution corresponding to the input signal with a
spectrum localized in the frequency range where focusing is observed for the time-harmonic
problem are demonstrated in Figure 9. Namely, the amplitudes of the displacement vector
|u| for Nc-cycled Hann-windowed signal with the central frequency f0 = 1138 kHz

p(t) =
1
2

cos(2π f0t)
(

1− cos
(

2π f0t
Nc

))
, 0 < t <

Nc

f0
(6)

are shown for both cases at different times to have approximately the same arrival time at
the observation point (Nc = 20). The introduction of the EMM has provided better focusing
of the wave energy into the structure and larger amplitudes if the spectrum of the input
signal p(t) is chosen according to the analysis of the harmonic problem.

Figure 9. The distribution of amplitudes of the displacement vector u(x, t) for Hann-windowed
transient signal at f0 = 1138 kHz without EMM at t = 0.55 ms (a) and with EMM without voids
t = 0.6 ms (b).

4. Transducer with EMM Intermediate with Arrays of Crack-like Voids

In the case of EMM with arrays of voids, the analysis similar to the one provided in
the previous section can be performed. Based on the previous investigations [31], three
different configurations have been considered: hexagonal and rectangular lattices as well
as an oblique lattice with a rhombic channel without voids. For the rectangular lattice,
am = s/2, whereas s = 2H/

√
3, a2m = 0 and a2m−1 = s/2 for the hexagonal lattice. In the
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case of the centers of the cracks lying on a rhombus with angles ψ and π− ψ, for the centers
of the first M/2 cracks (m = 1, M/2) in m-th layer, one can state

am = a0/2 + (hA(m− 1) + mhB) cot ψ− l/2,

while the centers of the last voids (m = M/2 + 1, M) have the coordinates

am = a0/2− (hA(M + 1−m) + (M−m)hB) cot ψ− l/2.

Figure 10 shows the transferred wave energy Efocus( f ) for the considered configu-
rations with EMMs with voids. Though the plot of Efocus( f ) strongly oscillates, some
frequency ranges where the amount of the focused wave energy is sufficiently larger than
in the case of a piezoelectric actuator without EMM can be distinguished. For example,
such frequency ranges are f ∈ [60, 110] kHz and f ∈ [1120, 1190] kHz for the three configu-
rations with crack-like voids (the second range corresponds to a longitudinal band-gap).
Figures 11 and 12 show the power density vector |e(x)|, components of the displacement
vector at ω = 1138 kHz. Figure 11g–i reveals that periodic array of voids in a hexagonal
lattice can strongly increase the amplitudes of vibrations in the substrate even compared to
EMM without voids in the longitudinal band-gap.

The possibility of wave energy focusing at lower frequencies using EMM with voids,
which cannot be provided employing EMM without voids, is demonstrated in Figure 12.
It also reveals that wave energy can be accumulated and focused in the substrate at a
certain depth. Of course, a transient solution with the input signal spectrum in the vicinity
of f = 60 kHz must also be examined. The observed focusing effect is demonstrated in
Figure 9, but it is not as pronounced as in the previous case, cf. Figure 13. Nevertheless,
the introduction of EMM intermediate plays an important role and allows for wave energy
guiding into a desirable direction (x2 → −∞).

Figure 10. Elastic wave energy Efocus( f ) generated by the piezoelectric transducer in the substrate
and transferred in vertical direction for hA = hB = 2 mm.



Sensors 2023, 23, 9747 14 of 18

Figure 11. The power density vector |e(x)|, the horizontal and vertical components |uk(x)| of the dis-
placement vector in the substrate in the case of the actuator without EMM intermediate (a–c), with EMM
intermediate without voids (d–f) and with voids in hexagonal lattice l = 1.75 mm at f = 1138 kHz (g–i).
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Figure 12. The power density vector |e(x)| and the vertical displacement |u2(x)| in the substrate in
the case of the actuator without EMM intermediate (a,d), with EMM with voids in hexagonal lattice
(b,e) l = 1.75 mm and in oblique lattice with rhombic channel (c,f) at f = 60 kHz.

Figure 13. The distribution of amplitudes of the displacement vector u for Hann-windowed signal at
f0 = 1138 kHz without EMM at t = 0.7 ms (a) and with EMM with voids at t = 0.95 ms (b).

5. Conclusions

In this theoretical study, semi-analytical methods along with the FEM have been
applied to investigate the applicability of layered EMM with and without periodically
situated crack-like voids for transducer performance enhancement. Since mode conversion
between dissimilar wave modes, e.g., longitudinal and transverse waves, is often useful
for industrial applications, so several kinds of layered EMMs have been examined as an
interlayer converting input elastic energy into transverse waves. The analysis has shown
that the proposed configurations with EMM insertion can sufficiently change wave energy
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transmission from a piezoelectric active element into media for various frequency ranges
(relatively low frequencies as well as higher ones). Besides, the bandwidth of the considered
transducers with EMM is larger especially at lower frequencies and it can be adjusted via
the variation of the parameters of the EMM intermediate.

Typical bulk wave ultrasonic transducers employed in engineering practice are resonance-
based and, therefore, of a narrow-band nature. On the other hand, thin piezoelectric films,
which are directly attached to the structural surface and could be used for ultrasonic wave
excitation due to the high values of their natural frequencies are usually treated as broad-
band actuators. As follows from our numerical studies, the transducer with the proposed
metamaterial matching layer preserves a rather broad operation range in the frequency
domain (e.g., thin lines compared to the thick one in Figure 10—frequency bands between
600 and 900 kHz and between 1100 and 1400 kHz) typical for thin piezoactuators, and,
at the same time, for certain frequency bands, the energy flow to the structure is additionally
enhanced. The spatial resolution of the transducer could be improved due to the capability of
the metamaterial-based matching layer to provide a focused wavefield to the elastic substrate
at the prescribed frequency ranges. If frequency resolution is essential, it could be controlled
by the proper design of the metamaterial matching layer in the sense of the choice of the
materials from which it is composed, and the geometry of periodic defects introduced into
its structure.

Since the sensitivity of the reception of elastic waves on the surfaces of some materials
by ultrasonic transducers/sensors is relatively small in certain frequency ranges, the
proposed configuration or its enhanced version can be considered in the next studies as a
sensor with higher sensitivity in certain frequency ranges or for demultiplexing different
kinds of elastic waves.
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