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Abstract: This paper proposes an analytical design procedure for 2D FIR circular filter banks and also
a novel, computationally efficient implementation of the designed filter bank based on a polyphase
structure and a block filtering approach. The component filters of the bank are designed in the
frequency domain using a specific frequency transformation applied to a low-pass, band-pass and
high-pass 1D prototype with a specified Gaussian shape and imposed specifications (peak frequency,
bandwidth). The 1D prototype filter frequency response is derived in a closed form as a trigonometric
polynomial with a specified order using Fourier series, and then it is factored. Since the design starts
from a 1D prototype with a factored transfer function, the frequency response of the designed 2D
filter bank components also results directly in a factored form. The designed filters have an accurate
shape, with negligible distortions at a relatively low order. We present the design of two types of
circular filter banks: uniform and non-uniform (dyadic). An example of image analysis with the
uniform filter bank is also provided, showing that the original image can be accurately reconstructed
from the sub-band images. The proposed implementation is presented for a simpler case, namely
for a smaller size of the filter kernel and of the input image. Using the polyphase and block filtering
approach, a convenient implementation at the system level is obtained for the designed 2D FIR filter,
with a relatively low computational complexity.

Keywords: 2D FIR filters; circular filters; analytical design; filter banks; polyphase decomposition;
block filters

1. Introduction

The technology and architecture of modern image sensors and sensing techniques
have evolved dramatically in recent years, driven by the ever-demanding requirements
and challenges of this field. For instance, aerial or satellite image sensors for remote
sensing must provide clear and low-noise images, with high spatial resolution, either
in visible, infrared or microwave domains. In order to provide accurate and relevant
information, images acquired by sensors have to be pre-processed using various restoration
and enhancement techniques. Various digital filters and filter banks may be used in image
analysis and feature extraction tasks, for instance, to decompose the image into several
subband components in order to extract relevant details, etc. These are also useful in the
automotive field, for rapid feature extraction in real-time computer vision applications, for
instance, in driver assistance systems and autonomous driving vehicles.

Along with the unprecedented development of the digital signal processing field, 2D
filters have been thoroughly investigated by many researchers, owing to their essential
applications in image processing, and various techniques for their design have been elab-
orated [1]. Analytical design methods rely on 1D prototypes with specified shapes and
parameters; applying various frequency transformations, they lead directly to the desired
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2D filters. The major advantage of the analytical approach is that a closed-form frequency
response is derived, and the 2D filter results are parametric and therefore adjustable.

A large variety of 2D filters, both of FIR and IIR type, with various characteristics
and shapes have been developed, with each type of filter having specific applications in
the image processing field. One of the best-known methods, widely used in the design of
2D FIR filters with various shapes is the McClellan transform [2,3]. More recent papers
approaching computationally efficient 2D FIR filter design techniques based on frequency
transformations are [4,5]. The efficient, low-complexity design of 2D FIR filters and the
implementation using Farrow structure are described in papers like [6,7]. Other relevant
recent papers on efficient 2D filter design are [8–10].

Filters with circular-shaped frequency response have also been widely used owing
to their capabilities in image analysis; various design techniques have been proposed for
circular filters (CF) in early papers such as [11–13]. Circular filters find applications in
texture segmentation and classification [14]. A recent advanced application of circular
Gabor filters in SAR interferograms is described in [15].

Two-dimensional filter banks of various types were extensively used in important
applications, like texture segmentation and classification or various feature extraction
tasks. Such filter banks decompose the frequency spectrum of the image into a number of
sub-bands. Two-dimensional filter banks are widely used in fundamental applications such
as sub-band coding and compression of images and video sequences. Separable 2D filter
banks are obtained by cascading 1D filter banks, and data are processed in each dimension
separately. Compared to separable filters, filter banks with nonseparable 2D filters are more
flexible and versatile, offering superior performance for imposed specifications. However,
their design is substantially more difficult than for separable filter banks [16]. As detailed
in the comprehensive review [16], the 2D filter banks currently used are mainly directional,
with specific shapes in the frequency plane, such as square (diamond), parallelogram,
wedge/fan filters, etc. Multidimensional stable, perfect reconstruction filter banks are also
developed in [17].

Directional filter banks (DFBs) with an arbitrary number of sub-bands [18] or arbitrary
frequency partitioning [19] have been proposed. A class of multiresolution DFBs is devel-
oped in [20]. Multidimensional DFB, multiscale pyramids and the surfacelet transform
were introduced in [21]. A very recent application of DFBs was proposed in [22], namely
fingerprint image quality assessment. The fingerprint image is decomposed into subbands
using the DFB, and similarity between the different subbands is used to calculate the
fingerprint image quality. Regarding methods to reduce computational complexity and
increase processing speed, the fast block implementation of 2D digital FIR filters was pro-
posed in early papers such as [23]. A high-performance 2D parallel block-filtering system
for real-time applications was presented in [24]. The steerable pyramid, a well-known
multiscale structure for image decomposition was proposed in the early paper [25]. More
recent papers describe specific applications of other two important multiscale architectures,
namely the Laplacian pyramid [26] and the wavelet pyramid [27].

Some very recent works propose advanced algorithms implemented on various con-
volutional neural networks to solve complex image-processing tasks. For instance, in [28],
a novel deep-feature model has been proposed for coastal wetland classification using
multisource satellite remote sensing data. In [29], multi-scale features from coarse-to-fine
receptive field level are extracted, with applications in super-resolution. An advanced algo-
rithm for effective pathology classification from hyperspectral medical images is proposed
in [30]. A novel multi-focus image fusion method based on sparse representation and local
energy is introduced in [31], which uses the shearlet transform to decompose the source
images into low- and high-frequency sub-bands.

The first author of this paper has also proposed various analytical design techniques
for 2D filters in previous works [32–35]. Directional IIR filters based on Gaussian and
wide-band prototypes were designed in [32]. A useful application of the directional filters
in [32] is the detection of straight lines with specified orientation from images; this feature
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extraction capability may be useful in the computer vision field. Adjustable, parametric 2D
digital IIR filters with elliptical and circular symmetry are proposed in [33]. Two versions
of circular IIR filter banks and their applications have been described in [34,35]. An efficient
2D FIR filter implementation based on a polyphase approach and block filtering is proposed
in [36].

In this paper, an analytic design procedure is proposed for a particular class of 2D
filter banks, namely 2D FIR Gaussian circular filter banks (CFBs). Two versions of CFBs
will be designed, namely a uniform CFB and then a non-uniform (dyadic) CFB, each with a
specified number of component filters. As a prototype, a 1D low-pass filter with a Gaussian
frequency response and specified selectivity is chosen; its frequency response is easily
approximated by a trigonometric polynomial, with an imposed precision, using a simple
Fourier series expansion. By a simple shifting to a given peak frequency, the band-pass
filters of the FB prototype are also derived. Once the prototype FB is obtained, a 1D to 2D
frequency mapping derived from the McClellan transform is applied [2,3], which leads
directly to the desired circular filters of the CFB. The non-uniform (dyadic) CFB is designed
in a similar manner. The filters’ characteristics result in an accurate circular shape, with
some distortions near the frequency plane margins. Next, as an application example, a
grayscale test image is applied to the CFB, obtaining a set of subband images. Summing
back all these images, the original input image is reconstructed almost perfectly, which
suggests a potential use in an alternative subband coding scheme.

A novel, efficient implementation solution is also proposed for the 2D FIR filters of the
designed CFB, which continues the method from previous work [36]. Our implementation
uses a polyphase decomposition of a given 2D filtering operation with large kernel size
and a block filtering with smaller size matrices.

The paper is organized as follows: Section 2 presents the proposed analytical design
procedure, first deriving the uniform and non-uniform prototype FB, then applying the
frequency mapping and obtaining the frequency responses of the 2D CFBs. In Section 3, an
example of image analysis is given using CFB by decomposing it into subband images. The
novel implementation technique based on the polyphase and block filtering approach is
described in Section 4. Discussions regarding the computational complexity of the proposed
implementation are included in Section 5. Finally, conclusions are drawn in the last section.

2. Analytical Design Technique for 2D Circular FIR Filter Banks

A novel analytical design procedure is proposed for a class of 2D FIR circular filters.
This design technique starts from an imposed prototype with specified parameters (peak
frequency, bandwidth), to which a 1D to 2D frequency transformation is applied, leading
to the desired 2D filters. In order to obtain through frequency transformation, the desired
2D circular filter bank, first a 1D prototype filter bank must be derived. A Gaussian-shaped
filter was chosen as prototype, due to its useful property of scalability on the frequency axis.

2.1. Approximation of the Gaussian FIR Filter Prototype Using Fourier Series

The Gaussian filter in the frequency domain has the well-known expression
G(ω) = exp

(
−σ2ω2/2

)
, where σ is the dispersion parameter; for a simpler form, eas-

ier to handle, the substitution p = σ2/2, or equivalently σ =
√

2p, will be used. Thus the
Gaussian low-pass filter function takes the more convenient form GLP(ω) = exp

(
−p ·ω2),

where p will be referred to as selectivity or scaling parameter. Considering a periodic
function with period 2π and regarding the LP Gaussian function as a generating pulse, the
following expression HLP(ω) will be easily obtained, which is the Fourier series expansion
of the Gaussian GLP(ω) up to a given order N:

GLP(ω) = exp
(
−p ·ω2

)
∼=

1
2
√

pπ
·
(

1 + 2 ·
N

∑
n=1

exp
(
− n2

4p

)
· cos nω

)
= HLP(ω) (1)
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From this Gaussian LP prototype, a band-pass (BP) prototype is easily produced by
shifting the Gaussian laterally around the frequencies ±ω0:

HBP(ω) = HLP(ω−ω0) + HLP(ω + ω0) = exp
(
−p · (ω−ω0)

2
)
+ exp

(
−p · (ω + ω0)

2
)
∼=

1√
pπ ·

(
1 + 2 ·

N
∑

n=1
exp

(
− n2

4p

)
· cos (nω0) · cos nω

) (2)

Directly using Expressions (1) and (2) implemented in a Matlab routine, in the following
section, the low-pass, band-pass and high-pass components of the desired FIR filter bank
prototype are calculated.

2.2. Design of a Gaussian Uniform FIR Filter Bank Prototype

Next, a uniform filter bank prototype with 11 Gaussian components will be designed,
namely one low-pass filter, nine band-pass filters and one high-pass filter. In this uniform
FB, the peak frequencies are equally spaced on the frequency axis. A bandwidth is imposed
for the nine band-pass components equal to B = π/10 = 0.1π, while the low-pass and
high-pass filters will have each half of this bandwidth, namely B/2 = π/20 = 0.05π. The
k-th ideal Gaussian BP filter is produced by shifting the LP prototype to the frequency
ω0,k = k ·ω0, and will have the following expression:

GBP k(ω) = GLP(ω− kω0) + GLP(ω + kω0) = exp
(
−p · (ω− kω0)

2
)
+ exp

(
−p · (ω + kω0)

2
)

(3)

At this point, the scaling parameter p for the imposed bandwidth needs to be calculated.
In our case, the filter bandwidth is considered defined at 0.5 of the peak value (at 6 dB).
Thus, the characteristics of any two adjacent filters will marginally overlap and will in-
tersect at the value 0.5. Referring to the LP filter GLP(ω) = exp

(
−p ·ω2), the condition

GLP(B/2) = exp
(
−p · B2/4

)
= 0.5 is imposed, otherwise written exp

(
p · B2/4

)
= 2, from

which the value for the scaling parameter p is obtained as p = 4 ln 2/B2; since for our
filter bank a bandwidth B = π/10 was imposed, the value p = 400 ln 2/π2 ∼= 28.1 will be
produced. The ideal uniform Gaussian filter bank is plotted in Figure 1a.
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Figure 1. (a) Ideal Gaussian uniform FB prototype; (b) designed Gaussian uniform FB prototype for
the 2D CFB.

The filter selectivity is given by the scaling parameter value calculated before, namely
p = 28.1, with the Fourier series truncated at a number of terms N = 15. The larger the
number of terms taken into account, the smaller will be the distortions (ripple, etc.), but the
filter matrices will be larger in size and will increase the implementation complexity.

Following the above design procedure, once specifying the desired number of filters
of the FB and their peak frequencies, using Equations (1) and (2), the frequency responses
of all the FB components are calculated. As an example, in our case of a uniform FB with
11 components, the frequency responses of a few filters of the 1D prototype filter bank
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are given below, in factored expression. First, the frequency response of an LP prototype
expressed as a truncated Fourier series using (1) has the form:

HLP(ω) = 0.055823 + 0.11066 · cos ω + 0.107743 · cos 2ω + 0.103056 · cos 3ω + 0.096833 · cos 4ω
+0.089382 · cos 5ω + 0.081049 · cos 6ω + 0.072197 · cos 7ω + 0.063177 · cos 8ω + 0.054309 · cos 9ω
+0.045863 · cos 10ω + 0.038047 · cos 11ω + 0.031007 · cos 12ω + 0.024823 · cos 13ω + 0.019523 · cos 14ω
+0.015083 · cos 15ω

(4)

which using trigonometric identities can be further expressed as:

HLP(ω) = 247.118 · (cos ω+0 .99492)(cos ω+0 .95454)(cos ω+0 .87546)(cos ω+0 .76089)(cos ω+0 .61554)
·(cos ω+0 .44535)(cos ω+0 .25729)(cos ω+0 .05906)(cos ω− 0.14123)(cos ω− 0.33537)
·(cos ω− 0.51542)(cos ω− 0.67403)(cos ω− 0.80475)(cos ω− 0.90811)(cos ω− 0.93698)

(5)

As an example, the frequency responses of the first and last BP filter components of
the bank are given below, the intermediate BP filters having similar forms:

HBP 1(ω) = −98.8414 · (cos ω+0 .99462)(cos ω+0 .95194)(cos ω+0 .86846)(cos ω+0 .74782)(cos ω+0 .59531)
·(cos ω+0 .41762)(cos ω+0 .22253)(cos ω+0 .01863)(cos ω− 0.18508)(cos ω− 0.37954)

·(cos ω− 0.55591)(cos ω− 0.71234)(cos ω− 0.77319)(cos ω− 1.00157)
(6)

HBP 9(ω) = −98.8414 · (cos ω− 0 .99462)(cos ω− 0 .95194)(cos ω− 0 .86846)(cos ω− 0 .74782)(cos ω− 0 .59531)
·(cos ω− 0 .41762)(cos ω− 0 .22253)(cos ω− 0 .01863)(cos ω + 0.18508)(cos ω + 0.37954)

·(cos ω + 0.55591)(cos ω + 0.71234)(cos ω + 0.77319)(cos ω + 1.00157)
(7)

Finally, the highest component of the FB is the high-pass (HP) filter, which formally
has the peak frequency ω0 = π:

HHP(ω) = −247.118 · (cos ω+0 .93698)(cos ω+0 .90811)(cos ω+0 .80475)(cos ω+0 .67403)(cos ω+0 .51542)
·(cos ω+0 .33537)(cos ω+0 .14123)(cos ω− 0.05906)(cos ω− 0.25729)(cos ω− 0.44535)
·(cos ω− 0.61554)(cos ω− 0.76089)(cos ω− 0.87546)(cos ω− 0.95455)(cos ω− 0.99491)

(8)

It can be observed that the component filters of the prototype FB whose central
frequencies are symmetric with respect to the middle value ω = π/2 have symmetric zeros,
as is well-known from filter theory. Therefore, the zeros of the HP filter are the zeros of the
LP filter with a changed sign; the zeros of the 9th BP filter are the zeros of the first BP filter
with a changed sign, etc. Since there is an odd number of filters, the middle filter, namely
the 5-th BP filter, with central frequency ω0 = π/2, has no pair, and its transfer function, as
expected, has pairs of complementary zeros:

HBP 5(ω) = −319.858 · (cos ω− 0.99471)(cos ω + 0.99471)(cos ω− 0.95281)(cos ω+0 .95281)(cos ω− 0.87107)
·(cos ω+0 .87107)(cos ω− 0.75362)(cos ω + 0.75362)(cos ω− 0.60689)(cos ω + 0.60689)

·(cos ω− 0.43317)(cos ω + 0.43317)(cos ω− 0.34221)(cos ω + 0.34221)
(9)

Generally, the k-th band-pass component of the 1D filter bank can be expressed as the
following product of first-order factors (where N is the filter order):

HBP k(ω) = ξk ·
N

∏
j=1

(
cos ω+aj

)
(10)

The uniform Gaussian filter bank designed above is plotted in Figure 1b and it looks
very similar to its ideal counterpart in (a), with a low level of ripple.
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2.3. Design of a Gaussian Non-Uniform FIR Filter Bank Prototype

In image analysis, mainly in multirate signal processing, non-uniform filter banks are
also currently used. Next, using the method described in Section 2.1 a non-uniform, more
specifically a so-called dyadic filter bank will be designed. Such an FB has the property that
the bandwidths of the component filters increase proportionally to their peak frequencies,
such that generally the ratio between bandwidth and peak frequency remains constant;
these filters are also known as constant-Q filter banks.

For our design example, it is considered that the filter bandwidths increase by a factor
of 2 from low to high frequencies. An FB with five filters will be designed here: one LP
filter, three BP filters, and one HP filter. Specifying the peak frequency of the 3rd BP filter
as ω03 = π/2, the following peak frequencies ω0 k and bandwidths B0 k are easily found
for the five filters, respectively: ω0 0 = 0, B0 0 = π/22 (LP); ω0 1 = π/11, B0 1 = π/11
(BP1); ω0 2 = 5π/22, B0 2 = 2π/11 (BP2); ω0 3 = π/2, B0 3 = 4π/11 (BP3); ω0 4 = π,
B0 4 = 7π/22 (HP). Using the same Formulas (1) and (2) as before, the frequency responses
of the component filters are easily found as factored trigonometric polynomials. Unlike
the previous case of uniform FB, for this nonuniform FB the higher filters have increasing
bandwidths; being less selective, they can be approximated with polynomials of lesser
order, therefore their implementation complexity will be significantly lower. The same
marginal overlapping between filters at exactly 0.5 was considered. For instance, for the
most selective filter (LPF) the parameter p results as p = ln 2/(π/22)2 ∼= 34; this filter
can still be approximated by truncating the Fourier series at order N = 15, as before; the
ripple (“ringing”) in the stopband will be a little higher, but still acceptable. The following
approximations for the frequency responses of the five Gaussian filters were derived:

HLP(ω) = 322.53 · (cos ω+0 .99491)(cos ω+0 .95448)(cos ω+0 .87527)(cos ω+0 .76053)(cos ω+0 .61495)
·(cos ω+0 .4445)(cos ω+0 .25615)(cos ω+0 .05762)(cos ω− 0.14297)(cos ω− 0.3374)

·(cos ω− 0.51771)(cos ω− 0.67653)(cos ω− 0.80734)(cos ω− 0.90613)(cos ω− 0.95148)
(11)

HBP1(ω) = −261.27 · (cos ω+0 .99507)(cos ω+0 .95596)(cos ω+0 .87933)(cos ω+0 .76831)(cos ω+0 .62742)
·(cos ω+0 .46239)(cos ω+0 .2799)(cos ω+0 .08752)(cos ω− 0.10714)(cos ω− 0.29616)
·(cos ω− 0.47196)(cos ω− 0.62751)(cos ω− 0.76157)(cos ω− 0.81472)(cos ω− 1.00137)

(12)

HBP2(ω) = 9.186 · (cos ω+0 .98714)(cos ω+0 .88634)(cos ω+0 .69593)(cos ω+0 .43711)
·(cos ω+0 .14021)(cos ω− 1.00605)(cos ω− 1.05338)((cos ω)2 − 0.38658 · cos ω + 0.05005

) (13)

HBP3(ω) = 0.9531 · ((cos ω)2 + 2.018676 · cos ω + 1.024286)((cos ω)2 − 2.018676 · cos ω + 1 .024286) (14)

HH P(ω) = −0.2117 · (cos ω− 1.00109)((cos ω)2 − 2.02723 · cos ω + 1 .68236) (15)

The characteristics of this non-uniform FB are plotted in Figure 2.
As mentioned, only the most selective filters (LP and BP1) have visible ripple, while

the others have no ripple at all.
As a further remark, in previous papers [32–35], various 2D filters were designed

using another efficient procedure, namely the Chebyshev series, which has the advantage of
yielding a uniform and efficient approximation for a given function, with equal error along
the whole specified range of values. The symbolic calculations are performed in the MAPLE
software (version MAPLE 2018), and a change of frequency variable is first required, before
effectively deriving the approximation. However, the major drawback of this method is
that it is not parametric; it does not have a closed form as in the case of the Fourier series
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method, therefore is more laborious; for each specified value of selectivity parameter p, the
calculation must be carried out in a symbolic calculation software. Therefore, in this paper,
the Fourier series approximation was preferred.
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2.4. Gaussian Circular FIR Filter Bank Obtained Using Frequency Transformation

Once specified a convenient 1D prototype with the frequency response Hp(ω), a 2D
circular filter H(ω1, ω2) is produced by applying to the given prototype the 1D to 2D

frequency transformation ω →
√

ω2
1 + ω2

2 :

H(ω1, ω2) = Hp

(√
ω2

1 + ω2
2

)
(16)

The function cos
√

ω2
1 + ω2

2 is described by the 3× 3 centrally symmetric matrix:

C =

0.125 0.25 0.125
0.25 −0.5 0.25

0.125 0.25 0.125

 (17)

and can be approximated by the following expression, which is a simple particular case of
the McClellan transform, currently used in 2D FIR filter design [2,3,36]:

cos
√

ω2
1 + ω2

2
∼= C(ω1, ω2) = −0.5 + 0.5(cos ω1 + cos ω2) + 0.5 cos ω1 cos ω2 (18)

The Expression (18) is in fact the discrete space Fourier transform (DSFT) of the matrix
C. Next, a zero-phase FIR filter HP(ω) is considered, whose frequency response is given by
the trigonometric polynomial expression [36]:

HP(ω) = b0 + 2
R

∑
k=1

bk cos kω (19)

At this point, the trigonometric identities for cos kω (k = 1 . . . R) can be used, and thus
the following polynomial expression is produced in powers of cos ω [36]:

HP(ω) = c0 +
R

∑
k=1

ck(cos ω)k (20)

where (19), (20) b0, bk, c0, ck are polynomial coefficients. Applying frequency mapping (18),
the frequency response of the 2D circular filter will become [36]:

H(ω1, ω2) = HP

(√
ω2

1 + ω2
2

)
= c0 +

R

∑
k=1

ck · Ck(ω1, ω2) (21)
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where C(ω1, ω2) = cos
√

ω2
1 + ω2

2 as given in (18).
Therefore, by a straightforward substitution of cos ω by the circular cosine function

C(ω1, ω2) = cos
√

ω2
1 + ω2

2 in the prototype HP(ω), the 2D filter frequency response is
produced directly. Next, supposing that the frequency response HP(ω) is decomposed into
first-order and second-order factors in variable cos ω, and achieving the above substitution
in all factors of HP(ω), the circular filter frequency response H(ω1, ω2) is finally derived in
factored form:

H(ω1, ω2) = k ·
n

∏
i=1

(C + bi) ·
m

∏
j=1

(C2 + b1j · C + b2j) (22)

where C is a concise notation for the two-variable function C(ω1, ω2) and k is the constant
resulting from factorization. Since the specified prototype is expressed as a product of
elementary factors, the circular filter frequency response will also become directly factored,
which is an essential advantage in actual implementation. Thus, the large kernel H corre-
sponding to H(ω1, ω2) can be expressed simply as a discrete convolution of small matrices
(of size 3× 3 or 5× 5):

H = k · (C1 ∗ . . . ∗Ci ∗ . . . ∗Cn) ∗ (D1 ∗ . . . ∗Dj ∗ . . . ∗Dm) (23)

The matrix expression (23) is related to the factored frequency response (22). Using
the 3× 3 matrix C in (17) and considering also (22), each of the matrices Ci of size 3× 3 in
(23) is derived by adding coefficient bi, which appears in the first-order factors in (22), to
the center element in matrix C. Thus, the matrix Dj (5× 5) becomes:

Dj = C ∗C + b1j ·C1 + b2j ·C0 (24)

where C0 is a null matrix of size 5× 5 with central element of value one; C1(5× 5) is produced
by the boarding matrix C (size 3× 3) with zeros; here the symbol * denotes convolution.

Thus, the frequency response of each CFB component is directly derived by sub-
stitution. Correspondingly, the overall kernel matrix H of the filter will be given by an
expression similar to (23), but in our particular case with only first-order factors, as in (10),
it becomes:

H = ξk · (C1 ∗ . . . ∗Ci ∗ . . . ∗Cn) (25)

The filters of the designed 1D prototype filter bank are of order 15; it follows that the
corresponding 2D circular filters derived through the above transformation have kernel
matrices relatively large, of size 31× 31. Such a large matrix will be implemented efficiently
using a polyphase approach described in Section 4.

As a remark, all the component filters of the designed FB are non-separable, except
the LP filter. Indeed, it is easy to see that the circular LP Gaussian filter is separable as a
product of two Gaussian LP filters on the two frequency axes:

exp
(
−p · (ω2

1 + ω2
2)
)
= exp

(
−p ·ω2

1

)
· exp

(
−p ·ω2

2

)
(26)

A very important advantage of the proposed FB is that the filters’ transfer functions
are real-valued (zero-phase), therefore they will not introduce any phase distortions; this
will be visible in the simulation results given in the following section.

The 1D prototypes, frequency characteristics and corresponding contour plots for all
11 filters of the circular filter bank are displayed in Figures 3 and 4. It is easily observed
that up to the 6th band-pass filter, the characteristics are visually almost perfectly circular.
For the higher band-pass filters, the characteristics have a more pronounced deviation from
circularity, tending to the shape of a rounded square. The filter with the highest frequency
(ω0 = π) has almost a square shape. This effect of distortion from circularity is well known
when applying the frequency mapping (18), the simplest form of the McClellan transform,
and could be corrected only by using a more accurate approximation of the circular cosine;
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however, this would imply a higher complexity of the filters (larger kernel matrices) and a
more difficult implementation.
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The characteristics and contour plots of the five component filters of the non-uniform
(dyadic) CFB derived from the 1D prototype filters designed in Section 2.3, with frequency
responses given by (11)–(15) are displayed in Figure 5, and it can be observed that they
have a good circular symmetry.
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3. Image Analysis Using the Designed Circular Filter Banks

In this section, examples of image analysis using the uniform and dyadic CFBs de-
signed before are presented. First, the grayscale test image in Figure 6a is considered, of
size 399× 399 pixels, representing a group of trees without foliage; this image was chosen
as it has a lot of fine details, represented by the tree ramifications into thinner and thinner
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twigs. This image is filtered by applying all the 11 components of the designed uniform
CFB (one LP filter, nine BP filters, one HP filter); it can be considered that our test image is
decomposed into sub-bands using the analysis CFB designed before.
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Figure 6. Image analysis using the uniform circular FB: (a) original “Trees” image; (b) LP filtered;
(c–g) BP filtered with BPF1, BPF2, BPF3, BPF4, BPF5, respectively; (h) HP filtered; (i–k) recovered
image by summing the first two, three and four components; (l) recovered image by summing all
11 components (sub-band images).

The original image is displayed in Figure 6a. The image obtained at the output of the
narrow LP filter is (b), and it can be observed that it is very blurred, the fine details (thin
twigs) are no longer visible. The images obtained from the first five BP filters are shown
in (c–g), respectively, and contain details corresponding to the selected bandwidth. The
image (h) is produced at the output of the HP filter and contains the highest frequencies,
corresponding to the finest details.

The original image was converted into “double” format and its pixel values were
rescaled to the range [0, 1] for MATLAB processing. The image produced at the output of
LPF has the overall mean pixel value 0.529; for all the other 10 images (produced at the
outputs of BP filters and HP filter), the mean pixel value is very close to zero, as expected,
since these filters eliminate the zero-frequency component corresponding to mean value. In
Figure 6i–l, it is shown how the original image is reconstructed by adding the component
images into which it was decomposed. Thus, image (i) is produced by adding the first two
components (LP and BP1); image (j) is produced as a sum of the first three components (LP,
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BP1, BP2); image (k) is produced by adding the component BP3. Finally, by summing all
the 11 components, the image (l) is produced, which visually is very similar to the original
image, showing all the fine details very clearly.

These simulations prove that the designed CFBs (uniform and non-uniform) could
be practically used as analysis filter banks for decomposing a given image into sub-band
images. However, the rigorous mathematical conditions required will have to be further
investigated in future work.

The energy of each component sub-band image can also be evaluated using the well-

known formula Ek =

√
M
∑

i=1

N
∑

j=1
pij, where the image is of size M × N and pij is the current

pixel value; the expression of the relative energy can also be given as a percentage:

ER k =
100

M · N ·

√√√√ M

∑
i=1

N

∑
j=1

pij (%) (27)

Calculating the energies of the 11 filtered images resulting at the output of the designed
CFB, the values given in Table 1 are easily found; summing these values, it can be verified
that they add up to approximately 1 in normal values, or 100% in percentages. It can be
observed that almost 56% of the image energy is contained in the low-pass component (in
the frequency domain around zero, with radius 0.1π), while almost 85% is contained in
the first four components (within a 0.4π radius), at the output of LP filter and first three
BP filters. The relative energies of the sub-band images decrease almost uniformly; as an
exception, ER9 > ER8, and ER11 > ER8, ER9, ER10. The highest frequencies in the image
give less than 2% of the total image energy. These relative energy values are summarized
in Table 1 and represented graphically in the chart from Figure 7.

Table 1. Relative sub-band energies (in %) for the 11 images resulting at the output of the uniform
CFB.

ER1 55.81594 ER7 2.51503

ER2 14.03036 ER8 1.63033

ER3 8.12698 ER9 1.68105

ER4 6.36161 ER10 1.17531

ER5 4.81307 ER11 1.84367

ER6 3.64377
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As a remark, the designed circular filter banks are rotation invariant; the image
spectrum is separated into concentric, ring-shaped regions, with frequencies increasing
while image energy is generally decreasing, from the center to the margins of the frequency
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plane. Due to rotational invariance, the decomposition coefficient and energy in each
subband remain more or less constant. This property is very useful in specific feature
extraction and classification tasks in image processing.

A similar experiment was performed using the dyadic circular filter bank with five
components shown in Figure 5, applied on the same grayscale test image, for comparison.
The filtered images obtained at the output of the LP filter, three BP filters and HP filter
are displayed in Figure 8a–e. As in the previous example, the original image is then
reconstructed by adding the first two and three sub-band images, then all the five sub-band
images, as shown in Figure 8f–h. Summing up all the sub-band images leads to an image
very similar to the original one.
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An additional experiment was performed using the same dyadic CFB, applied on
another grayscale test image (“Fields”), of size 699 × 699, showing an aerial view of a rural
landscape with fields and a river (Figure 9a). The filtered images obtained at the output
of the LP filter, three BP filters and HP filter, respectively, are displayed in Figure 9b–f. As
in the previous examples, the original image is then reconstructed by adding the first two
sub-band images (Figure 9g), then all the five sub-band images, as shown in Figure 9h.
Summing up all the five sub-band images yields an image very similar to the original
one. Table 2 displays the relative sub-band energies, calculated for both test images,
namely “Trees” and “Fields”. Again, most of the image energy is contained in the lowest
sub-band (corresponding to the LPF); however, the energy distribution clearly depends
on the particular image, as was expected, an can be considered a numerical indicator
characterizing the sub-band decomposition of a given image.
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Table 2. Relative sub-band energies (in %) for the five images resulting at the output of the dyadic
CFB.

Image ER1 ER2 ER3 ER4 ER5

“Trees” 57.925 13.965 18.430 6.268 3.411
“Fields” 68.003 11.767 11.618 5.433 3.179

Regarding the noise suppression issue, the authors did not intend to investigate it
in this paper. Of course, noise removal is a very important task in image enhancement
and restoration. Considering the nature of the noise (Gaussian, salt-and-pepper, speckle
noise, etc.), a specific type of filter should be chosen to remove it optimally. Anyway, noise
removal should be achieved before any further image analysis. For the proposed CFB, since
the image spectrum is partitioned into ring-shaped regions corresponding to sub-band
images, if the original image was affected by some type of noise, it would be distributed
more or less evenly in the sub-band images, mainly in higher frequency bands. Therefore,
it would have to be eliminated separately from each sub-band component image, which
may be a more difficult task. This issue remains to be studied in future work on this topic.

4. Polyphase Implementation of the Designed 2D Circular FIR Filters

In the following, a low-complexity implementation is proposed for the 2D FIR circular
filter bank previously designed, relying on a polyphase structure of a 2D filtering task with
a convolution kernel of relatively large size (31× 31). In order to achieve convolution with
such a large kernel, a block processing technique [24,25] and a polyphase decomposition
approach will be employed.

As a first step, using sub-expression sharing techniques, a 2D filtering algorithm with
a 4 × 4 kernel was elaborated, which is detailed as follows. The kernel of the filter resulting
from the design and the input image are decimated by factors 3 and 5, respectively; the
polyphase filtering approach is subsequently applied. Using this technique, three output
component images are derived, namely Y0, Y1, Y2, given by Equations (28)–(30):
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Y0 =


A0 A0 A0 A0

O4×10 A0 O4×10 O4×10
O4×10 O4×10 A0 O4×10
O4×10 O4×10 O4×10 A0

× diag




O10×4 O10×4 O10×4 A1
O10×4 O10×4 A1 A1
O10×4 A1 O10×4 A1

A1 O10×4 O10×4 A1

HT

×

×


A2 −A2 −A2 −A2 O10×7 O10×7 O10×7

O10×7 A2 O10×7 O10×7 O10×7 O10×7 O10×7
O10×7 O10×7 A2 O10×7 O10×7 O10×7 O10×7
O10×7 O10×7 O10×7 A2 O10×7 O10×7 O10×7

× X2D

(28)

Y1 =


O4×10 O4×10 O4×10
A0 A0 A0
O4×10 A0 O4×10
O4×10 O4×10 A0

× diag

 O10×4 O10×4 A1 O10×4
O10×4 A1 A1 O10×4
P O10×4 A1 O10×4

HT

×
×

 O10×7 −A2 A2 −A2 −A2 O10×7 O10×7
O10×7 O10×7 O10×7 A2 O10×7 O10×7 O10×7
O10×7 O10×7 O10×7 O10×7 A2 O10×7 O10×7

× X2D

(29)

Y2 =


O4×10 O4×10 O4×10
O4×10 O4×10 O4×10

A0 A0 O4×10
O4×10 A0 A0

× diag

 O10×4 A1 O10×4 O10×4
A1 A1 O10×4 O10×4
A1 O10×4 O10×4 O10×4

HT

×
×

 O10×7 O10×7 −A2 −A2 A2 −A2 O10×7
O10×7 O10×7 O10×7 O10×7 O10×7 A2 O10×7
O10×7 O10×7 O10×7 −A2 −A2 −A2 A2

× XT
2D

(30)

in which the block matrices have the form given below:

A0 =


1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 1 1

 ; A1 =



0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1
0 0 1 0
0 1 1 0
1 0 1 0
0 1 0 0
1 1 0 0
1 0 0 0


; A2 =



1 −1 −1 −1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 −1 1 −1 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 −1 −1 1 −1 0
0 0 0 0 0 1 0
0 0 0 −1 −1 −1 1


(31)

and O4×10, O10×4, O10×7 are zero matrices of size 4× 10, 10× 4, and 10× 7, respectively.
Adding the partial results Y0, Y1 and Y2 given by (28), (29) and (30), the following output
vector Y containing 16 samples of the filtered image is obtained:

Y = Y0 + Y1 + Y2

=
[

Y00 Y01 Y02 Y03 Y10 Y11 Y12 Y13 Y20 Y21 Y22 Y23 Y30 Y31 Y32 Y33
]T (32)

The vector H occurring in Equations (28)–(30) is given below:

H = [h00 h01 h02 h03 h10 h11 h12 h13 h20 h21 h22 h23 h30 h31 h32 h33]
T (33)

while the input vector X2D is displayed as follows:
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X2D = [x00 x01 . . . x06 x10 x11 . . . x16 . . . x60 x61 x62 x63 x64 x65 x66]
T (34)

The main reason for proposing this 2D FIR filtering algorithm was the reduced number
of arithmetic operations involved. It is well known that in a direct 2D convolution there is a
high degree of redundancy in operations. In a direct 2D convolution there are overlapping
blocks of input data; by eliminating these redundant calculations, a significant reduction in
the arithmetic complexity will be obtained. The filtering algorithm presented above was
produced using a block filtering technique.

At this point, the 2D filtering algorithm discussed above will be extended from an
elementary kernel of size 4× 4 to the case of a 31 × 31 kernel. In order to achieve this and
to obtain a parallel implementation, a block processing technique will be used, relying on
a polyphase structure. To derive this 2D polyphase structure, a decimation of the kernel
matrix with factor 4 will be performed. Before decimation, the kernel was enlarged to have
a dimension multiple of 4, in our case 32 × 32, by bordering it with a row and a column of
zeros. Decimation by a factor of 5 was also applied to the input image and thus a 25 × 25
input image was produced.

Using a block polyphase decomposition and the previous fast algorithm, the following
efficient algorithm was obtained for the computation of the designed 2D FIR filter. The
vectors HT

00, HT
01, HT

02, HT
03HT

10, HT
11, HT

12, HT
13HT

20HT
21, HT

22, HT
23, HT

30HT
31, HT

32, HT
33 for a kernel

matrix of size 12 × 12 and an input matrix of size 21 × 21 have the general form Hij given
below (where i = 0, 1, 2, 3 and j = 0, 1, 2, 3):

Hij =
[
h0+i,0+j h0+i,4+j h0+i,8+j h4+i,0+j h4+i,4+j h4+i,8+j h8+i,0+j h8+i,4+j h8+i,8+j

]
(35)

For example, the vectors H00, H12, H33 generated by the Formula (35) will be:

H00 =
[

h0,0 h0,4 h0,8 h4,0 h4,4 h4,8 h8,0 h8,4 h8,8
]

( i = 0, j = 0)
H12 =

[
h1,2 h1,6 h1,10 h5,2 h5,5 h5,8 h9,2 h9,5 h9,8

]
( i = 1, j = 2)

H33 =
[

h3,3 h3,7 h3,11 h7,3 h7,7 h7,11 h11,3 h11,7 h11,11
]

( i = 3, j = 3)
(36)

In order to explain the proposed method in an easier way, our demonstration was restricted
to a less complex particular situation where the kernel matrix is of size 12 × 12 and the
input image is 21 × 21, but the results can be readily extended for the kernel of the circular
FIR filter designed above of size 31 × 31, previously extended to size 32 × 32 (by padding
with zeros), to be able to achieve the decimation by a factor of 4.

The simpler algorithm described above for a 2D filter with a 3 × 3 kernel and 5 × 5
input matrix, can be extended by performing a decimation by factor 4 for the kernel matrix
and a decimation by factor 5 for the input matrix. Thus, performing a decimation with
factor 4, instead of the kernel of size 12 × 12, 16 matrices of size 3 × 3 are derived. For
instance, in the case of HT

01, applying decimation by 4, the following block matrix of size
3 × 3 will produce:

H′01 =

h01 h05 h09
h41 h45 h49
h81 h85 h89

 (37)

Next, by concatenating the rows of matrix H′01, the matrix HT
01 is derived from Equation

(35). The vector X2D is also substituted with vector X2D given by (34).
The vectors X00, X01, X02, X03, . . ., X66, composing the matrix X2D and related to the

input image, are defined through the following general formula:

Xij =
[
x14+i,14+j x14+i,7+j x14+i,0+j x7+i,14+j x7+i,7+j x7+i,0+j x0+i,14+j x0+i,7+j x0+i,0+j

]
(38)

For example, the vectors X03, X31, X66 generated by the Formula (38) will be:
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X03 =
[

x14,17 x14,10 x14,3 x7,17 x7,10 x7,3 x0,17 x0,10 x0,3
]

( i = 0, j = 3)
X31 =

[
x17,15 x17,8 x17,1 x10,15 x10,8 x10,1 x3,15 x3,8 x3,1

]
( i = 3, j = 1)

X66 =
[

x20,20 x20,13 x20,6 x13,20 x13,13 x13,6 x6,20 x6,13 x6,6
]

( i = 6, j = 6)
(39)

The vectors X00,. . ., X66 were produced as described below. To explain the idea, our
demonstration is restricted to the situation in which the input image is a matrix of size
21 × 21 and a decimation by factor 5 is performed. In doing so, instead of the input matrix
of dimension 21 × 21, a number of 77 matrices of size 3 × 3 are obtained. For instance,
in the case of X01, applying decimation by the factor 7, the following 3 × 3 block matrix
is derived:

X′01 =

 x0,1 x0,8 x0,15
x7,1 x7,8 x7,15
x14,1 x14,8 x14,15

 (40)

At this point, the rows of matrix X′01 are concatenated, then the resulting vector is
reversed and thus the vector X1,0 is derived from the general Equation (38):

X1,0 =
[
x15,14 x15,7 x15,0 x8,14 x8,7 x8,0 x1,14 x1,7 x1,0

]
(41)

Even if our discussion was restricted to the particular case where the input matrix
is 21 × 21 to be easier for the reader to follow our discussion, it is easy to extend it for a
more general case. Thus, a 2D FIR filtering operation with a 4 × 4 kernel and a 7 × 7 input
matrix was decomposed into 100 1D inner products (FIR filtering operations) using the
following equations:

Y0 =


B0 B0 B0 B0

O4×90 B0 O4×90 O4×90
O4×90 O4×90 B0 O4×90
O4×90 O4×90 O4×90 B0

× diag




O90×36 O90×36 O90×36 B1
O90×36 O90×36 B1 A1
O90×36 B1 O90×36 A1

B1 O90×36 O90×36 A1

HT
2

×

×


B2 −B2 −B2 −B2 O90×63 O90×63 O90×63

O90×63 B2 O90×63 O90×63 O90×63 O90×63 O90×63
O90×63 O90×63 B2 O90×63 O90×63 O90×63 O90×63
O90×63 O90×63 O90×63 B2 O90×63 O90×63 O90×63

× XT
2

(42)

Y1 =


O4×90 O4×90 O4×90

B0 B0 B0
O4×90 B0 O4×90
O4×90 O4×90 B0

× diag

 O90×36 O90×36 B1 O90×36
O90×36 B1 B1 O90×36
B1 O90×36 B1 O90×36

HT
2

×
×

 O90×63 −B2 B2 −B2 −B2 O90×63 O90×63
O90×63 O90×63 O90×63 B2 O90×63 O90×63 O90×63
O90×63 O90×63 O90×63 O90×63 B2 O90×63 O90×63

× XT
2

(43)

Y2 =


O4×90 O4×90 O4×90
O4×90 O4×90 O4×90

B0 B0 O4×90
O4×90 B0 B0

× diag

 O90×36 B1 O90×36 O90×36
B1 B1 O90×36 O90×36
B1 O90×36 O90×36 O90×36

HT
2

×
×

 O90×63 O90×63 −B2 −B2 B2 −B2 O90×63
O90×63 O90×63 O90×63 O90×63 O90×63 B2 O90×63
O90×63 O90×63 O90×63 −B2 −B2 −B2 B2

× XT
2

(44)

Finally, the following output vector is produced:
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Y = Y0 + Y1 + Y2

=
[

Y00 Y01 Y02 Y03 Y10 Y11 Y12 Y13 Y20 Y21 Y22 Y23 Y30 Y31 Y32 Y33
]T (45)

In Equations (42)–(44), the block matrices are, respectively: B0 = A0 ⊗U9, where
the vector U9 is U9 =

[
1 1 1 1 1 1 1 1 1

]
and B1 = A1 ⊗ I9, where I9 is the

9× 9 identity matrix (with ones on the main diagonal and zeros elsewhere); we also have
B2 = A2 ⊗ I9. The matrices O4×90, O90×36 and O90×63 are zero matrices of size 4 × 90,
90 × 36 and 90 × 63, respectively.

In order to obtain the above equations, we considered a polyphase decomposition of a
1D filter that can compute four samples in parallel using a decimation factor of 4 as:


y4n

y4n+1
y4n+2
y4n+3

 =


H3 H2 H1 H0 0 0 0
0 H3 H2 H1 H0 0 0
0 0 H3 H2 H1 H0 0
0 0 0 H3 H2 H1 H0

×


X4n−3
X4n−2
X4n−1

X4n
X4n+1
X4n+2
X4n+3


(46)

By extending the Equation (46) to 2D and using sub-expression sharing, we obtained
Equations (42)–(44). Although at first sight, the matrix equations describing the proposed
polyphase implementation may seem very complex, mainly due to their block structure,
they actually lead to a very efficient and economic filtering structure, with a high degree
of parallelism and therefore with a low computational complexity in terms of number of
arithmetic operations. All these equations were verified in Matlab (version R2017a).

5. Discussion

The proposed design method for 2D circular filters is entirely analytical, without
using any global numerical optimization techniques. Analytical design methods lead to
closed-form and parametric filters, with adjustable, tunable frequency responses. To the
best of the authors’ knowledge, the analytical design of FIR circular filter banks has not
been systematically approached previously by other researchers. As a reference to existing
works, analytical techniques for designing 2D filters of IIR type with circular frequency
response, including CFBs, have been previously proposed by the first author [33–35].

The Gaussian filter was chosen as a prototype for the CFB due to its advantages. It is a
smooth function that can be easily approximated by a trigonometric polynomial and can be
scaled on the frequency axis to adjust its selectivity. For very selective filters, the Gaussian
shape is probably the best choice. Its frequency response is zero-phase; since frequency
components will not be phase-shifted, image distortions will not occur. The resulting filters
have accurate shapes, with negligible distortions. Moreover, they can be approximated
efficiently, leading to low-order filters.

The circular filter bank (CFB) designed in our paper can be compared with other types
of filter banks, from a qualitative point of view. The comparative discussion will mainly
refer to works [25–27], as well-known multiscale pyramidal decomposition methods. Our
proposed filter banks, like the steerable pyramid [25], have rotation invariance, while the
Laplacian pyramid [26] and wavelet pyramid [27] are not rotationally invariant. Another
important aspect regards frequency plane partitioning. While the steerable, wavelet and
Laplacian pyramids all split the image spectrum into fixed sub-band regions, the proposed
circular FB is flexible, in the sense that the bandwidths of the sub-band regions can be
chosen wider or narrower, with adjustable selectivity, depending on application. This is
due to the scalability of Gaussian-shaped filters along the frequency axis, which allows us
to obtain filters with imposed selectivity starting from the same prototype. In Section 3,
a uniform CFB with 11 components was generated, partitioning the image spectrum
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into concentric ring-shaped sub-bands. Moreover, in some applications, the non-uniform
(dyadic) filter bank is also useful from the multi-resolution point of view. Since the energy of
an image spectrum is mainly contained in the low-frequency region and decreases towards
higher frequencies, the dyadic-type CFB allows for a more uniform energy distribution
on frequency bands. Also, the proposed polyphase implementation structure for the filter
bank has a lower arithmetic complexity than other implementations found in the literature.

A rigorous comparison in terms of performance with other circular filters found in
literature is quite difficult to make. Design approaches like circular filters in [11–13] are
very different from the one proposed here and lead to filters with other characteristics and
purposes, so they are quite difficult to compare exactly with our proposed method.

To summarize, the novelty of the proposed CFB consists of an analytic design method
(yielding parametric, closed-form expressions of frequency response), frequency scalability,
flexible partitioning of spectrum sub-bands, low order due to efficient approximation and
low arithmetic complexity due to polyphase implementation.

The proposed novel implementation technique significantly reduces the number of
arithmetic operations required. A short comparison can be made between the direct convo-
lution operation and the proposed filtering method in terms of computational complexity.
The 2D filtering of an image of size M× N pixels, with an FIR filter with kernel size m× n
implies a 2D convolution between a m× n matrix and a M× N matrix. This means that
the filter kernel slides on the horizontal and vertical axes along the image, so for each
pixel m × n multiplications are required; therefore the whole 2D filtering would have
approximately a complexity of O(MNmn). It is easy to calculate that the total number of
additions are (N + n2)(M + m2).

In the simpler case used to exemplify our implementation, the filter kernel has size
12 × 12, while the image is 21 × 21; thus for usual convolution, there will be 63,504 multi-
plications with 27,225 additions. In our approach, only 100 inner products are used, with
3 × 3 multiplications and 3 × 3 additions for each, that is 100 × 33 = 900 multiplications
and 900 additions, plus 12 × 90 additions in the pre-processing stage and 7 × 10 additions
in the post-processing stage. As an additional example, for a larger value of the filter
kernel where the filter kernel has the size 20 × 20 while the image is 35 × 35, 100 inner
products are used, with 5 × 5 multiplications and 5 × 5 additions for each inner product,
that is 100 × 5 × 5 = 2500 multiplications and 2500 additions, plus 20 × 90 additions in
pre-processing stage and 70 additions in the post-processing stage.

6. Conclusions

The proposed design method for 2D circular filter banks is entirely analytical, without
using any global numerical optimization. The advantages of the proposed method com-
pared to other works are: it yields a factored 2D frequency response; the designed CFB is
parametric, with adjustable characteristics; the CFB components are solved easily for any
choice of number of filters and selectivity; the proposed implementation using polyphase
and block filtering leads to a low complexity filter structure. This approach solves the
problem of designing an adjustable and efficient circular FB with imposed specifications.
The obtained results prove that the proposed rotationally invariant filter banks can be used
in decomposing a given image into its subband components.

Taking into account the simulation results on test images and the fact that the orig-
inal image can be reconstructed very accurately at least from a visual, subjective point
of view from its component images, the authors intend in future work to study and in-
vestigate whether such CFBs (either uniform or non-uniform) could be used in sub-band
coding schemes. While practically and intuitively this would seem possible, the required
mathematical conditions for perfect reconstruction will have to be investigated rigorously.
Regarding the implementation part, the authors will also study how to choose the deci-
mation factors for the input image and the filter kernel, in order to obtain a very efficient,
optimal design, and to minimize the number of arithmetic operations.



Sensors 2023, 23, 9851 20 of 21

Author Contributions: Conceptualization, D.F.C. and R.M.; methodology, D.F.C. and R.M.; software,
D.F.C. and R.M.; validation, D.F.C. and R.M.; formal analysis, D.F.C. and R.M.; investigation, D.F.C.
and R.M.; resources, D.F.C. and R.M.; writing, original draft preparation; writing, review and editing,
D.F.C. and R.M.; project administration, D.F.C.; funding acquisition, D.F.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by a grant of the Romanian Ministry of Education
and Research, CNCS—UEFISCDI, project number PCE 172 (PN-III-P4-ID-PCE2020-0713), within
PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, W.; Antoniou, A. Two-Dimensional Digital Filters; CRC Press: Boca Raton, FL, USA, 1992.
2. Shyu, J.; Pei, S.; Huang, Y. Design of variable two-dimensional FIR digital filters by McClellan transformation. IEEE Trans. Circ.

Syst. I 2009, 56, 574–582. [CrossRef]
3. Wang, Y.; Yue, J.; Su, Y.; Liu, H. Design of two-dimensional zero-phase FIR digital filter by McClellan transformation and interval

global optimization. IEEE Trans. Circ. Syst. II Express Briefs 2013, 60, 167–171. [CrossRef]
4. Manuel, M.; Elias, E. Design of sharp 2D multiplier-less circularly symmetric FIR filter using harmony search algorithm and

frequency transformation. J. Signal Inf. Proc. 2012, 3, 344–351. [CrossRef]
5. Kim, K.J.; Kim, J.H.; Nam, S.W. Design of computationally efficient 2D FIR filters using sampling-kernel-based interpolation and

frequency transformation. Electron. Lett. 2015, 51, 1326–1328. [CrossRef]
6. Pun, C.K.S.; Chan, S.C.; Ho, K.L. Efficient 1D and Circular Symmetric 2D FIR Filters with Variable Cutoff Frequencies Using

the Farrow Structure and Multiplier-Block. In Proceedings of the IEEE International Symposium Circuits Systems ISCAS 2001,
Sydney, Australia, 6–9 May 2001; Volume 2, pp. 561–564. [CrossRef]

7. Bindima, T.; Elias, E. Design and implementation of low complexity 2-D variable digital FIR filters using single-parameter-tunable
2-D Farrow structure. IEEE Trans. Circuits Syst. I Regul. Papers 2018, 65, 618–627. [CrossRef]

8. Stavrou, V.N.; Tsoulos, I.G.; Mastorakis, N.E. Transformations for FIR and IIR filters’ design. Symmetry 2021, 13, 533. [CrossRef]
9. Apostolov, P.S.; Yurukov, B.P.; Stefanov, A.K. An easy and efficient method for synthesizing two-dimensional finite impulse

response filters with improved selectivity. IEEE Signal Proc. Mag. 2017, 34, 180–183. [CrossRef]
10. Capizzi, G.; Sciuto, G.L. A novel 2-D FIR filter design methodology based on a Gaussian-based approximation. IEEE Signal

Process. Lett. 2019, 26, 362–366. [CrossRef]
11. Guillemot, C.; Ansari, R. Two-dimensional filters with wideband circularly symmetric frequency response. IEEE Trans. Circuits

Syst. II 1994, 41, 703–707. [CrossRef]
12. Bindima, T.; Manuel, M.; Elias, E. An efficient transformation for two dimensional circularly symmetric wideband FIR filters. In

Proceedings of the IEEE Region 10 Conference TENCON, Singapore, 22–25 November 2016; pp. 2838–2841. [CrossRef]
13. Hung, T.Q.; Tuan, H.D.; Nguyen, T.Q. Design of diamond and circular filters by semi-definite programming. In Proceedings of

the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 2966–2969. [CrossRef]
14. Randen, T.; Husoy, J.H. Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21,

291–310. [CrossRef]
15. Porzycka-Strzelczyk, S.; Rotter, P.; Strzelczyk, J. Automatic detection of subsidence troughs in SAR interferograms based on

circular Gabor filters. IEEE Geosci. Remote Sens. Lett. 2018, 15, 873–876. [CrossRef]
16. Lin, Y.P.; Vaidyanathan, P.P. Theory and design of two-dimensional filter banks: A review. Multidim Syst. Signal Process. 1996, 7,

263–330. [CrossRef]
17. Basu, S. Multidimensional causal, stable, perfect reconstruction filter banks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002,

49, 832–842. [CrossRef]
18. Shi, G.; Liang, L.; Xie, X. Design of directional filter banks with arbitrary number of subbands. IEEE Trans. Signal Process. 2009, 57,

4936–4941. [CrossRef]
19. Liang, L.; Shi, G.; Xie, X. Nonuniform directional filter banks with arbitrary frequency partitioning. IEEE Trans. Image Process.

2010, 20, 283–288. [CrossRef] [PubMed]
20. Nguyen, T.T.; Oraintara, S. A class of multiresolution directional filter banks. IEEE Trans. Signal Process. 2007, 55, 949–961.

[CrossRef]
21. Lu, Y.M.; Do, M.N. Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 2007, 16, 918–931.

[CrossRef] [PubMed]

https://doi.org/10.1109/TCSI.2008.2002119
https://doi.org/10.1109/TCSII.2013.2240833
https://doi.org/10.4236/jsip.2012.33044
https://doi.org/10.1049/el.2015.0143
https://doi.org/10.1109/ISCAS.2001.921132
https://doi.org/10.1109/TCSI.2017.2724767
https://doi.org/10.3390/sym13040533
https://doi.org/10.1109/MSP.2017.2717498
https://doi.org/10.1109/LSP.2019.2891965
https://doi.org/10.1109/82.329742
https://doi.org/10.1109/TENCON.2016.7848561
https://doi.org/10.1109/ISCAS.2007.377969
https://doi.org/10.1109/34.761261
https://doi.org/10.1109/LGRS.2018.2815782
https://doi.org/10.1007/BF01826246
https://doi.org/10.1109/TCSI.2002.1010038
https://doi.org/10.1109/TSP.2009.2027737
https://doi.org/10.1109/TIP.2010.2052267
https://www.ncbi.nlm.nih.gov/pubmed/20529743
https://doi.org/10.1109/TSP.2006.887140
https://doi.org/10.1109/TIP.2007.891785
https://www.ncbi.nlm.nih.gov/pubmed/17405426


Sensors 2023, 23, 9851 21 of 21

22. Hendre, M.; Patil, S.; Abhyankar, A. Directional filter bank-based fingerprint image quality. Pattern Anal. Appl. 2022, 25, 379–393.
[CrossRef]

23. Mertzios, B.G. Fast block implementation of two-dimensional FIR digital filters by systolic arrays. Int. J. Electron. 1992, 73,
1233–1246. [CrossRef]

24. Aziz, M.; Boussakta, S.; McLernon, D.C. High performance 2D parallel block-filtering system for real-time imaging applications
using the sharc ADSP21060. Real-Time Imaging 2003, 9, 151–161. [CrossRef]

25. Simoncelli, E.P.; Freeman, W.T. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In
Proceedings of the International Conference on Image Processin, Washington, DC, USA, 23–26 October 1995; Volume 3, pp. 444–
447. [CrossRef]

26. Zhou, J.; Zhang, D.; Zou, P.; Zhang, W.; Zhang, W. Retinex-based Laplacian pyramid method for image defogging. IEEE Access
2019, 7, 122459–122472. [CrossRef]

27. Xu, Y.; Yang, X.; Ling, H.; Ji, H. A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 161–168. [CrossRef]

28. Gao, Y.; Li, W.; Zhang, M. Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction
network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5512615. [CrossRef]

29. Li, M.; Zhao, Y. Multi-scale feature selection network for lightweight image super-resolution. Neural Netw. 2023, 169, 352–364.
[CrossRef] [PubMed]

30. Zhang, X.; Li, W. Hyperspectral pathology image classification using dimension-driven multi-path attention residual network.
Expert Syst. Appl. 2023, 230, 120615. [CrossRef]

31. Li, L.; Lv, M.; Jia, Z.; Ma, H. Sparse representation-based multi-focus image fusion method via local energy in shearlet domain.
Sensors 2023, 23, 2888. [CrossRef] [PubMed]

32. Matei, R. A class of directional zero-phase 2D filters designed using analytical approach. IEEE Trans. Circuits Syst. I Regular Papers
2022, 69, 1629–1640. [CrossRef]

33. Matei, R. Design and applications of adjustable 2D digital filters with elliptical and circular symmetry. Analog. Integr. Circuits
Signal Process. 2023, 114, 345–358. [CrossRef]

34. Matei, R. Analytic Design of Uniform Circular Filter Banks. In Proceedings of the 24th IEEE Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA), Poznań, Poland, 23–25 September 2020; pp. 58–62. [CrossRef]
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