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Abstract: With progressive technological advancements, the time for electric vehicles (EVs) and un-
manned aerial vehicles (UAVs) has finally arrived for the masses. However, intelligent transportation
systems need to develop appropriate protocols that enable swift predictive communication among
these battery-powered devices. In this paper, we highlight the challenges in message routing in
a unified paradigm of electric and flying vehicles (EnFVs). We innovate over the existing routing
scheme by considering multi-objective EnFVs message routing using a novel modified genetics
algorithm. The proposed scheme identifies all possible solutions, outlines the Pareto-front, and
considers the optimal solution for the best route. Moreover, the reliability, data rate, and residual
energy of vehicles are considered to achieve high communication gains. An exhaustive evaluation
of the proposed and three existing schemes using a New York City real geographical trace shows
that the proposed scheme outperforms existing solutions and achieves a 90%+ packet delivery ratio,
longer connectivity time, shortest average hop distance, and efficient energy consumption.

Keywords: electric vehicles; UAVs; multi-objective optimization; genetics algorithm; EnFVs

1. Introduction

Applications of flying ad hoc networks (FANETs) and electric vehicular ad hoc net-
works (E-VANETs) have grown drastically in the past few years, spanning civil and military
practices [1,2]. The intelligent transportation system (ITS) enables communication and
connectivity in both these networks; however, the constraints and differences of these
networks create challenges in developing an efficient message routing protocol. Unmanned
aerial vehicles (UAVs) can move freely in all possible directions due to no geographical
restrictions except obstructions. An EV has a relatively independent nature compared to a
swarm of UAVs. Moreover, UAVs are energy-constrained but support higher data trans-
mission capabilities, and EVs have to rely on either dedicated short-range communications
(DSRC) or cellular networks. There exist several solutions which suggest utilizing FANETs
to support E-VANETs’ communication, but no scheme considers both networks as a single
paradigm [3,4]. The problem at hand is efficient message routing in a co-existent paradigm,
where the ideal routing protocol should prioritize faster message transmission of UAVs
without hindering their residual energy, while ensuring reliability and connectivity.

The authors in [4] propose a predictive message routing scheme for FANETs which
identifies the current geographical coordinates of a target vehicle and deems its direction
unchanged , analytically predicting the connectivity time. The scheme utilizes a quadratic
equation-based time estimation but does not shed any light on the more common possibili-
ties of no real solution or two real solutions. An interesting study in [5] uses Q-learning for
a routing protocol that actively interacts with the environment and (re)adjusts its actions.
A multi-objective routing scheme coined as EORB (energy-saver) in [6] considers node
energy and buffer to choose the best route. The authors predict trajectory and velocity
for communication and utilize a utility function for relay selection. On the other hand,
ref. [3] introduced a UAV-assisted protocol for E-VANET, in which UAVs are responsible
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for a carry-and-forward mechanism for message delivery using Q-tables and rule-based
fuzzy logic. An analytical connectivity time prediction-based routing scheme in [7] utilizes
current geographical information and movement of the vehicles to choose a route that lasts
longer. Routing in UAVs for specific applications such as public safety networks has been
proposed in [8]. The authors use reinforcement learning to increase the lifespan of these
aerial vehicles by considering energy as a routing metric. On the other hand, it is always
possible to consider the original hop count-based routing scheme which not only ensures
the minimum number of hops in a route but also results in a faster route selection [9]. Nev-
ertheless, several existing solutions have tried utilizing SDN or a multi-objective routing
for ground vehicles [10–12]. Moreover, routing in UAVs which considers metrics such as
charging stations, VANET supporting networks, and trajectory-based systems has also
been proposed [13–19]. An exhaustive review of existing schemes identified that a routing
scheme should not consider a single objective while disregarding its byproduct’s impact.
It should also be noted that none of the existing routing methods have considered the
vehicular domain as a single entity.

A multi-objective scheme often requires evolutionary algorithms and techniques such
as genetics algorithms (NSGA-I, II, etc.) which take input from a number of solutions and
reduce it to the Pareto front (best possible solutions). Almost all the optimization methods
consider a larger set of the population which increases the number of iterations, thus
becoming space and time complex. In this paper, we propose a reduction in solution space
before considering an optimization technique that identifies the Pareto front (set of optimal
solutions in the objective function space) and chooses the best solution. The proposed
genetics algorithm identifies the Pareto front and subsequently reduces or chooses the
best possible solution. The proposed multi-objective routing method in a the proposed
paradigm for mobile battery-powered vehicles employs two objective functions, data
rate and residual energy. Considering data rate not only means higher data transfer but
also confirms UAV’s inclusion in most communications routes, which leads to minimal
blockage, better propagation, and faster communications. On the other hand, utilization
of residual energy not only means sustaining the UAV’s power, but is also an ingenious
way to avoid numerous routes employing the same communication devices. Moreover, the
proposed scheme ensures reliability and identifies that the chosen path stays connected
during the complete transaction. Figure 1 The novel optimal multi-objective solution has
strong potential and applications in numerous similar problems. To the best of the authors’
knowledge, there exists no scheme which innovates with an analytical optimal solution for
multi-objective routing in both high mobility networks of EnFVs. The following are the
major contributions:

• An efficient and novel message routing scheme that considers battery-constrained
mobile vehicles;

• Mathematical modeling of a multi-objective problem for message routing and a genet-
ics algorithm;

• An efficient and reliable routing scheme for swift data transmission in a high mobility
ad hoc environment;

• An exhaustive performance evaluation using real traces of simulation for urban
mobility (SUMO) and OpenStreetMap (OSM); and

• 90%+ successful packet delivery as compared to existing solutions.

The organization of the remainder of the paper is as follows. Section 2 analytically
models the proposed unified E-VANET and FANET environment system. In Section 3,
we discuss the proposed algorithms and our solution. The proposed scheme and existing
state-of-the-art routing solutions have been comparatively evaluated in Section 4. Section 5
concludes the paper.
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Figure 1. Proposed FA-VANET paradigm. A–E are dummy names for the vehicles.

2. System Model

Our system model includes vehicles (UAV or EV) with important properties
such as 3D location, represented by li(xi, yi, zi) along with velocity of γi. These mo-
bile vehicles can communication with each other within a transmission range Ri.
The straight line distance ∆Di,j between a vehicle i and j can be identified using

∆Di,j =
√
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2. It is assumed that all EVs are at z = 0
position in the 3rd dimension, whereas UAVs can have a positive z value.

With the assumption of uniform velocity and unchanged direction for all vehicles at
time t = 0, the future position of a vehicle can be predicted as (∆Di,j(t0 + τ)) at time t0 + τ
using the current position at the current time and movement vector, as given below:

∆Di,j(t0 + τ) =
√
[(xj + vx,j × τ)− (xi + vx,i × τ)]2 +

√
[(yj + vy,j × τ)− (yi + vy,i × τ)]2+√
[(zj + vz,j × τ)− (zj + vz,j × τ)]2

(1)

A movement vector shows the acceleration of a vehicle in the direction of any one,
two, or all of the three dimensions, in a unit of time (ex. seconds). The UAVs functional-
ity allows the availability of the movement vector (vx,i, vy,i, vz,i) in their beacon or hello
messages; however, in EV, the only relatable available information is the velocity (γi) and
acceleration direction (θi). EVs share periodic basic safety messages (BSM) under the DSRC
communication protocol, which contains location, velocity, and direction information. The
movement vector for an EV can be extracted by considering the top view where the north
always points to 90◦, and by dividing the total 360◦ into quadrants of equal size (Qs). Here,
Qs = 45◦ is considered, which creates eight quadrants and an offset of Qs/2 = 22.5. Thus,
if a vehicle’s direction angle is between 0◦ ∼ 22.5◦ or 337.5◦ ∼ 360◦, then a positive value
with a velocity of γi on the x-axis is considered for vx,i. A simple movement direction metric
θ′i = (θi + Offset)/Qs is formulated, which identifies the movement of EV in a positive or
negative value over the x-axis, y-axis, or both axis. The movement of an EV on the x-axis
and y-axis in a single time unit with an unchanged direction can be estimated as:

vx,i =


(+1)× γi , if 0 ≤ θ′i < 2 or θ′i > 7
(−1)× γi , if 3 ≤ θ′i < 6
(0)× γi , if 2 ≤ θ′i < 3 or 6 ≤ θ′i < 7

 (2)
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vy,i =


(+1)× γi , if 1 ≤ θ′i < 4
(−1)× γi , if θ′i ≥ 5
(0)× γi , if 0 ≤ θ′i < 1 or 4 ≤ θ′i < 5

 (3)

with the vz,i = 0, velocity (γi) and vehicle direction (θi), a movement vector (vx,i, vy,i, vz,i)
can be formulated for an EV (i) to employ in Equation (1), using Equations (2) and (3). Prac-
tically, it is unlikely that a vehicle keeps on moving in the same direction, but even a short
time using the proposed prediction is enough to successfully communicate with reliability.

Reliable data transfer is identified by our coined metric of ωi,j, which considers data

rate and the size of the data Dti,j between two vehicles, as ωi,j =
τi,j×Txi,j

Dti,j
, where τi,j is the

connectivity time between vehicle i and j.
The value of ωi,j represents transmission between vehicles i and j, such that ωi,j < 1

depicts unreliable and incomplete data transmission. Algorithm 1 outlines a novel module
to estimate the reliability (ωi,j) of a link between vehicle i and j by incrementally exploring
connectivity time τi,j. The process terminates execution when it achieves reliable connec-
tivity (ωi,j ≥ 1) or both vehicles move out of communication range (Ri,j). A quadratic
solution can also predict ∆Di,j(t0 + τ), but through extensive trial and error evaluation, it
has been identified that often there exist multiple or no solutions, which lead to unreliable
prediction. Moreover, Algorithm 1 considers mobility metrics to estimate connectivity time
while avoiding the need for any probe message to gather network metrics (throughput,
bandwidth, etc.). The proposed reliability check only considers the data in hand (BSM
messages, etc.), and does not require any network information for prediction. The route-
reliability procedure in Algorithm 1 increases connectivity time by α (0.5, 1, etc.) time
units (seconds) with every iteration and continuously checks that both vehicles are within
communication range (∆Di,j(t0 + τ) < Ri,j). The algorithm also converges if the reliability
metric (ωi,j) reaches 1, which translates to a successful transmission of data (Dti,j). Through
this ingenious process, the reliability of a communication link can be easily identified
without the additional overhead of probe messages.

Algorithm 1 The algorithm implemented in each communicating vehicle

1: Initiate and distribute a vehicle discovery message
2: For all responses regarding the target vehicle
3: if no direct link exists between source and the destination then
4: for all loop-free responses with target vehicle do
5: Route ωs,d = min(ωs,1, ω1,2, . . . , ωl,d),
6: while calculate all ωi,j for hops between s and d do
7: while ∆Di,j(t0 + τ) < Ri,j and ωi,j < 1 do
8: τi,j = τi,j + α
9: Find ∆Di,j(t0 + τ) for hop i and j.

10: Identify ωi,j =
τi,j×Txi,j

Dti,j

11: end while
12: end while
13: if ωs,d < 1 then Remove the response as unreliable
14: end if
15: end for
16: Call multi-objective genetics algorithm () with remaining responses messages
17: else
18: Direct link between source and the destination supersedes all possible paths.
19: end if
20: Return the optimal route as transmission path.
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Moreover, the average data rate
(
O1) of the source, and all intermediate nodes in a

route (p) between the source (s) and destination (d) can be calculated as:

O1
s,d =

(
sum(Txs,i, Txi,j, . . . , Txl,d)

)
/hops (4)

On the other hand, the minimum residual energy
(
O2) of any vehicle in a route (p)

between the source (s) and destination (d) can be calculated as:

O2
s,d = min(ξs,i, ξi,j, . . . , ξl,d), (5)

where ξi,j is residual energy of vehicle i. A reliable route (ωi,j ≥ 1) having the highest O1

and O2 values, prioritizes UAVs in the path whilst keeping their residual energy afloat.

3. Multi-Objective Vehicular Routing in EnFVs

Let G(V, E) be a directed graph of a communication paradigm containing UAVs and
EVs, represented as set V with E, communication edges. In a multi-hop environment, a
communication route exists if it meets the criteria of specified constraints, C. If there exist
multiple routes between a source and a destination, then a chosen route from problem
space must satisfy the following objective functions (O1, O2):

argmaxp∈M(s,d)O
1

argmaxp∈M(s,d)O
2

s.t. C1 : ∀ argminp(ωs,1, ω1,2, . . . , ωm,d) > 1

C2 : 0 < ∀ξi ≤ 100

C3 : ∀Txi > 0,

(6)

where M(s, d) is the solution space of possible paths between s and d, considering all prelim-
inary inquisitions. The objective functions O1 and O2 are defined in Equations (4) and (5),
respectively. Algorithm 1 outlines that a sender vehicle discovers and evaluates multiple
routes towards a destination. A broadcast shares route request (RReq) messages to all
connected vehicles. Each route reply message from the destination or any intermediate
vehicle having a route to the destination includes additional information for the pro-
posed scheme, as follows: (1) minωi,d = min(ωi,j, minωj,d), (2) minξi,d = min(ξi,j, minξ j,d),
(3) sumTxi,d = sum(Txi,j, sumTxj,d), (4) hop count.

Each route reply message includes additional information which helps in route
evaluation. A route reply message includes minωi,d = min(ωi,j, minωj,d), minξi,d =
min(ξi,j, minξ j,d), sumTxi,d = sum(Txi,j, sumTxj,d) and hop count.

After receiving all route reply messages, if there is any direct route between source and
destination, then the source vehicle selects the route and terminates further route evaluation.
On the other hand, the algorithm calculates ωs,d for each route and discards all unreliable
paths (ωs,d < 1). Subsequently, the remaining routes are passed to a multi-objective optimal
route algorithm which calculates both objective functions (O1, O2) to represent each route.
In the end, the source device chooses the best route based on objective functions from
available routes. Algorithm 2 describes that using population M(s, d) in Equation (6); a
multi-objective problem under defined constraints can be formulated wherein all objective
functions values are normalized between [0, 1]. The multi-objective problem formulation
in Equation (6) supports any number of objectives and constraints. The proposed scheme
considers two objective functions for the maximum average data rate, O1 and the highest
minimum residual energy, O2 with three constraints. Along with reliability (ωs,d < 1),
O1 ensures that a route with UAVs has priorities, whereas O2 considers avoiding UAVs
with low residual energy. Considering that both objectives have a contradictory nature,
a multi-objective solution allows a fair trade-off wherein both objectives have a higher
value. Normally, a multi-objective optimization algorithm calculates the Pareto front for
all solutions, which is a set of non-dominant solutions such that no other solution exists
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that outperforms. However, all the solutions on the Pareto front are not favorable to all
objectives. Moreover, genetic algorithms and traditional evolutionary algorithms identify
and reduce the Pareto front for a solution set. The proposed scheme considers reliability and
complete message delivery using ω factor and reduces the solution space before the genetics
algorithm. It is worth noting that the population (M(s, d)) in the proposed Algorithm 2 is
already filtered out using the reliability check of Algorithm 1 and requires only minimal
processing, thus becoming the lightweight multi-objective optimal procedure. Algorithm 2
outlines the complete process of the proposed multi-objective optimization using a genetics
algorithm. First, the reduced population (M(s, d)) is each assigned objective functions
with constraints defined in Equation (6). The solution space mutates with crossover and
selection to transform into an updated population. The iterative process converges when a
solution (or Pareto front) has been identified.

Algorithm 2 Multi-objective genetics algorithm

1: M(s, d) is the solution space population having all possible but filtered routes
2: O1 and O2 are maximized along with constraints C
3: Problem modeling according to Equation (6)
4: if constraint satisfied with optimal solution then
5: Output the solution
6: else
7: Perform selection, mutation and crossover
8: Update population
9: Repeat Step 2

10: end if

4. Performance Evaluation

The proposed GA-based multi-objective solution is evaluated exhaustively in com-
parison with three existing state-of-the-art routing schemes. We believe that the energy
consumption of these battery-powered mobile vehicles is a critical issue and should be
considered in communication technologies. However, it is important that the numerical
evaluation of the systems should be realistic (nearly) and depict the environment well. Our
exhaustive comparative evaluation considers real traffic traces of New York City (4× 3 km2)
housing 400 ∼ 900 EV and 1000 UAVs. The geographical environment for the simulation
is illustrated in Figure 2. Each of the EVs and UAVs is expected to be equipped with a
battery and two communication modules, along with their complete functionality kits.
Each vehicle is assumed to have two connectivity interfaces to transmit data (40 Mb). One
communication interface for EVs has a communication range of 250 m with a 20 Mbps data
rate, and another for UAVs has a 500 m range and a 30 Mbps data rate. The EV mobility
pattern follows SUMO simulator commands [7], whereas the UAVs adhere to a random
waypoint with a speed of 10 ∼ 50 m/s [20]. A comprehensive custom-built event-driven
python simulation is designed, which populates SUMO trace, containing EV with UAVs
while generating 100 s of packets, each for a random source and destination. The simulation
ran on a Dell PowerEdge T430 with Intel Xeon processor E5-2600 v3 product family 12-Core,
with a clock speed of 3.5 GHz. The simulator accumulates all possible paths from a source
to the destination. The proposed scheme and three existing solutions chose one route out of
the accumulated paths, depending on their routing parameters and conditions. Finally, the
simulator calculates performance metrics and repeats the process for more than 100 packets
during each timestamp with a different number of total vehicles.
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Figure 2. SUMO simulation trace (New York City).

Figure 3a shows the packet delivery ratio for the proposed scheme and three exist-
ing solutions (hop-based [9], reliable routing [7], and energy-saver [6]). The comparative
analysis of the proposed scheme in Figure 3a considers hop-based only as a legacy bench-
mark; the actual comparison is between the latest connectivity time-based routing (reliable
routing [7]) and multi-objective based routing schemes (energy-saver [6]). Each section of
bars represents the evaluation of timestamps containing 1453 ∼ 1871 vehicles, where the
proposed scheme achieves more than 90% success. Interestingly, with the increase in the
number of vehicles, the hop-based performance degrades to 50% success, whereas reliable
routing achieves better results (70% packet delivery). On the other hand, the energy-saver
successfully delivers the packets for 50 ∼ 70% of the time. Figure 3b demonstrates that
the chosen route in the proposed scheme remains connected for a longer period of 3 ∼ 6 s,
whereas hop-based remained connected for 1 ∼ 5, energy-saver for 3 ∼ 5 and reliable
routing for 1 ∼ 4 s. A longer connectivity time results in a higher packet delivery ratio and
reduces the possibility of incomplete transmissions. The exhaustive experiments use real
traces of New York City that include intersections, turns, and various road structures; how-
ever, the proposed scheme still outperforms existing solutions and achieves high packet
delivery with longer connectivity. In Figure 4a, the average transmission delay per vehicle
in the chosen route is shown, where almost all schemes show a delay between 1.7 ∼ 2 s.
This delay depends on the transmission capability of the vehicles, and it does not include
propagation and queuing delay. Nevertheless, our scheme outperforms existing solutions
and achieves the lowest transmission delay per vehicle. However, the transmission delay
per vehicle is a result of an extra hop in the proposed scheme’s chosen route, as illustrated
in Figure 4b. The chosen routes in the proposed scheme and reliable routing have at most
four hops, whereas hop-based and energy-saver have ∼3 hop count. Figure 5a shows that
the average distance between each hop in the proposed scheme and reliable routing is the
lowest, which directly translates to better communication, lower propagation delay, and
minimal transmission losses. The proposed scheme and energy-saver consider residual
energy as a major route selection metric, thus resulting in as much as 87% for the minimum
energy in chosen route. The metric in Figure 5b shows the residual energy of a vehicle in the
route with the lowest battery. The hop-based and reliable routing chose routes regardless



Sensors 2023, 23, 1100 8 of 10

of energy consideration, thus achieving a minimum energy for the intermediate vehicles of
as low as 75%.
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The proposed scheme outperforms three state-of-the-art routing methods on various
fronts and achieves better packet delivery, longer connectivity, shorter transmission delay,
shortest hop distance, and energy conservation. The EVs periodically share required infor-
mation using BSM, whereas the UAVs need to include movement vectors with the route
reply messages. The modified route reply messages require additional information delivery



Sensors 2023, 23, 1100 9 of 10

for at least four float values. Moreover, the proposed scheme requires analytical processing
of the routing metrics (O1, O2, maxHV, and κ). However, the lightweight calculation is
trivial, and requires lesser efforts than or almost similar efforts to most existing schemes.
The proposed multi-objective optimal routing reduces solution space for evolutionary
algorithms and Pareto front calculations while achieving exceptional results. The eval-
uations suggest that the trade-off of additional processing for higher gains and reliable
communication is reasonably acceptable.

5. Conclusions

In this paper, a novel and unified multi-objective optimal routing scheme for FANETs
and E-VANETs (EnFVs) is proposed, which considers reliability, data rate, and residual en-
ergy as routing metrics. The proposed solution reduced the solution space for optimization
algorithms and formulated an analytical optimal solution that offers faster optimization.
Exhaustive simulation using a New York City traffic trace demonstrated that the proposed
scheme achieved a 90% packet delivery ratio with longer route connectivity (3 ∼ 5 s) and
shorter hop distance, thus outperforming three existing state-of-the-art solutions.

Author Contributions: Conceptualization, M.A. and M.Z.; methodology, M.A.; software, M.A.;
validation, M.A.; formal analysis, M.A.; investigation, M.A. and M.Z.; resources, M.Z.; data curation,
M.A.; writing—original draft preparation, M.A.; writing—review and editing, M.A.; visualization,
M.A.; supervision, M.Z.; project administration, M.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported and funded by the Saudi Arabian Cultural Mission
(SACM). We acknowledge the constructive teachings by Murat Tanik for evolutionary and genet-
ics algorithm.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAVs Unmanned aerial vehicles
EV Electric vehicles
FANETs Flying ad hoc networks
VANETs Vehicular ad hoc networks
SUMO Simulation for urban mobility
OSM OpenStreetMap
EnFVs electric and flying vehicles

References
1. Ullah, A.; Yao, X.; Shaheen, S.; Ning, H. Advances in Position Based Routing Towards ITS Enabled FoG-Oriented VANET—A

Survey. IEEE Trans. Intell. Transp. Syst. 2020, 21, 828–840. [CrossRef]
2. Oubbati, O.S.; Atiquzzaman, M.; Lorenz, P.; Tareque, M.H.; Hossain, M.S. Routing in Flying Ad Hoc Networks: Survey,

Constraints, and Future Challenge Perspectives. IEEE Access 2019, 7, 81057–81105. [CrossRef]
3. Jiang, S.; Huang, Z.; Ji, Y. Adaptive UAV-Assisted Geographic Routing With Q-Learning in VANET. IEEE Commun. Lett. 2021, 25,

1358–1362. [CrossRef]
4. Gankhuyag, G.; Shrestha, A.P.; Yoo, S. Robust and Reliable Predictive Routing Strategy for Flying Ad-Hoc Networks. IEEE Access

2017, 5, 643–654. [CrossRef]
5. Arafat, M.Y.; Moh, S. A Q-Learning-Based Topology-Aware Routing Protocol for Flying Ad Hoc Networks. IEEE Internet Things J.

2021, 9, 1985–2000. [CrossRef]
6. Sang, Q.; Wu, H.; Xing, L.; Ma, H.; Xie, P. An Energy-Efficient Opportunistic Routing Protocol Based on Trajectory Prediction for

FANETs. IEEE Access 2020, 8, 192009–192020. [CrossRef]

http://doi.org/10.1109/TITS.2019.2893067
http://dx.doi.org/10.1109/ACCESS.2019.2923840
http://dx.doi.org/10.1109/LCOMM.2020.3048250
http://dx.doi.org/10.1109/ACCESS.2017.2647817
http://dx.doi.org/10.1109/JIOT.2021.3089759
http://dx.doi.org/10.1109/ACCESS.2020.3032956


Sensors 2023, 23, 1100 10 of 10

7. Kumbhar, F.H.; Shin, S.Y. VAR2: Vehicular Ad-hoc Reliable Routing for Compatible, Trustworthy and Connected Paradigm. IEEE
Commun. Lett. 2021, 25, 670–674. [CrossRef]

8. Minhas, H.I.; Ahmad, R.; Ahmed, W.; Waheed, M.; Alam, M.M.; Gul, S.T. A Reinforcement Learning Routing Protocol for UAV
Aided Public Safety Networks. Sensors 2021, 21, 4121. [CrossRef] [PubMed]

9. Ferronato, J.J.; Trentin, M.A.S. Analysis of routing protocols OLSR, AODV and ZRP in real urban vehicular scenario with density
variation. IEEE Latin Am. Trans. 2017, 15, 1727–1734.

10. Cárdenas, L.L.; Mezher, A.M.; Barbecho Bautista, P.A.; Astudillo León, J.P.; Igartua, M.A. A Multimetric Predictive ANN-Based
Routing Protocol for Vehicular Ad Hoc Networks. IEEE Access 2021, 9, 86037–86053.

11. Yang, C.-P.; Yen, C.-E.; Chang, I.-C. A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop
Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks. Sensors 2022, 22, 8222. [PubMed]

12. Wong, R.; White, J.; Gill, S.; Tayeb, S. Virtual Traffic Light Implementation on a Roadside Unit over 802.11p Wireless Access in
Vehicular Environments. Sensors 2022, 22, 7699. [CrossRef] [PubMed]

13. Qi, W.; Hou, W.; Guo, L.; Song, Q.; Jamalipour, A. A Unified Routing Framework for Integrated Space/Air Information Networks.
IEEE Access 2016, 4, 7084–7103. [CrossRef]

14. Ayub, M.S.; Adasme, P.; Melgarejo, D.C.; Rosa, R.L.; Rodríguez, D.Z. Intelligent Hello Dissemination Model for FANET Routing
Protocols. IEEE Access 2022, 10, 46513–46525. [CrossRef]

15. Kim, S.; Kwak, J.H.; Oh, B.; Lee, D.-H.; Lee, D. An Optimal Routing Algorithm for Unmanned Aerial Vehicles. Sensors 2021,
21, 1219. [CrossRef]

16. Zhang, Y.; Qiu, H. DDQN with Prioritized Experience Replay-Based Optimized Geographical Routing Protocol of Considering
Link Stability and Energy Prediction for UANET. Sensors 2022, 22, 5020. [CrossRef]

17. Rodrigues, L.; Riker, A.; Ribeiro, M.; Both, C.; Sousa, F.; Moreira, W.; Cardoso, K.; Oliveira-Jr, A. Flight Planning Optimization of
Multiple UAVs for Internet of Things. Sensors 2021, 21, 7735. [CrossRef]

18. Santin, R.; Assis, L.; Vivas, A.; Pimenta, L.C.A. Matheuristics for Multi-UAV Routing and Recharge Station Location for Complete
Area Coverage. Sensors 2021, 21, 1705. [CrossRef]

19. Jayaweera, H.M.P.C.; Hanoun, S. UAV Path Planning for Reconnaissance and Look-Ahead Coverage Support for Mobile Ground
Vehicles. Sensors 2021, 21, 4595. [CrossRef]

20. Jiang, M.; Zhang, Q.; Feng, Z.; Han, Z.; Li, W. Mobility Prediction Based Virtual Routing for Ad Hoc UAV Network. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LCOMM.2020.3032753
http://dx.doi.org/10.3390/s21124121
http://www.ncbi.nlm.nih.gov/pubmed/34203912
http://www.ncbi.nlm.nih.gov/pubmed/36365920
http://dx.doi.org/10.3390/s22207699
http://www.ncbi.nlm.nih.gov/pubmed/36298050
http://dx.doi.org/10.1109/ACCESS.2016.2618905
http://dx.doi.org/10.1109/ACCESS.2022.3170066
http://dx.doi.org/10.3390/s21041219
http://dx.doi.org/10.3390/s22135020
http://dx.doi.org/10.3390/s21227735
http://dx.doi.org/10.3390/s21051705
http://dx.doi.org/10.3390/s21134595

	Introduction
	System Model
	Multi-Objective Vehicular Routing in EnFVs
	Performance Evaluation
	Conclusions
	References

