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Abstract: Regardless of whether the global navigation satellite system (GNSS)/inertial navigation
system (INS) is integrated or the INS operates independently during GNSS outages, the stochastic
error of the inertial sensor has an important impact on the navigation performance. The structure
of stochastic error in low-cost inertial sensors is quite complex; therefore, it is difficult to identify
and separate errors in the spectral domain using classical stochastic error methods such as the Allan
variance (AV) method and power spectral density (PSD) analysis. However, a recently proposed
estimation, based on generalized wavelet moment estimation (GMWM), is applied to the stochastic
error modeling of inertial sensors, giving significant advantages. Focusing on the online imple-
mentation of GMWM and its integration within a general navigation filter, this paper proposes
an algorithm for online stochastic error calibration of inertial sensors in urban cities. We further
develop the autonomous stochastic error model by constructing a complete stochastic error model
and determining model ranking criterion. Then, a detecting module is designed to work together
with the autonomous stochastic error model as feedback for the INS/GNSS integration. Finally, two
experiments are conducted to compare the positioning performance of this algorithm with other
classical methods. The results validate the capability of this algorithm to improve navigation accuracy
and achieve the online realization of complex stochastic models.

Keywords: GMWM; stochastic error; inertial sensor; sensor calibration; error model; Allan variance

1. Introduction

Modeling and estimation of inertial sensor errors are generally challenging tasks,
especially for low-cost inertial micro-electromechanical system (MEMS) sensors, since
the error model has complex spectral structures. For a global navigation satellite system
(GNSS) and inertial navigation system (INS) integrated system, it is usually performed
through a general Kalman filter, e.g., an extended Kalman filter (EKF), which is closely
related to the inertial sensor modeling. When the GNSS signals are partially or completely
unavailable, the INS operates in coasting mode, i.e., the navigation parameters can be
estimated completely independently of the GNSS. Consequently, the overall navigation
performance depends greatly on the accuracy of the inertial signal, or more precisely, on
the errors of the inertial signal. These errors are integrated into the INS, and their impact
increases dramatically over time. In conclusion, accurate modeling and estimation of the
error of inertial signals are crucial for improving the quality of navigation performance.

The errors of inertial sensors can generally be divided into deterministic errors and
stochastic errors. Most deterministic errors can be compensated for by physical models
and have been widely studied [1–3], while stochastic errors are difficult to model. This is
because there are many influence factors and normally the model is too complex to estimate
correctly. Traditional estimation methods, such as Allan variance (AV) and power spectral
density (PSD) analysis methods, have obvious disadvantages when the stochastic error
structure is complex [4]. AV is currently the most widely used method in engineering to
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identify and calibrate inertial sensors [5–9]. Although this method was originally intended
to study the stability of oscillators, it has been successfully applied to problems in a large
number of different types of sensors, among which is the modeling of inertial sensor
errors. However, AV is only suitable for stochastic processes that can be clearly identified
and separated in the spectral domain. More strictly, stochastic processes are thought not
to be affected by spectral ambiguity, while spectral ambiguity is common for low-cost
MEMS inertial measurement units (IMU) [10,11]. Since human judgment is required in the
identification of noise when performing Allan variance, it will absolutely cause deviation in
estimation parameters in most cases. For PSD analysis, the periodogram is an inconsistent
estimator of the power spectral density function and can be badly biased even for large
sample sizes (because of frequency leakage effects). Moreover, when the PSD has large
variability over a very narrow frequency band, it will make the least squares optimization
problem based on the difference between the empirical PSD and the model-based PSD more
difficult to solve [12]. However, reference [13] associated the wavelet variance (WV) with
the PSD, and WV can be calculated from the samples using the wavelet transform estimator.
Accordingly, reference [14] proposed a generalized wavelet moment estimation method,
which identifies the time series to be estimated as a combination of stochastic processes. In
such cases, the GMWM estimator is asymptotically consistent, and the empirical WV of the
series corresponds to the WV implied by the assumed model. The generalized least squares
method has been adopted to minimize the discrepancy between the two and to estimate
the parameters of the latter [15]. This method can effectively avoid the disadvantages of the
above traditional methods and has significant practical application value. In addition to the
modeling of a given sequence of IMU data, other researchers have studied the modeling
of IMU error within filters. Reference [16] introduced the stochastic IMU error models
within a Sage Husa adaptive robust Kalman filter. Reference [17] developed an adaptive
Kalman filter with colored noise for gyroscope random drift. However, these researchers
calibrated inertial sensors before or after the experiments, i.e., offline calibration. Moreover,
they hardly considered the time-taken for the calibration process. For these reasons, we
propose an algorithm for online modeling of inertial sensor errors based on GMWM and
mainly focus on the modeling of the stochastic error of the vehicle-mounted inertial sensors
in urban areas.

The algorithm in this work is designed under the frame of INS/GNSS integration
within KF. The main contributions of this paper are as follows: Firstly, this paper realizes
autonomous stochastic error modeling by constructing a complete stochastic error model
and a model ranking criterion. Secondly, this paper proposes a static state detecting algo-
rithm with an adaptive threshold. It collects and accumulates static data when the vehicle
stops. Finally, the frame of INS/GNSS integration is developed, combining autonomous
stochastic error modeling and detecting module as feedback within the EKF. It realizes
online modeling of the stochastic errors and provides a more accurate navigation solution
as the vehicle runs. Two experiments, the GNSS denial experiment and GNSS available
experiment, are designed to validate the feasibility of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 introduces the main contribu-
tions of this paper. It introduces the principles of the system frame first. Then, it explains
the basic principle of GMWM in Section 2.1 and presents the autonomous modeling in
Section 2.2. The static state detection with adaptive threshold is developed in Section 2.3.
Sections 2.1–2.3 detail the whole algorithm for online modeling of inertial errors. Section 3
details two conducted experiments to compare the algorithm proposed in this paper with
other classical methods, and analyzes the positioning performance. Section 4 reveals the
conclusions and further research directions.

2. Online Stochastic Error Modeling of Inertial Sensors

Generally, measurements of inertial sensors have various errors which contaminate the
true measurements from the gyroscopes and the accelerators, decreasing the performance
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of the navigation solutions. For inertial sensors, the angular rate of the gyroscope and the
specific force observation equation of the accelerometer are calculated as follows:

ω = ωtrue + bω + Sωω + cωt + εω

f = ftrue + b f + S f f + c f t + ε f
(1)

where ω is the gyro output measurement, ωtrue is the true rotation rate, bω is the gyroscope
bias, Sω is the gyroscope scale factor, cω is the gyroscope temperature coefficient, t is the
temperature, f is the accelerometer output measurement, ftrue is the true specific force,
b f is the accelerometer bias, S f is the accelerometer scale factor, c f is the accelerometer
temperature coefficient, and εω and εω are the sensor noises. For IMU calibration, the
six-position static calibration test is generally adopted to determine both the deterministic
bias and scale factor of the gyros and accelerometers. Moreover, the temperature variation
effect is neglected here in this paper due to the relatively short duration datasets. Thus, this
research mainly explores the modeling and estimation of sensor noise, εω and ε f .

GMWM is a recently proposed technique to model the sensor noise εω and ε f . We
make further improvements to GMWM to realize online modeling and design a novel
navigation solution. It is designed within an INS/GNSS integrated system with feedback
to provide information on IMU stochastic errors. The layout of the frame is shown in
Figure 1. Here, we first introduce the basic principles of the system, then more details
and some supporting conclusions will be further explained in Sections 2.1–2.3 of each
module accordingly.
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• When GNSS signal is received, the INS/GNSS integration within EFK obtains the
navigation solution. Differing from traditional INS/GNSS integration, this system has
an additional feedback to the EKF and has a stochastic error model as an augmented
error vector in the EKF. When GNSS signal is blocked, the INS works in coasting mode;

• The feedback consists of autonomous stochastic error modeling of inertial sensors and
the detecting module. The raw observations from the IMU will go to the detecting
module. The static state detecting with adaptive threshold judges the motion state
of the vehicle. If the vehicle is static, e.g., waiting before traffic lights or temporarily
avoiding pedestrians or other vehicles, the IMU data accumulate during this static
duration. After bias removal, accumulations will go to autonomous stochastic error
modeling where the GMWM will prepare the best model of inertial stochastic error.
Meanwhile, the angular rate detector will judge if the angular rate of the vehicle is
higher than 30◦/s. If not, the best model can work as an augmented vector together
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with the navigation error models in a Kalman filter. The Kalman filter outputs the bias
of gyros and accelerators fed to autonomous stochastic error modeling in return;

• The IMU data for autonomous stochastic error modeling only accumulate during the
static duration; therefore, the amount of data is quite small, and the calculation is
generally completed within a few seconds. As the vehicle runs, the IMU data accumu-
lation increases with extension of the static duration; consequently, the accuracy of the
stochastic model improves.

2.1. Generalized Method of Wavelet Moments

GMWM is an estimation method based on the idea of generalized method of moments
(GMM) estimators and the wavelet variance (WV) [16]. The GMWM makes use of the
relationship between the WV and the parameters of a latent process, estimating the latter
by minimizing the distance between the empirical WV and model-based WV [14]. The
calculation process for the GMWM can be illustrated as follows:

The wavelet coefficients are built using wavelet filters
{

h̃j,l : j = 1, · · · J
}

, where the

j-th level wavelet filter of length is Lj = (2j − 1)(Lj − 1) + 1. In the stationary or non-
stationary process, we get the maximum overlap discrete wavelet transform (MODWT)
coefficients, Wj,k

W j,k =
L1−1

∑
l=0

h̃j,lYk−1, k ∈ Z (2)

WV is defined as the variance of the wavelet coefficients, Wj,k, at the dyadic scales
τj = 2j−1.

v2(τj) = var
[
W j,k

]
(3)

For a finite observed process, the MODWT-estimated WV can be calculated as follows:

v(τj) =
1

Mj

N

∑
k=Lj

W2
j,k (4)

where Wj,k =
Lj−1

∑
l=0

h̃j,lyk−l , k ∈ (Lj; N) and Mj = N − Lj + 1.

The PSD of the wavelet coefficient, SWj( f ) =
∣∣∣H̃j( f )

∣∣∣2SFθ
( f ), supports a direct rela-

tionship between WV and PSD, where the variance of the mentioned series of wavelet
coefficients are the direct integral of its PSD as follows:

v(τj) =

1/2∫
−1/2

SWj( f )d f =

1/2∫
−1/2

∣∣∣H̃j( f )
∣∣∣2SFθ

( f )d f (5)

where Hj( f ) is the transfer function of the filter hj,l , Fθ is the model built using one or more
stochastic processes that describes the dynamics of the observed sensor error sequence, and
SFθ

is the PSD implied by the model Fθ . Therefore, there is an implicit connection between
the WV and the parameters of the data generating model, Fθ . We exploit this connection
by defining an estimator for θ, namely by matching a sample estimate of the WV together
with the model-based expression of the WV. The GMWM estimator is used to minimize the
distance between the empirical and estimated WV in order to estimate the parameters of
the latent composite processes as follows:

θ̂ = argmin
θ∈Θ

(v̂− v(θ))TΩ(v̂− v(θ)) (6)

where θ represents the time series model parameter that we intend to estimate belonging
to the compact set Θ, and Ω is a symmetric positive definite weighting matrix chosen
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in a suitable manner to make the GMWM estimator is as efficient as possible. It is also
important to mention that this method could also be based on the AV since the aforemen-
tioned Haar WV is simply twice the AV with additional benefits. A detailed mathematical
background on the GMWM can be found in [12,14].

The next step is the parameter estimation of the possible model, Fθ , and ranking these
models using specific criterion to determine the best one.

2.2. Autonomous Stochastic Error Modeling
2.2.1. Complete Stochastic Error Model

Within our research interests, the problem of modeling and estimation focuses on the
stochastic error components affecting gyroscopes and accelerators. Hence, we restricted the
possible models, Fθ , to a complex model which is defined as a combination of independent
basic stochastic processes. These basic stochastic processes are widely used within the
design of navigation filters and can precisely describe the behaviors of inertial sensors:
gaussian white noise (WN), random walk (RW), drift (DR), quantization noise (QN) and
finite auto regressive model (AR) [18–23].

In order to cover as many basic stochastic processes as possible, this paper defines the
complete model of IMU stochastic error as

error = 4× AR + DR + WN + QN + RW (7)

The complete model consisting of these basic stochastic processes is universally suit-
able to a variety of inertial sensors. When identifying the structure of the stochastic error,
all the combinations of these basic stochastic processes within the complete model are
regarded as the candidate models. Then, parameters of all the candidate models are es-
timated by GMWM and later, the best or most suitable model is selected by a designed
model ranking criterion.

2.2.2. Model Ranking Criterion

After using GMWM to estimate the parameters of all candidate models, it is necessary
to establish a model ranking criterion according to the actual requirements of noise model-
ing and estimation in the practice appliance. According to this criterion, candidate models
are evaluated and ranked to select the most suitable one. Ref. [15] gave a ranking criterion
called wavelet variance information, which weighs the model fitness and computational
complexity to evaluate the trade-off between the model accuracy and the estimation of the
time-taken. Ref. [15] statically collected IMU data for several hours, leading to a significant
amount of data. It makes the parameter estimation quite time-consuming, taking even
up to several hours, especially when the model contains a large number of stochastic
processes. However, for the online modeling problem of stochastic errors studied in this
paper, a relatively small amount of IMU data are processed. Accordingly, the computational
calculation is small, which leads to tiny difference between the time-taken for estimating
different candidate models. Consequently, only the model accuracy is considered in this
research here.

The objective function given by Equation (6) can be regarded as a mismatch between
the WV calculated by the model Fθ and the WV calculated by observed measurements,
and its purpose is to minimize this difference and make the model more closely match the
observations. Based on this physical explanation, the ranking criterion can be defined as
goodness of fitness (GOF) as follows:

GOF = (ν̂− ν(θ̂))
T

Ω(ν̂− ν(θ̂)) (8)

After the parameter estimation of all candidate models is completed by GMWM, all
candidate models are evaluated by the GOF criterion, and the model with the smallest GOF
value is selected as the optimal model.
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A summary of the overall flow of autonomous stochastic error modeling of inertial
sensors is shown in Figure 2.
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2.3. Static State Detecting with Adaptive Threshold

For the vehicle navigation system, the inertial outputs contain some specific constraint
information under different motion states. Under the premise of adding no extra cost
and devices, the information can provide additional constraints for the navigation system,
which is helpful to improve the accuracy and stability of the integrated navigation system.
In particular, when the vehicle is in a static state, the inertial sensor is not affected by
vehicle maneuvers, so the accelerations kept stable and the velocity remains close to zero.
Nevertheless, the stability analysis of the accelerometer output can be performed to detect
the static states. A common method is to use the standard deviation of the accelerometer
output in a fixed time window as the test statistic [24]:

{
Ti( Accel. X) < λ
Ti( Accel. Y) < λ

, Ti =

√√√√ 1
N − 1

i

∑
j=i−N+1

(Ai −Ui)
2 (9)

where Ai is the accelerometer output at epoch i, Ui is the mean value of the data in the fixed
time window at epoch i, N is the number of data in the fixed time window, and N = 100
in this paper. Ti is the standard deviation of the data in the fixed time window at epoch i.
Empirically, λ = 0.02.
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Due to the different characteristics of different inertial sensors, the standard deviation
of the output in the static state is different as well. Hence, adopting a fixed empirical
threshold is prone to misjudgment. Moreover, for the circumstances studied in this paper,
it is crucial to ensure that the data for GMWM estimation modeling are from a static state.
False detections have a more significant impact on the accuracy of modeling estimation
than missed detections. Aiming at solving this problem, this paper proposes an adaptive
method to determine the detecting threshold as follows:

λi =

{
2
(

k−1
k

)
λi−1 −

|Ti−Ti−1|
k , Ti−1 < λi−1

λ0 , Ti−1 ≥ λi−1
(10)

where k is the number of the static states that has been detected at epoch i. λi is the test
statistic at epoch i, λ0 is the initial value, and λ0 = 0.02, empirically.

The first term in Equation (10) physically means that when the standard deviation of
the data is smaller than the test threshold, it is more inclined to assume that the vehicle
stays in a continuous static state, so the detection threshold increases to make it easier to
detect the static state. The second item physically means that if the standard deviation
of the data between the current epoch and the previous epoch is quite large, the motion
state of the vehicle has changed. It is more inclined to assume that the vehicle is not in
the static state, so the detection threshold decreases to make it more difficult to detect the
static state. The effect of this static state detection method with adaptive threshold will be
experimentally verified in Section 4.

The static state detection with an adaptive threshold works together with the angular
rate detection as the detecting module to provide extra guidance for autonomous stochastic
error modeling. The detecting module is supported by two important conclusions given
in [21]. One is that although stochastic errors do depend on the dynamic characteristics,
for one specific IMU, the structure of the stochastic error is not affected by the applied
dynamics. Only parameter values differ according to dynamic variations. The other
is that for the general range of MEMS-IMU, the largest factor among various dynamic
characteristics affecting stochastic errors is the angular rate. Moreover, a relatively low
angular rate, normally below 30◦/s, does not cause an evident change in the parameters.
Fortunately, this is most commonly the case when turning in urban cities. Therefore, the
angular rate detector will judge if the angular rate of the vehicle is higher than 30◦/s. If not,
the stochastic error model estimated under the static state can replace the dynamic model.

In practical applications, ranking all candidate models to identify the error structure
will take up the most majority of the calculation time. However, identifying the structure
will be conducted only once, i.e., after the first static duration, since the structure will
not differ with the dynamic variations. Once the error structure is determined, only the
parameter estimation of this fixed model structure will be conducted later through the
experiment, and it can be processed within several seconds. It means that the autonomous
stochastic error modeling lasts only a few seconds after the vehicle starts moving, then the
KF will be able to adopt the stochastic error to obtain the navigation solution.

3. Experiments

This section is split into two main parts:

(1) GNSS denial experiments, which are designed to verify the feasibility of the au-
tonomous stochastic error modeling based on GMWM;

(2) GNSS available experiments, which are designed to verify the feasibility of the pro-
posed algorithm for online stochastic error modeling of inertial sensors. We compare
the navigation performance of the proposed algorithm with the other traditional
methods and further analyze the performance of the proposed algorithm in different
trajectory sections as the car runs.
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3.1. GNSS Denial Experiment

As previously mentioned, AV is probably the most commonly used method for model
identification and sensor calibration. In 1998, the IEEE standard officially put forward this
technique as a noise identification method to determine the characteristics of the underlying
random processes that perturb data. In general, AV only considers five basic stochastic
processes: QN, WN, BI, RW, and DR. These processes correspond to the linear regions
in a log–log plot, which will present a typical U/V-shaped curve in ideal circumstances.
Therefore, parameters are usually estimated by performing linear regression of (visually)
identified linear regions in such log–log plots. Further research on this principle can be
found in [8–10,25,26]. A GMWM-based algorithm can be considered as a further extension
of AV because they both identify and quantify the different noise terms that exist in inertial
sensor data. Hence, in this experiment, we compare the three models with different GOF
values generated by the autonomous stochastic error modeling method, AV method, and
loosely coupled navigation solution with a reference trajectory.

The trajectory was produced by a car with SPAN NovAtel-CPT driving around an
urban area of Beijing on 18 June 2021. The reference is provided by SPAN NovAtel-CPT
under the post-processed solution. The raw IMU data were collected statically for 2 h at 125
Hz by SPAN NovAtel-CPT, as shown in Figure 3. After the data were fed to the autonomous
stochastic error modeling method, we adopted three models with the minimum GOF values
to analyze the performance as an example. Three artificial GNSS outages, each lasting
60 s, were designed to cover two turns and one straight line, as shown in Figure 4. The
planimetric navigation drift in the earth centered earth fixed (ECEF) coordinate system at
the end of GNSS outages was analyzed to judge the quality of the five different models.
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Figure 4. The reference trajectory and three artificial GNSS outages.

3.1.1. Stochastic Error Modeling

Based on the optimal model autonomous selection method proposed in Section 3.2,
the 2 h static IMU data after bias removal were processed by the GMWM-based method
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and the AV-based method. A GMWM log–log plot of the best model with the minimum
GOF and an AV log–log plot is shown in Figure 5. It implies that the GMWM-based method
proposed in this paper can achieve a good fit to the static data. The curves in the AV log–log
plot represent the characteristics of three stochastic processes, i.e., WN, BI, and RW. The
WN parameters can be deduced from a slope of −1/2 at τ = 1 on the left part. BI due to
flicker noise in the measurements can be identified at the lowest point in the curve. The
RW parameters can be deduced from a slope of 1/2 on the right part.
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Figure 5. GMWM log–log plot of the three-axis gyroscope (left column) and AV log–log plot of
the three-axis gyroscope (right column). The red dashed lines are auxiliary lines to help identify
linear regions.

3.1.2. Experiment Validation

The five gyro stochastic models to be validated are as follows:
Model 1: Loosely coupled navigation solution;
Model 2: AV-based model;
Model 3–5: GMWM-based model with three minimum GOF values (values decrease

from 3 to 5).
The navigation drifts of the five models at the end of three GNSS outages are shown in

Figure 6, and the maximum navigation errors of the five models at the end of three GNSS
outages are shown in Table 1. Figure 6 indicates that during the three GNSS outages, the
GMWM-based model generally outperforms the other two models, with the AV-based
model in the middle of the two models. Among the three models generated by the GMWM
method, the best model with minimum GOF values gives the best results with 206 m,
153 m, and 182 m during three outages, respectively. Compared with the loosely coupled
navigation solution, the best GMWM model has an accuracy increase of 26.8%, 37.2%, and
38.3% during three outages, respectively.
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Table 1. The maximum navigation error of the five models at the end of three GNSS outages.

Model
Navigation Drift at the End of GNSS Outage (m)

Outage 1 Outage 2 Outage 3

Loosely coupled 326 243 295
AV 264 186 227

GMWM
Model 3 254 178 215
Model 4 216 164 191
Model 5 206 153 182

3.2. GNSS Available Experiment

As mentioned above, human judgment in the identification of five noise terms will
absolutely cause deviation in estimation parameters when performing Allan variance.
Aiming to solve this problem, reference [27] provided a method to automate this process
by maximizing the likelihood function of the assumed state-space models of interest using
a constrained version of the expectation maximization (EM) algorithm [28]. Hence, we
compared the algorithm for online stochastic error modeling proposed with the AV-based
method, the EM-based method, and the traditional EKF solution to verify its efficiency.

In this experiment, the trajectory was produced by a car with SPAN NovAtel-CPT
driving around an urban area of Xuzhou on 16 April 2018. The reference trajectory was
provided by SPAN NovAtel-CPT under the post-processed solution, as shown in Figure 7.
The whole trajectory lasts 50 min and the IMU data were sampled at 125 Hz. The IMU
data accumulate during the static epochs detected by static state detecting with an adap-
tive threshold. Autonomous modeling prepares the best stochastic error model as the
augmented vector in INS/GNSS integration with EKF.
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3.2.1. Static State Detection

The result of static state detection with adaptive threshold for the X axis during the
whole trajectory is shown in Figure 8. Comparing the curve of test statistic and car velocity,
it is clear that this method successfully detects almost all of the static states, including six
relatively long stops and other temporary stops. The six long stops are marked by the light
red area for further experimental analysis. For the static states marked by the red stars, the
standard deviation statistics of the fixed window have obvious statistical characteristics,
i.e., they blow the adaptive threshold, which can effectively identify the static epochs. In
particular, in the right column are two zoomed-in figures of the detected results. It shows
how the threshold (dark red lines) adjust to the actual circumstances of the detection. Since
the previous epochs are identified as static states, the adaptive threshold increases to extend
this inertia. However, when the test statistic fluctuates sharply, the adaptive threshold
shows an immediate decrease.
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Figure 8. The result of static state detection with adaptive threshold compared with the velocity
curve (left column) and two detailed figures of static states (right column). Two sections are given
detailed figures for further analysis (in dashed black circle).

3.2.2. Stochastic Error Modeling

Based on the detection results of static states, raw IMU data accumulate during the
static epochs, reaching a duration of 318 s. The accumulation of static data was fed to the
GMWM-based model, the AV-based model, and the EM-based model. For a clear view of
the estimation results of these two methods, Figure 9 simply gives the estimation results
based on all the static data accumulated throughout the whole trajectory. The parameter
estimation results of the AV-based method, the EM-based method, and the GMWM-based
method are shown in Tables 2–4, respectively.

It is worth mentioning that AV plot-plot of X axis and Y axis does not present a typical
U- or V-shaped curve. Only WN and RW can be identified from the X axis and only WN
and BI can be identified from the Y axis. The amount of data accumulation is quite small;
therefore, it requires a much larger amount of data to present the specific characteristics of
other processes. Moreover, the human identification in each process is probably unreliable,
then the parameters estimated by performing linear regression of these visually identified
linear regions may have significant deviations. The EM-based approach is very sensitive to
the initial values of parameters. When the initial values are “far” from the true values, the
EM-based approach is likely to converge to a local minima. Hence, the initial values are set
to the results estimated by AV.
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Figure 9. A GMWM log–log plot of the three-axis gyroscope (left column) and an AV log–log plot
of the three-axis gyroscope (right column). The red dashed lines are auxiliary lines to help identify
linear regions.

Table 2. The parameter estimation results of AV-based method.

Parameter X Y Z

σWN 1.763× 10−3 1.347× 10−2 1.309× 10−2

σRW 7.171× 10−3 6.334× 10−3

σBI 1.762× 10−4 1.407× 10−4

TBI 4.096 4.096

Table 3. The parameter estimation results of EM-based method.

Parameter X Y Z

σWN 1.822× 10−3 1.441× 10−2 1.358× 10−2

σRW 7.167× 10−3 6.401× 10−3

σBI 1.759× 10−4 1.413× 10−4

TBI 4.092 4.093

Table 4. The parameter estimation results of GMWM-based method.

Parameter
X Y Z

Model = 3 × AR + WN + RW Model = 3 × AR + WN + RW Model = 3 × AR + WN + RW

AR

σ1 3.009× 10−9 7.156× 10−11 4.461× 10−10

β1 8.574× 10−1 9.979× 10−1 9.298× 10−1

σ2 1.723× 10−9 4.498× 10−11 1.871× 10−10

β2 8.852× 10−1 9.978× 10−1 9.961× 10−1

σ3 3.064× 10−7 6.96× 10−8 2.340× 10−7

β3 7.512× 10−1 7.611× 10−1 3.866× 10−1

WN σWN 4.551× 10−7 6.264× 10−7 1.878× 10−6

RW σRW 1.276× 10−11 4.171× 10−15 2.506× 10−11
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3.2.3. Experiment Validation

Based on the stochastic error model generated above, three models were compared
as follows:

Model 1: INS/GNSS integration within EKF;
Model 2: EKF with AV-based model;
Model 3: EKF with EM based model;
Model 4: EKF with an online GMWM-based model.
The reference trajectory is shown in the left column in Figure 10 and the four detailed

figures of trajectories generated by the four models are shown on the right. It is clear
that the algorithm proposed is the closest to the reference trajectory regarding both turns
and straight lines. Figure 11 indicates the navigation error of the three models in X, Y,
and Z of the ECEF coordinate system. The online GMWM model reflects a more accurate
positioning result than the other two models. Table 5 shows the navigation error root mean
square error (RMS) of the three models. It clarifies that the online GMWM model has the
smallest navigation errors of 1.3265 m, 1.4384 m, and 1.6629 m in X, Y, and Z, respectively.
Compared with the AV-based method, it has an improvement of 16.6%, 14.3%, and 14.7% in
the navigation accuracy of X, Y, and Z, respectively. Compared with the EM-based method,
it has an improvement of 10.8%, 8.2%, and 7.1% in the navigation accuracy of X, Y, and Z,
respectively. It significantly validates the effect of the online algorithm.
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Figure 10. Four detailed figures of trajectories generated by the four models.

Moreover, the stochastic error model become more and more accurate with the accu-
mulation of the static data. Table 6 shows the navigation error RMS of the online algorithm
for the trajectory sections between two adjacent long stops. The positioning accuracy
increases in X, Y, and Y as the car drives, which further confirms the ability of the online
GMWM algorithm to enhance the navigation accuracy.
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Figure 11. The navigation error of the three models in X, Y, and Z of ECEF.

Table 5. The navigation error RMS of the three models.

Model
Navigation Error RMS (m)

X Y Z

Model 1 1.6675 1.7170 2.0956

Model 2 1.5916 1.6802 1.9492
Model 3 1.4877 1.5665 1.7902
Model 4 1.3265 1.4384 1.6629

Table 6. The navigation error RMS of the online GMWM algorithm between the two adjacent long
stops and the time-taken after long stops.

Stops
Navigation Error RMS (m) Time-Taken

X Y Z

1–2 1.5379 1.6442 1.8184 1.4 min
2–3 1.5267 1.6279 1.7950 1.877 s
3–4 1.4860 1.6118 1.7692 1.996 s
4–5 1.4369 1.5543 1.6974 2.184 s
5–6 1.3872 1.4265 1.6483 2.338 s

6–end 1.2969 1.4098 1.6318 2.434 s

Particular attention should be given to the time-taken for the online algorithm. All
the static epochs detected take up 318 s in the whole trajectory. Due to the relatively small
amount of data accumulation, calculations with the online algorithm take little time. After
the first relatively long stop, identifying the model structure and estimating the parameters
takes 1.4 min. After that, only the estimation of the fixed model structure will be performed,
which takes much less time, i.e., it is finished within 3 s. Table 6 also gives the time-taken
after six long stops in the right column. After the sixth long stop, the static data accumulated
reach the largest amount in the whole trajectory. It means that the stochastic error model
can work as an augmented vector within EKF solution, with a delay of 2.434 s. Therefore,
the algorithm has an excellent performance in online modeling of stochastic errors.

4. Conclusions

This paper proposes a new method for online modeling of stochastic errors of in-
ertial sensors, which combines static state detection with an adaptive threshold and the
autonomous stochastic error model based on GMWM. Firstly, the limitations of other
widely used stochastic modeling methods including AV and PSD are analyzed. Then, two
experiments are designed to compare the online GMWM algorithm with the AV-based
method and the EM-based method. The GNSS denial experiment proves the feasibility of
the proposed autonomous stochastic error model based on GMWM. Meanwhile, it reveals
the capability of the online GMWM algorithm to estimate the stochastic error and limit the
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navigation drift. The GNSS available experiment demonstrates that the online GMWM can
significantly improve the navigation accuracy as the vehicle runs. Moreover, it validates
the online performance as well.

This paper mainly focuses on exploring the stochastic error of inertial sensors, which
is related to the natural characteristics of the sensor itself. Meanwhile, for vehicle-mounted
sensors, the dynamic environment of the vehicle may affect the error behavior of the sensor
as well. Given the conclusions of our research, a stochastic error model in a static environ-
ment can work instead of a model at low speed. Therefore, further study is warranted on
how to construct the error models and estimate the parameters based on dynamic charac-
teristics. We will focus on how the inertial error model changes with vehicle maneuvers
at high speed. Future work aims to set up and conduct experiments which enable the
construction and analysis of error signals acquired in dynamic environments. Therefore,
the observability of some processes and the justification of employing complex stochastic
models for MEMS inertial sensors can only then be fully verified.
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