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Abstract: With the gradual depletion of surface resources, rock instability caused by deep high stress
and mining disturbance seriously affects safe mining. To create effective risk management, a rock
instability risk field model using microseismic monitoring data is proposed in this study. Rock
instability risk was presented visually in 3D visualization. The in-situ microseismic monitoring
data was collected and analyzed to make calculation of peak ground velocity (PGV), peak ground
acceleration (PGA), energy flux, energy and seismic moment. Indicator weights of PGV, PGA, energy
flux are confirmed by using the analytic hierarchy process (AHP) to calculate risk severity. The Copula
function is then used to solve the joint probability distribution function of energy and seismic moment.
Then the spatial distribution characteristics of risk can be obtained by data fitting. Subsequently, the
three-dimensional (3D) risk field model was established. Meanwhile, the established risk field is
verified by comparing monitoring data without disturbance and the blasting data with disturbance.
It is suggested that the proposed risk field method could evaluate the regional risk of rock instability
reasonably and accurately, which lays a theoretical foundation for the risk prediction and management
of rock instability in deep mining.
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1. Introduction

Mineral resources are not only one of the important pillars for the survival and devel-
opment of human society but they are also the material guarantee for national economic
and social development. However, with the increase in mining depth comeshigh risk.
Mining disasters caused by rock instability become more prominent in deep mining and
this consequently reduces production safety and economic benefits of mines [1]. Acoustic
emission technology is of great significance to rock strength monitoring, instability assess-
ment and precursor warning [2]. In addition, it is of paramount importance in analyzing
the characteristics of rock instability precursors and the direction of principal stress which
are critical for the prevention of geological disasters. It is also the theoretical basis of in-situ
microseismic monitoring technology [3]. The stress, strain, displacement and microseismic
activity of the mined rock instability could be obtained in real time by the in-situ monitoring
data. This in-situ monitoring data is helpful in improving the risk management in deep
mining. Therefore, the study of microseismic risk assessment is a good prospect for the
improvement and development of risk analysis and management in deep mining basing
on in-situ monitoring data.

The microseismic monitoring technique is important in carrying out geo-stress moni-
toring in deep mining. Its principle is to reflect the accurate condition of rock instability by
analyzing the mechanical parameters contained in microseismic events [4]. Therefore, the
accurate pickup and discrimination of microseismic events and explosion signals determine
its timeliness and accuracy. Ma et al. used full waveform inversion and statistical methods to
discriminate the type of induced seismicity in deep mining [5]. Dong et al. proposed discrim-
inators which have explicit and simple functions based on the three statistical techniques:

Sensors 2023, 23, 1300. https://doi.org/10.3390/s23031300 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031300
https://doi.org/10.3390/s23031300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0908-1009
https://doi.org/10.3390/s23031300
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031300?type=check_update&version=1


Sensors 2023, 23, 1300 2 of 15

the Fisher classifier, naive Bayesian classifier and logistic regression [6]. These methods
provide important reference for picking up and distinguishing microseismic events. During
the analysis process of the in-situ monitoring data, accurate calculation of the potential
location of rock instability is important for subsequent data processing. Ma et al. used
multi-point synchronous data acquisition to define microseismic source position and arrival
time [7]. Dong et al. used the velocity free MS/AE source location method to study the
variation of MS/AE location accuracy and spatial evolution characteristics of granite faults
under complex stress conditions [8]. The abnormal arrivals with different scales of errors
can be recorded by the monitoring sensors, which usually leads to large errors between the
located results and the authentic coordinates. Wang et al. combined the wavelet packet
analysis and cross-correlation technology to obtain more accurate AE signal delay to reduce
the positioning error [9]. Dong et al. proposed a collaborative localization method using ana-
lytical and iterative solutions (CLMAI), which combined with the arrivals of multi-sensor and
inversion of the real-time average wave velocity, to seek the optimal locating results [10]. The
proposed method is a beneficial complement for the current iterative methods using pre-
measured velocity. This method is applicable to microseismic sources localization under
complex abnormal arrivals in the rock mass structure of dynamic underground mining.
However, with the continuous development and optimization of travel time tomography
identification technology, a new method proposed by Dong et al. can also be applied to
define the potentially risky area [11]. The development of the real-time monitoring has
conversely made the detection of abnormal regions in complex structures a challenging
target. Hlousek et al. used wide-angle measurement data to reach tomography and obtained
the three-dimensional (3D) velocity model of depth imaging [12]. Dong et al. proposed an
improved three-dimensional (3D) tomography method combining passive acoustic emission
acquisition and active ultrasonic measurements [13]. The method is important not only for the
identification of potentially hazardous areas but also for the improvement and optimization
of positioning accuracy. Since the rock fracture characteristics and principal stress directions
are important for prevention of geological disasters, Li et al. found that the direction of
intermediate principal stress plays an important role in inducing the direction of rock crack
propagation [14]. Zhao et al. used microseismic monitoring and borehole imaging to observe
rock fracture and clarify the mechanism of rock mass mechanical behavior [15]. Dong et al.
considered the acoustic emission characteristics and anisotropy of wave velocity variation
of granite under two-dimensional stress in combination with the acoustic emission (AE)
technique [16]. Additionally, because microseismic monitoring technique is important for
mining risk assessment, Huang et al. used it to propose an effective evaluation method of
water inrush from coal mine floor [17]. Gai et al. went on to use microseismic monitoring and
ArcGIS technology to study the dynamic load disaster of coal mines in order to draw the risk
level zoning map [18]. Ma et al. used microseismic monitoring technique and moment tensor
inversion to define the fault types of key strata, which provided theoretical reference for
mining risk assessment [19]. Microseismic monitoring is also applied in the safety evaluation
research of tailings dam. Dong et al. proposed some developments and new insights for
environmental sustainability and disaster control of tailings dam, which also included the
principle of regional risk assessment [20]. He et al. combined the electrical emission (EME)
and micro-seismic (MS) monitoring to establish the coupling evaluation system based on
the monitoring results of specific rock bursts in coal mines [21]. Liu et al. used microseismic
monitoring technology to evaluate the rock stability of Hongtoushan Copper Mine [22]. All
these studies reflect the wide application of microseismic monitoring technology in the field
of mining risk assessment. However, the relationship between risk and coordinates in the
spatial monitoring area was not established in all these studies. Thus, in order to describe the
distribution of risk in space more intuitively and effectively, the three-dimensional (3D) risk
field theory has been put forward and developed rapidly.

Risk assessment can be divided into 2D risk assessment and 3D risk assessment accord-
ing to the spatial dimension of the calculated variables. 2D risk assessment which can also be
considered as regional risk assessment or risk mapping has been widely used in the early
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risk warning of chemical industry clusters [23], the mapping of risk distribution for arsenic-
contaminated land [24], regional risk ranking of environmental chemical stressors [25] and
other fields [26]. Gai et al. provided an assessment framework for regional evacuation of
major incidents [27]. For flood risk assessment, Christie et al. proposed a Coastal Risk Assess-
ment Framework (CRAF) to determine the greatest flood risk in flood risk areas [28]. Wang
et al. conducted a regional flood risk assessment in the Huaihe River Basin in China and the
flood risk was simulated by a two-dimensional hydrodynamic model [29]. For research fields
of resource exploration and management, Dong et al. proposed a new method for empty
region identification in the two-dimensional complex structure [30]. Yan et al. proposed a
novel hazard assessment method called extended set pair analysis (ESPA) based on set pair
analysis (SPA) [31]. However, with the continuous deepening of research, some researchers
have found that 2D risk assessment cannot be applied well to research under complex sample
conditions. Smerzini and Pitilakis proposed numerically computational 3D seismic risk
assessment modeling based on physics [32]. Szoke et al. [33] simulated developments of
real-time 3D radiation risk assessment. The authors built a mathematical model to calculate
radiation-related parameters and the 3D radiation risk distribution was obtained through
computer simulations. Suddle and Ale [34] indicated that t height is a crucial parameter for
the 3D risk assessment. Chemical facilities and instruments can also be analyzed better by
3D risk assessment [35]. This gradual growth and improvement of the theoretical system of
3D risk assessment, has resulted in it being applied in the petroleum and chemical industry
fields. In Grassi’s study, an improved 3D risk assessment method was presented for assessing
the vulnerability of satellites to space debris. The results of the study showed a significant
reduction of vulnerability [36] and this inspired the application of 3D risk assessment in many
fields. Thus 3D risk assessment can also be applied to rock instability using microseismic
monitoring data in deep mining.

With the development of microseismic monitoring technique, more accurate data can
be collected by arranging a certain number of sensors at suitable locations. Thus, the data
samples are statistically analyzed so that the probability and severity of risk occurrence are
quantitatively characterized and the quantitative model of risk area characteristics can be
established on the entire monitoring site area. The relationship of risk and coordinate in the
monitoring area will then be established. Therefore, the model can reveal the quantitative
characterization of the risk value of the assessed area to achieve effective risk prediction.

2. Materials and Methods
2.1. Risk Field

Based on the three-dimension risk assessment principle of field theory, if the risk value
of any point in the spatial assessment area can be calculated, then a three-dimensional
risk field model can be established [37]. The parameters such as magnitude, peak ground
velocity (PGV), peak ground acceleration (PGA), energy, etc., should be obtained in the
monitored area. Under normal conditions, they should be within the normal range when
no abnormality occurs thus the risk level in the monitoring area under these conditions
should be at a normal acceptable level.

We could assume that a certain abnormal state occurs in the monitoring area with the
introduction of certain characteristics. Depending on the actual situation, some physical
parameters in the area can have abnormal changes such as the energy, magnitude, seismic
moment, PGV, PGA and so on. These parameters can reflect the changes in the physical
quantity of the monitoring area to a certain extent. Basing on the above risk field theory,
we can therefore analyze the risk value from the perspective of severity and the probability.
Microseismic monitoring technique can be used to locate the epicenter position through
the in-situ arranged sensors so that the related parameters can be calculated [38]. If the
coordinates of the sensor monitoring point are known then the following calculation can
be performed using severity and probability and the risk value at the monitoring point
can be obtained.
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The relationship between the risk value and the monitoring point coordinates can be
established in this way, the risk of each sensor can be obtained by arranging the microseis-
mic monitoring data and the risk value of the monitoring area can be obtained by fitting
and analyzing the data collected by each sensor. Hence, the relationship between the risk
in the monitoring area and the spatial coordinates can be established. Figure 1 shows the
flow chart of the application of the risk field theory to the in-situ microseismic monitoring
data so as to obtain the risk associated with the above analysis.

Figure 1. Flow chart showing how toestablish spatial 3D risk field prediction model based on
monitoring data.

2.2. Probability

The monitoring data obtained by effectively triggered sensors is extracted from the
in-situ microseismic monitoring sensors. The accuracy of the calculation results is determined
by the number of sensors effectively triggered. 28 sensors were arranged in the monitoring
process in total and the microseismic monitoring data with more than 10 effectively triggered
sensors was selected for calculation.
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Parameters that can effectively reflect the characteristics of the monitoring area to
achieve the quantitative characterization of monitoring data should be selected. Energy
and the seismic moment are selected as the parameters to calculate the risk probability
value of the monitoring area in this study.

Since the joint probability distribution function can be solved by the Copula function,
we can select the data sample and draw the frequency distribution histogram of energy
and seismic moment. The Copula function is an effective method to construct the joint
distribution function of related non-normal variables [39].

The joint distribution function expression of two-dimensional parameters is used in
this paper is F (E, Mo).

The corresponding joint probability density function expression is f (E, Mo)
According to Sklar’s theorem, the joint distribution function is [40]:

F (E, Mo) = C (E, Mo; θ) = C (µ1, µ2; θ) (1)

The joint probability density function is:

f (E, Mo) = D (E, Mo; θ) f1 (E) f2 (Mo) (2)

In the formula, the physical meaning of each parameter is as follows:
µ1 = F1 (E), µ2 = F2 (Mo) are the one-dimensional distribution functions of each

parameter, respectively.
f1 (E), f2 (Mo) are the one-dimensional probability density functions of the correspond-

ing functions, respectively.
C (µ1, µ2; θ) is the two-dimensional Copula function.
D (E, Mo; θ) is the two-dimensional Copula density function.

2.3. Evaluation of Severity

Various characteristic levels of the monitoring area can be intuitively reflected by
parameters such as PGV, PGA, magnitude and so on. Since there are many influencing
factors, it is not practical to use some representative as the solution criterion for severity
only from the perspective of a single variable. The method of qualitative and quantitative
analysis on the basis of this condition is therefore adopted in this study and the quantitative
characterization of the severity can then be obtained. PGV, PGA, and energy flux are
selected as the parameters for solving the severity in this study. Since the purpose of
this study is to set a risk field prediction model, it is necessary to explain the severity
judgment standard which is mainly divided into two steps. The first step is dimensionless
parameterization and another one is to establish the weight coefficient matrix [41].

The dimensionless processing method is used to determine the critical maximum
value PGVmax, PGAmax, and E(f)max of the monitoring value of this parameter in the
microseismic monitoring data within a certain period of time, then set S1 = PGA/PGAmax,
S2 = PGV/PGVmax, S3 = E(f)/E(f)max (PGV, PGA, E(f) are in-situ monitoring values).

Figure 2 shows the theoretical framework for establishing weights by AHP and Table 1
shows the weight distribution for each indicator.

Table 1. Weight distribution table for each indicator.

Parameter Index Weight

PGV ϑ1 0.245
PGA ϑ2 0.299

Energy flux ϑ3 0.455
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Figure 2. Theoretical framework for establishing weights by AHP.

When the weights are well established, the severity S is then calculated as follows:

α = [ϑ1, ϑ2, ϑ3], β = [S1, S2, S3], S = α × βT (3)

2.4. Risk Field Prediction Model

In order to obtain the rock instability risk field model in a certain space region, the data
collected by the sensors is selected to calculate the parameters required for the calculation.
The risk of the coordinates of any point in the space region can then be obtained by the
above analysis [42]. The following derivations can also be obtained by the above analysis.
We can make conditional assumptions using the following steps: Firstly, we need to locate
the source coordinates for the microseismic monitoring event. The risk can then be set
as a function since the required parameters are all related to the distance to the epicenter.
However, due to the complex and changeable field conditions, only the ideal situation is
considered in this study and the external interference factors that may be caused by a series
of other reasons are excluded. Finally, the fitting solution will be carried out.

Based on the above analysis for a microseismic monitoring event, we could set a
certain point fc (x, y, z) in the monitoring area as the distance to the epicenter:

X =

√
(x − x 0)

2+(y − y 0

)2
+(z − z 0)

2 (4)

Combined with the above calculation: the risk value at point fc (x, y, z) has the
following calculation formula:

R (fc) = P (fc) S (fc) (5)

In this formula, P (fc) is calculated as follows:

P (fc) = P [f1(X), f2(X)] (6)

P [f1(x), f2(x)] is a two-dimensional Copula function with parameters E and Mo.
S (fc) is calculated as follows:

S (fc) = ϑ1 f3 (X) + ϑ2 f4 (X) + ϑ3 f5 (X) (7)

If the equation of each parameter in relation to the source distance X can be given
explicitly, f1(X), f2 (X), f3 (X), f4 (X), f5 (X) are the functions of the parameters E, Mo, PGV,
PGA, and E(f) respectively. However, after considering many factors such as calculation
errors, positioning accuracy, small amount of data and discontinuous data recording, the
study focuses on the risk field model theory for a single microseismic event. Based on
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the above analysis, f1(X), f2 (X), f3 (X), f4 (X), f5 (X) are the discrete data of each parameter
corresponding to a single microseismic event record.

ϑ1, ϑ2, ϑ3 are the weights of parameters PGV, PGA, and E(f) respectively.
Finally, the formula for calculating the value at risk is obtained:

R (fc) = P (fc) S (fc) = P [f1(X), f2(X)] [ϑ1 f3 (X) + ϑ2 f4 (X) + ϑ3 f5 (X)] = ϑ1 f3 (X) P [f1(X), f2(X)] + ϑ2f4 (X) P [f1(X),

f2(X)] + ϑ3 f5 (X) P [f1(X), f2(X)]
(8)

3. Results
3.1. Case Study

The monitoring data of a phosphate mine in a certain area in southwest China is
used for a certain period of time in this study. The location of the collection point is
determined by the actual needs of the site and microseismic sensors are deployed according
to the site requirements to monitor the situation in real time. The analysis of microseismic
monitoring data mainly follows the following steps: Firstly, microseismic monitoring data
in the corresponding monitoring area can be obtained through the monitoring stations. The
basic principle to improve the data accuracy is noise reduction [43]. The data can then be
collected by each station among the data exchange center and summarized to the ground
microseismic server.

Usually the data is divided into surface monitoring and underground monitoring
during the actual microseismic data collection process. Surface data monitoring is usually
relatively simple and the stations can be directly arranged in the corresponding monitoring
area for direct monitoring [44]. Depending on the surface conditions, data collection and
transmission is difficult and the data exchange center is usually required to summarize
the collected data. The risk can be calculated together with the data value recorded by the
sensors in order to ensure that the collected data will not be lost as much as possible and to
safely transmit the data to the surface service center effectively.

3.2. Severity Calculation

Based on the analysis in Section 2.3, we selected the in-situ monitoring data at the time
of t0: 201401040322. Table 2 shows the calculation results of severity.

Table 2. The calculation results of severity of t0: 201401040322.

Sensor Serial Number S1 S2 S3 Severity

1 8.10 × 10−8 5.04 × 10−5 2.92 × 10−9 1.51 × 10−5

2 8.27 × 10−8 8.26 × 10−6 3.20 × 10−9 2.49 × 10−6

3 4.90 × 10−7 1.60 × 10−4 7.88 × 10−8 4.79 × 10−5

6 3.45 × 10−5 4.60 × 10−3 3.21 × 10−4 1.53 × 10−3

7 2.46 × 10−6 9.47 × 10−4 3.26 × 10−6 2.85 × 10−4

8 2.37 × 10−6 3.76 × 10−4 8.45 × 10−7 1.13 × 10−4

9 1.50 × 10−5 3.58 × 10−3 1.83 × 10−5 1.08 × 10−3

11 2.07 × 10−4 4.11 × 10−4 2.80 × 10−2 1.29 × 10−2

12 1.34 × 10−5 4.08 × 10−3 1.09 × 10−4 1.27 × 10−3

13 7.56 × 10−6 1.22 × 10−3 1.29 × 10−5 3.72 × 10−4

16 5.16 × 10−7 2.32 × 10−4 2.40 × 10−7 6.97 × 10−5

17 4.65 × 10−7 1.23 × 10−4 5.63 × 10−8 3.71 × 10−5

18 4.17 × 10−7 1.09 × 10−4 4.38 × 10−8 3.26 × 10−5

25 4.38 × 10−5 3.04 × 10−2 1.25 × 10−3 9.66 × 10−3

26 1.65 × 10−5 8.60 × 10−3 9.55 × 10−5 2.62 × 10−3

27 1.77 × 10−7 1.24 × 10−4 1.67 × 10−7 3.72 × 10−5

28 2.32 × 10−7 1.34 × 10−4 3.44 × 10−8 4.01 × 10−5
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3.3. Probability Calculation

Figure 3 shows the probability density map of common Copula Functions. Different
functions describe the correlation between variables, their associations and the differ encein
their correlation structures. The AIC criterion and the BIC criterion are frequently used
to quantitatively judge the fitting ability of different functions. In applying these two
identification criteria for optimal function identification, the Copula function with the
minimum AIC value or BIC value is considered to be the optimal function for fitting the
correlation structure of the original observations [45]. Table 3 shows the AIC and BIC value
calculation results. Figure 4 shows the risk value of the calculated results in Table 4.

Figure 3. Probability density map of common Copula functions.
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Table 3. Calculation results of AIC and BIC.

Copula Function AIC BIC

Gaussian −18.4695 −17.6363
t-Copula −20.3901 −19.5569
Gumbel −13.6901 −12.8569
Clayton −34.407 −33.5738
Frank −22.888 −22.0547

Figure 4. Calculation results of the risk value of sensors.

Table 4. Risk value calculation results.

Sensor Number Severity Probability Risk

1 1.51 × 10−5 0.18 2.65 × 10−6

2 2.49 × 10−6 0.16 4.01 × 10−7

3 4.79 × 10−5 0.24 1.16 × 10−5

6 1.53 × 10−3 0.79 1.21 × 10−3

7 2.85 × 10−4 0.55 1.55 × 10−4

8 1.13 × 10−4 0.33 3.78 × 10−5

9 1.08 × 10−3 0.61 6.61 × 10−4

11 1.29 × 10−2 0.32 4.17 × 10−3

12 1.27 × 10−3 0.72 9.11 × 10−4

13 3.72 × 10−4 0.58 2.17 × 10−4

16 6.97 × 10−5 0.31 2.20 × 10−5

17 3.71 × 10−5 0.21 7.65 × 10−6

18 3.26 × 10−5 0.20 6.45 × 10−6

25 9.66 × 10−3 0.90 8.67 × 10−3

26 2.62 × 10−3 0.78 2.03 × 10−3

27 3.72 × 10−5 0.42 1.56 × 10−5

28 4.01 × 10−5 0.22 8.75 × 10−6
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3.4. Rock Instability Risk Field

During data processing, the optimal fitting function model is selected in combination
with the selected analysis data. The optimal function model can then be selected to fit and
analyze the data until convergence. If the fitting results do not converge, then reselect the
model until convergence is successful. The optimal fitting curve function model is obtained
by analyzing the residual error, fitting degree, and other error statistical analysis.

Using the above analysis, combined with the calculated risk value results and the
known sensor and source coordinates we can consider that the risk value of the sensor
nearest to the source location is the largest in this study. This is an important basis for
screening the calculated results. However, in view of the complexity and error of the in-situ
environment, in-depth research will be carried out to optimize the screening conditions in
the future. This study mainly considers only the risk distribution under ideal conditions.
Consequently, a three-dimensional scatter diagram corresponding to the three-dimensional
coordinates of the sensor and the risk value can be drawn in space.

After selecting the data within a certain range, we can assume that the actual
effective detection distance of the sensor in the actual monitoring process is within the
range of 1000 m and the source distance is within the approximate range of 0–1000 m.
Table 4 shows the magnitude of the risk value. We can get the attenuation trend of its
distance from the source by fitting results so that the change of the risk value in each
risk area can be reflected by them.

The attenuation trend can be analyzed and obtained when the source distance is equal
to a certain value in the interval, which represents the distance of the propagation of the
risk value [46]. Figure 5 shows the monitoring data at time t0: 201401040322 and this is
selected to establish a three-dimensional risk field model in a local area combined with the
above analysis.

Figure 5. The iso-surface with a risk value of 10−3 at the moment of t0: 201401040322.

Figure 6 shows the other set of monitoring data selected for analysis to establish
another three-dimensional risk field model combined with the above analysis.
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Figure 6. The iso-surface with a risk value of 10−4 at the moment of t0: 201401040322.

4. Discussion
4.1. Verifying the Validity and Availability

In order to verify the accuracy of the model, the reliability of the model is checked
by comparing the instability data existing in the field. If a clear comparison can be made,
an objective comparison result can be reflected. Furthermore, it can be proved that this
method can effectively reflect the changing laws of risk trends in this field. In this study, we
selected the monitoring data without disturbance and the monitoring data with disturbance
occurred for comparison and verification.

The selected data with disturbance for testing is T1: 201401040557, T2: 201401130504,
and T3: 201401210347. Since the recorded data has time intervals, the corresponding
monitoring data without disturbance is: t1: 201401040529, t2: 201401130537, and t3:
201401210428. Table 5 shows the calculation results compared with the above analysis.

Table 5. Comparison and summary of inspection results.

Data Comparison Group Sensor Serial Number Risk Value
without Disturbance

Risk Value
with Disturbance Ratio of Risk Value

Comparison of group data at
time T1 and t1

12 2.11 × 10−6 3.14 × 10−5 14.90
13 1.60 × 10−6 8.02 × 10−5 50.05
6 3.40 × 10−6 6.24 × 10−3 1838.85
18 1.45 × 10−6 8.67 × 10−7 0.60
27 2.97 × 10−7 2.58 × 10−6 8.71

Comparison of group data at
time T2 and t2

22 3.40 × 10−8 1.04 × 10−7 3.04
21 2.75 × 10−7 1.10 × 10−5 39.95
2 7.32 × 10−7 2.47 × 10−6 3.37
20 1.57 × 10−6 5.08 × 10−5 32.40
18 3.01 × 10−5 2.03 × 10−5 0.68
19 6.27 × 10−6 4.73 × 10−5 7.54

Comparison of group data at
time T3 and t3

18 7.98 × 10−7 4.30 × 10−5 53.85
3 5.13 × 10−6 1.02 × 10−4 20.00

17 6.39 × 10−6 1.52 × 10−5 2.39
16 9.06 × 10−7 2.00 × 10−6 2.20

Three groups of microseismic monitoring data are selected for this experimental
comparison. They are mainly selected based on the combination of the recorded data
included, equipment performance, positioning accuracy and other factors. The time interval
selected for the comparison data is within 10 s to ensure continuity. The number of
sensors triggered under normal monitoring state is different from that under the unstable
disturbance state. Also the number of sensors triggered under the unstable disturbance
state is usually large because of the large vibration amplitude. Some sensors that are
obviously triggered in the unstable state are not triggered in the normal state. Sensors
that trigger data are obviously selected for comparison in this study. Since the original
waveform recorded by the experimental equipment needs to be calculated by the algorithm,
the results recorded will be affected by the positioning accuracy. Although positioning
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accuracy is the main cause of error, basing on the above analysis and prediction, with
the gradual optimization of the positioning algorithm, the data error value will become
smaller and the accuracy as well as the practicality of the model will be improved. From
the above table, the analysis of all data results in the three sets of comparative data can be
known. The prediction results of the No. 18 sensor in the first group and the second group
have deviations but the other groups of data all meet the expectations. Furthermore, the
calculated risk value without disturbance is smaller than the risk value with disturbance
at the same level. Due to the complex actual situation of the site and the influence of the
technical conditions of the monitoring technique, the time interval of monitoring events
can only be controlled within a long-time interval which will also have a certain impact on
the prediction of results.

4.2. Limitations and Prospects

It is clear that a method to build a risk field model based on in-situ microseismic
monitoring data can be proposed. However, there are three points of view that need to be
noted inorder to continuously improve and develop this study.

a. Effect of microseismic monitoring equipment performance and positioning accuracy.

As previously mentioned, this study can provide a method to assess and calculate
the 3D risk value. However, the extremely complex field conditions and susceptible
interference from noise signals will have a great impact on the positioning results, which
is the main reason of errors for the in-situ data analysis. Therefore, this study proposes
a risk field model under ideal conditions. If this study can be combined with the in-
situ actual situation, the spatial distribution pattern of risk values may be reflected more
realistically. With the increasing improvement of microseismic monitoring technology and
the continuous optimization of positioning methods, we can continuously improve the
accuracy of the collected data. Thus, further improvement and development could be made
to optimize risk field theoretical model.

b. Calculation of probability values.

Since the focus of this study is concentrated on the analysis of individual microseismic
events, the Copula function is capable of analyzing the probability distribution of the dis-
crete data selected to calculate the probability distribution values. In this study, the Copula
function of the two-dimensional function was chosen for the solution of the probability
values. We can select multi-dimensional Copula function to optimize the model in future
researches. Also the probability values calculated in this study are the probabilities of the
distributions obtained from discrete data. Therefore, an in-depth study can be carried out
to calculate probability values to make them more relevant in future research.

c. Dynamic risk field model.

The complex topographic conditions at the site create a number of difficulties in
providing more accurate attenuation equations. The wave velocity attenuation can be
analyzed in the future by monitoring a large number of microseismic field monitoring data
over a certain continuous time period. If more accurate wave velocity attenuation is known,
then its specific distribution over a certain distance and time can also be known. In this case
the analytical model presented in Section 2.4 will be more accurate. Also, if the sampling
interval of the device is small enough, the amount of data collected in a certain time will
be significantly increased. The analysis of a large amount of continuous monitoring data
within a certain time will be the focus of future research on dynamic risk field theory.

5. Conclusions

In this study, a microseismic monitoring data based risk field model was proposed to
evaluate the regional risk of rock instability in a certain area. The rock instability risk levels
of the assessed area can be confirmed by 3D risk assessment. In conclusion, the variable
relationship between risk and coordinates can be established and characterized. According
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to the verification of validity and availability of the proposed method, accurate risk assess-
ment results of rock instability can be obtained based on the 3D risk function. Therefore,
the proposed risk field can be effectively applied to the quantitative risk assessment of rock
instability and can provide a new perspective for the development of risk assessment of
rock instability.
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