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Abstract: In this paper, the useability of feedforward and recurrent neural networks for fusion of
data from impulse-radar sensors and depth sensors, in the context of healthcare-oriented monitoring
of elderly persons, is investigated. Two methods of data fusion are considered, viz., one based
on a multilayer perceptron and one based on a nonlinear autoregressive network with exogenous
inputs. These two methods are compared with a reference method with respect to their capacity
for decreasing the uncertainty of estimation of a monitored person’s position and uncertainty of
estimation of several parameters enabling medical personnel to make useful inferences on the health
condition of that person, viz., the number of turns made during walking, the travelled distance, and
the mean walking speed. Both artificial neural networks were trained on the synthetic data. The
numerical experiments show the superiority of the method based on a nonlinear autoregressive
network with exogenous inputs. This may be explained by the fact that for this type of network, the
prediction of the person’s position at each time instant is based on the position of that person at the
previous time instants.

Keywords: measurement data fusion; neural networks; impulse-radar sensor; depth sensor; healthcare

1. Introduction

The life expectancy at birth, estimated for the global population in 2019, was, ca.,
73 years; it has been rising during the last decades and is predicted to reach 77 years by
the second half of the twenty-first century. At the same time the global fertility rate (i.e.,
the number of live births per woman over a lifetime) is decreasing [1]. As a consequence,
the global population is ageing—it is expected that the share of European and North
American population aged at least 65 years will reach 25% in 2050. Hence, there is a
growing importance of research on new technologies that could be employed in monitoring
systems supporting care services for elderly persons. The falls of elderly persons belong
to the most frequent reasons for their admission and long-term stay in hospitals [2], and
therefore the monitoring systems developed for the sake of those persons should enable
prediction and prevention of dangerous events, such as person’s fall and harmful long lie
after the fall, and also detection of those events [3,4]. The relevance of features related to
gait analysis in monitoring of elderly persons, and in particular in fall prevention, has been
emphasised in several papers [5–8].

Elderly persons are often reluctant to use the existing monitoring techniques because
they may infringe on the privacy of those persons, or require the constant wearing of some
additional devices [9,10]. As a result, two relatively new non-invasive and non-intrusive
monitoring techniques are attracting growing attention of the researchers, viz., techniques
based on depths sensors [11–20] and radar sensors [21–32].

A system based on the impulse-radar sensors and depth sensors may not only be used
for localisation of a monitored person in their apartment, but also for estimation of several
healthcare-related parameters, enabling medical personnel to make useful inferences on
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the health condition of that person [33,34]. These parameters include, but are not limited to:
the estimates of the time spent in motion and travelled distance (both helpful in assessing
the level of physical activity), the number of turns made during motion (considered an
indicator of mental health condition [35]) and the mean walking speed (considered highly
informative with respect to the overall health status [36]).

It has been recently shown by the author and his collaborators that the fusion of
measurement data from the impulse-radar sensors and depth sensors may enable reliable
estimation of the monitored person’s position [37], and that a multi-layer perceptron,
trained on synthetic data, may be effectively used for that purpose [38]. In the case of
the monitoring of elderly persons, training of neural networks may be a particularly
challenging task: involving elderly persons in the experimentation aimed at the acquisition
of the reference data could be problematic both for medical and ethical reasons. The use of
synthetic data for training of these networks may solve this problem.

In this paper, the idea of applying artificial neural networks, trained on synthetic data,
for fusion of the measurement data from the impulse-radar sensors and depth sensors, is
further explored. The multilayer perceptron treats all the measurement data independently
and does not take into account the movement history, i.e., the dependence of the current
position and direction of the movement on the past position and direction of the movement.
This characteristic of a movement may be exploited in the process of data fusion by means
of a recurrent neural network, which takes into account the previous values of its output
for predicting the current value of its output.

The novelty of the research results presented in this paper consists in application of
a new method, based on a nonlinear autoregressive network with exogenous inputs, for
the fusion of data from impulse-radar sensors and depth sensors, as well as a systematic
comparison of that method with a method based on a multilayer perceptron, and one
reference method within a comprehensive programme of experimentation, based on the
real-world data, involving:

• The localisation of a person walking around the monitored area according to various
predefined movement scenarios.

• The estimation of several parameters, carrying information important for medical
experts, on the basis of the estimated movement trajectories.

This programme included, in particular, experiments aimed at the investigation of the
influence of the obstacles, occluding a monitored person, and the walking speed of that
person on the accuracy of the estimation of the parameters.

2. Compared Methods of Data Fusion
2.1. Method Based on Nonlinear Autoregressive Network with Exogenous Inputs

This method (called NARX method hereinafter) is based on a nonlinear autoregressive
network with exogenous inputs, with the following structure (Figure 1a):

• Four input neurons—the input data represent two pairs of the x-y coordinates acquired
by means of the impulse-radar sensor and depth sensor;

• Six neurons in a single hidden layer;
• Two output neurons—the output data represent one pair of fused x-y coordinates; the

output values, delayed by two time instants, are fed back to the hidden layer;

The implementation of the neural network has been based on the procedures available
in the MATLAB Deep Learning Toolbox [39].

The artificial neural network was trained on the synthetic data generated according
to the methodology described in detail in [38]. The synthetic data representative of the
measurement data acquired by means of the impulse-radar sensors were corrupted with
zero-mean red noise and smoothed using the moving-average filter. The generation of the
synthetic data representative of the measurement data acquired by means of the depth
sensor involved the modelling of a silhouette of a moving person by means of an ellipse
following a sine-shaped trajectory oscillating around the reference trajectory; generation
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of those data took into account the fact that the depth sensors can “see” only one side of
the body.
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Figure 1. Artificial neural networks used for fusion of data: the nonlinear autoregressive network
with exogenous inputs (a) and the multilayer perceptron (b); xr and yr denote the coordinates
acquired by means of the impulse-radar sensor; xd and yd denote the coordinates acquired by means
of the depth sensor; xf and yf denote the fused coordinates; h1, . . . , h8 denote the neurons in the
hidden layers; o1 and o2 denote the neurons in the output layers.

Four different reference trajectories, presented in Figure 2, were used for generation
of the synthetic data. For each trajectory, forty realisations of the data were generated for
each type of sensor, but in the case of a depth sensor, twenty of those realisations were
fragmented to represent the corruption of the measurement data due to the occlusion. The
data acquisition rate for the depth sensor and for the impulse-radar sensors was set to
10 Hz. All the generated trajectories are presented in Figure 3.
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Figure 3. Synthetic data used for training the neural networks: the radar data (left column), the
depth data without occlusion (middle column) and the depth data with occlusion (right column).
Each graph for radar data depicts 40 superimposed sequences of synthetic data, while each graph for
depth data depicts 20 superimposed sequences of synthetic data.

2.2. Method Based on Multilayer Perceptron

This method (called MLP method hereinafter), introduced by the author in [39], is based
on a multilayer perceptron with four input neurons, eight neurons in a single hidden layer,
and two output neurons (Figure 1b).

2.3. Method Based on Kalman Filter

This method (called KF method hereinafter), described in [37], has been chosen as the
reference method because it yielded very good results in an extensive experiment based on
real-world data; moreover, the KF method (as the NARX method and the MLP method)
is a method of data-point fusion, i.e., it is based on the assumption that the fusion of the
data acquired by means of the impulse-radar sensors and the data acquired by means of
the depth sensor is performed whenever new data points are available.

This method is derived from linear transition equation modelling the movement
of a monitored person walking with nearly constant velocity, viz., with a small random
acceleration between two consecutive time instants [40]:

xn = Fnxn−1 + Γnαn (1)

where:

• xn =
[

xn x(1)n yn y(1)n

]T
is a state vector representative of the two-dimensional coor-

dinates (xn, yn), corresponding to a time instant tn, and the velocities along these
dimensions

(
x(1)n , y(1)n

)
;
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• Fn and Γn are the matrices of the form:

Fn =


1 ∆n 0 0
0 1 0 0
0 0 1 ∆n
0 0 0 1

 and Γn =


∆2

n/2 0
∆n 0
0 ∆2

n/2
0 ∆n

 (2)

with ∆n being the time interval between the time instants tn−1 and tn;
• αn =

[
αx,n αy,n

]T is a vector modelling the acceleration, whose elements are assumed
to be the realisations of a zero-mean bivariate normal distribution with a known
covariance matrix Σα = diag

{
σ2

α,x, σ2
α,y

}
.

The output equation, complementing the transition Equation (1), is modelling the
relationships between the vector of observations

~
zn and the state vector xn:

~
zn = Hxn + ηn (3)

where:

• H is an observation matrix of the form:

H =

[
1 0 0 0
0 0 1 0

]
(4)

• ηn =
[
ηx,n ηy,n

]T is a vector representative of the observation noise corrupting the
data, whose elements are assumed to be realisations of a zero-mean bivariate normal
distribution with a known covariance matrix Ση,n.

Under the above-formulated assumptions, the radar data and the depth data can be
fused by means of a Kalman filter (cf. the references [41–43]) performing, for each time
instant, the following sequence of operations [40,44]:

1. Determination of the pre-estimate x̂pre
n of the state vector and the pre-estimate P̂pre

k of
its covariance matrix:

x̂pre
n = Fnx̂n−1 (5)

P̂pre
n = FnP̂n−1FT

n + Qn (6)

where:

Qn =


1
4 ∆4

nσ2
α,x

1
2 ∆3

nσ2
α,x 0 0

1
2 ∆3

nσ2
α,x ∆2

nσ2
α,x 0 0

0 0 1
4 ∆4

nσ2
α,y

1
2 ∆3

nσ2
α,y

0 0 1
2 ∆3

nσ2
α,y ∆2

nσ2
α,y

 (7)

2. Calculation of the estimate ẑn of the observation vector:

ẑn = Hx̂pre
n (8)

3. Calculation of the so-called innovation vector:

ζn =
~
zn − ẑn (9)

and the estimate of its covariance matrix:

Σ̂ζ,n = HP̂pre
n HT + Ση,n (10)

for each vector of data
~
zn;
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4. Calculation of the final estimate of the state vector:

x̂n = x̂pre
n + Gnζn (11)

and the final estimate of its covariance matrix:

P̂n = (IN −GnH)P̂pre
n (12)

where Gn is the Kalman-gain matrix determined according to the formula:

Gn = P̂pre
n HTΣ̂

−1
ζ,n (13)

It is worth noting that, in this method, the radar data and depth data are acquired
asynchronously; therefore, an observation vector

~
zn may be representative of either the

radar data or the depth data, and is always associated with a corresponding known
covariance matrix Ση,n of the noise corrupting those data. The final estimate x̂n of the state
vector is the result of data fusion in every time instant tn.

3. Extraction of Healthcare-Related Parameters
3.1. Detection of Motion

Motion has been detected by comparing the distance travelled in a given period of
time, Tm, with a given threshold, D. A binary sequence, indicating motion, has been
determined according to the formula:

bm,n ≡
{

1 if dn >
tn−tn0

Tm
D

0 otherwise
for n = 1, . . . , N (14)

where:
n0 ≡ arg infν{ν| tν ≥ tn − Tm, ν = 0, . . . , n− 1} (15)

dn ≡
√
(xn − xn0)

2 + (yn − yn0)
2 (16)

In the above equations, {xn} and {yn} are the sequences of the coordinates of the
monitored person’s position, being either acquired by means of the sensors or fused by
means of the methods described in Section 2. The values of Tm and D should prevent small
deviations in the position from being considered as motion; Tm = 0.45 s and D = 0.1 m
have been selected because these values yielded satisfactory results in the experiments.

To reduce the influence of the dispersion of the position estimates on the detection
of motion, morphological closing [45] has been performed on the binary sequence {bm,n}.
Because the fused data sequences are acquired by means of sensors with different data
acquisition rates, the length of the structuring element used for the morphological closing
has been equal to the number of data points within the time interval Tm. The binary
sequence obtained by means of the morphological closing,

{
bm,n

}
, has been used for the

detection of the moments when a monitored person started walking, and the moments
when that person stopped walking.

3.2. Estimation of Walking Direction and Moment of Turning

The walking direction has been estimated by computing the four-quadrant inverse
tangent of two consecutive positions (xn, yn) and (xn−1, yn−1) of the walking person. It is
assumed that the counter domain of the function is [−π, π] or [−180◦, 180◦].
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A turn can be detected by comparing the absolute value of the sum of changes in
the walking direction in a given period of time, Tt, with a given threshold, Φ. A binary
sequence, indicating turning, has been computed according to the formula:

bt,n ≡

 1 if Φ <

∣∣∣∣∣ n
∑

ν=n0+2
arctan

(
xν−xν−1
yν−yν−1

)
− arctan

(
xν−1−xν−2
yν−1−yν−2

)∣∣∣∣∣ < π

0 otherwise
for n = 1, . . . , N (17)

In the above equations, {xn} and {yn} are the sequences of the coordinates of the monitored
person’s position. The values of Tt and Φ should be optimised to prevent small deviations in the
position from being considered as turns; Tt = 1 s and Φ ∼= 1.05 rad (60◦) have been selected because
these values yielded satisfactory results in the experiments.

To reduce the influence of the dispersion of the position estimates on the detection of turns,
morphological closing has been performed on the binary sequence {bt,n}. Because the fused data
sequences are acquired by means of sensors with different data acquisition rates, the length of the
structuring element used for the morphological closing has been equal to the number of data points
within the time interval Tt. The binary sequence obtained by means of the morphological closing,{

bt,n

}
, has been used for the detection of the moments when a monitored person started turning,

and the moments when that person stopped turning.

3.3. Estimation of Travelled Distance
The travelled distance has been calculated by summing up the distances between the consecutive

locations of the walking person:

s =
N

∑
n=2

√
(xn − xn−1)

2 + (yn − yn−1)
2 (18)

3.4. Estimation of Walking Speed
The estimation of the average walking speed has been calculated by dividing the estimate of

the travelled distance, determined according to Equation (18), by the estimate of the time spent in
motion, determined according to Equation (14).

4. Methodology of Experimentation
4.1. Acquisition of Measurement Data

In the experiments, the raw measurement data were acquired by means of:

• Two impulse-radar sensors based on Novelda NVA6201 (Novelda, Oslo, Norway) chip working
in the frequency range 6.0–8.5 GHz [46], and having the data acquisition rate of 10 Hz;

• An infrared depth sensor being a part of the Microsoft Kinect V2 device (Microsoft, Redmond,
WA, United States) [47], having the data acquisition rate of 30 Hz.

The experimentation programme comprised two parts (named EXP#1 and EXP#2) involving
the monitoring of the movements of a person walking within the area presented in Figure 4a:

• In experiment EXP#1, a person walked forth and back along a serpentine trajectory, among
the obstacles occluding that person (see Figure 4b); 30 walks were performed and the walking
speed was kept constant at v = 0.5 m/s.

• In experiment EXP#2, a person walked clockwise and counter-clockwise along a rectangle-
shaped trajectory (see Figure 4c), at six different values of the walking speed
v ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}m/s. For each value of the walking speed, 20 walks were performed.

Thus, the whole programme of experimentation comprised the acquisition of R = 150 sequences
of x-y data. Throughout the experimentation, the constancy of the walking speed was assured by
means of a metronome.
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Figure 4. Experimental setup (a) and the movement scenarios considered in the experiments: the
serpentine trajectory used in EXP#1 (b), and the rectangle-shaped trajectory used in EXP#2 (c). The
reference points, i.e., the points where marks have been placed on the floor, are indicated with
the crosses.

4.2. Criteria for Performance Evaluation
4.2.1. Indicators of Uncertainty of Estimation of Monitored Person’s Position

For each sequence of the data representative of the person’s position on the x-y plane:

{x̂n,r|n = 1, . . . , Nr} and {ŷn,r|n = 1, . . . , Nr} for r = 1, . . . , R (19)

the corresponding sequence of the absolute errors of the position estimation has been computed by
subtraction of the reference values:{

∆x̂n,r = x̂n,r −
.
xn,r
∣∣n = 1, . . . , Nr

}
and

{
∆ŷn,r = ŷn,r −

.
yn,r

∣∣∣n = 1, . . . , Nr

}
for r = 1, . . . , R (20)

Finally, the sequences of the absolute errors of the position estimation, viz. {∆x̂n,r} and {∆ŷn,r},
have been used for determining the R sequences of the position errors

{
∆d̂n,r

}
:{

∆d̂n,r =

√
(∆x̂n,r)

2 + (∆ŷn,r)
2
∣∣∣∣n = 1, . . . , Nr

}
for r = 1, . . . , R (21)

The assessment of the performance of the compared methods of data fusion has been based
on the inspection of the empirical cumulative distribution functions F(ξ) [48] characterising the
position errors:

F(ξ) ≡ 1
M

M

∑
n=1

I
(

∆d̂m ≤ ξ
)

(22)

where
{

∆d̂m

∣∣∣m = 1, . . . , M
}

is a sequence composed of all the position errors
{

∆d̂n,r

}
, and I( • ) is

the function taking the value 1 if the condition inside the brackets is met, and the value is 0 otherwise.
The following indicators of uncertainty of estimation have been used:

• The area under the empirical cumulative distribution function F(ξ) in the interval ξ ∈ [0, 1] m,
denoted with AECDF, taking the value from the interval [0, 1];

• The mean position error (MEAE);
• The maximum position error (MAXE);
• The standard deviation of the position errors (STDE).
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4.2.2. Indicators of Uncertainty of Estimation of Healthcare-Related Parameters
The errors corrupting the estimates of the x-y coordinates can significantly decrease the accuracy

of the estimates of the healthcare-related parameters. To reduce the effect of the propagation of the
errors of position estimation, the sequences of the x-y coordinates have been smoothed by means of a
method based on a moving average filter.

The following indicators of uncertainty of estimation have been used:

• The mean error determined with respect to the corresponding reference value (ME);
• The standard deviation of that error (SE).

5. Results of Experimentation
5.1. Uncertainty of Estimation of Monitored Person’s Position

The estimates of the two-dimensional movement trajectories obtained in experiment EXP#1 are
shown in Figure 5; the corresponding empirical distribution functions are provided in Figure 6. The
values of the uncertainty indicators described in Section 4.2.1 are presented in Table 1. The analogous
set of results, but obtained for experiment EXP#2, is provided in Figures 7 and 8, and Table 2.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 19 
 

 

person. It should be stressed that in the case of the methods based on the artificial 

neural networks, the significant increase in the accuracy of the position estimation 

has been achieved despite the fact that the artificial neural networks were trained 

only on the synthetic data. 

• In experiment EXP#1, where the monitored person was occluded by the obstacles, 

the more accurate estimates of the trajectories have been obtained by means of the 

NARX method than by means of the MLP method. This result can be explained by 

the fact that in the case of the recurrent neural network, the prediction of the person’s 

position at each time instant is based on the past position of that person. When the 

monitored person “disappears” behind the obstacle, larger measurement errors may 

corrupt the radar data and the depth data, but the recurrent neural network may 

react to such sudden changes and mitigate their influence on the result of the data 

fusion. 

• If the values of the uncertainty indicators, calculated on the basis of the fused data, 

are concerned, the best overall results have been obtained for the NARX method: it 

is reflected in the lowest values of the mean error and the median error, as well as 

the 
ECDF

A  indicator. Even though the values of the maximum error and the standard 

deviation of the errors are slightly greater when compared to the other methods, it 

does not affect the overall performance of the NARX method. 

  

(a) Radar data (b) Depth data 

   

(c) MLP method (d) NARX method  (e) KF method 

Figure 5. Estimates of the trajectories obtained in experiment EXP#1, on the basis of the radar data 

(a), the depth data (b), and the fused data (c–e); the black dashed lines denote the reference trajec-

tories. 

Figure 5. Estimates of the trajectories obtained in experiment EXP#1, on the basis of the radar data (a),
the depth data (b), and the fused data (c–e); the black dashed lines denote the reference trajectories.



Sensors 2023, 23, 1457 11 of 18Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 6. Zoom on the empirical cumulative distribution functions characterising the position er-

rors, obtained in EXP#1. 

Table 1. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained 

in EXP#1. 

Uncertainty 

Indicator 

Radar 

Data 

Depth 

Data 
MLP NARX KF 

MEAE [m] 0.22 0.17 0.16 0.15 0.16 

MEDE [m] 0.20 0.18 0.14 0.12 0.16 

MAXE [m] 0.63 0.41 0.63 0.67 0.70 

STDE [m] 0.12 0.07 0.11 0.10 0.08 

ECDFA  0.78 0.83 0.84 0.85 0.84 

 

  

(a) Radar data (b) Depth data 

Figure 6. Zoom on the empirical cumulative distribution functions characterising the position errors,
obtained in EXP#1.

Table 1. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained
in EXP#1.

Uncertainty
Indicator

Radar
Data

Depth
Data MLP NARX KF

MEAE [m] 0.22 0.17 0.16 0.15 0.16
MEDE [m] 0.20 0.18 0.14 0.12 0.16
MAXE [m] 0.63 0.41 0.63 0.67 0.70
STDE [m] 0.12 0.07 0.11 0.10 0.08
AECDF 0.78 0.83 0.84 0.85 0.84

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 6. Zoom on the empirical cumulative distribution functions characterising the position er-

rors, obtained in EXP#1. 

Table 1. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained 

in EXP#1. 

Uncertainty 

Indicator 

Radar 

Data 

Depth 

Data 
MLP NARX KF 

MEAE [m] 0.22 0.17 0.16 0.15 0.16 

MEDE [m] 0.20 0.18 0.14 0.12 0.16 

MAXE [m] 0.63 0.41 0.63 0.67 0.70 

STDE [m] 0.12 0.07 0.11 0.10 0.08 

ECDFA  0.78 0.83 0.84 0.85 0.84 

 

  

(a) Radar data (b) Depth data 

Figure 7. Cont.



Sensors 2023, 23, 1457 12 of 18Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

   

(c) MLP method (d) NARX method (e) KF method 

Figure 7. Estimates of the trajectories obtained in experiment EXP#2, on the basis of the radar data 

(a), the depth data (b), and the fused data (c–e); the black dashed lines denote the reference trajec-

tories. 

 

Figure 8. Zoom on the empirical cumulative distribution functions characterising the position er-

rors, obtained in EXP#2. 

Table 2. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained 

in EXP#2. 

Uncertainty 

Indicator 

Radar 

Data 

Depth 

Data 
MLP NARX KF 

MEAE [m] 0.14 0.12 0.07 0.07 0.09 

MEDE [m] 0.13 0.12 0.07 0.07 0.08 

MAXE [m] 0.60 0.33 0.32 0.34 0.43 

STDE [m] 0.08 0.05 0.04 0.05 0.06 

ECDFA  0.86 0.88 0.93 0.93 0.91 

While the differences among the values of the 
ECDF

A  indicator may seem insignifi-

cant, it is worth noting that the decrease in its value by only a few hundredths may indi-

cate a quite significant distortion of the estimated trajectories. In Figure 9, the estimates of 

the movement trajectories from EXP#1, obtained on the basis of the data fused by means 

Figure 7. Estimates of the trajectories obtained in experiment EXP#2, on the basis of the radar data (a),
the depth data (b), and the fused data (c–e); the black dashed lines denote the reference trajectories.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

   

(c) MLP method (d) NARX method (e) KF method 

Figure 7. Estimates of the trajectories obtained in experiment EXP#2, on the basis of the radar data 

(a), the depth data (b), and the fused data (c–e); the black dashed lines denote the reference trajec-

tories. 

 

Figure 8. Zoom on the empirical cumulative distribution functions characterising the position er-

rors, obtained in EXP#2. 

Table 2. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained 

in EXP#2. 

Uncertainty 

Indicator 

Radar 

Data 

Depth 

Data 
MLP NARX KF 

MEAE [m] 0.14 0.12 0.07 0.07 0.09 

MEDE [m] 0.13 0.12 0.07 0.07 0.08 

MAXE [m] 0.60 0.33 0.32 0.34 0.43 

STDE [m] 0.08 0.05 0.04 0.05 0.06 

ECDFA  0.86 0.88 0.93 0.93 0.91 

While the differences among the values of the 
ECDF

A  indicator may seem insignifi-

cant, it is worth noting that the decrease in its value by only a few hundredths may indi-

cate a quite significant distortion of the estimated trajectories. In Figure 9, the estimates of 

the movement trajectories from EXP#1, obtained on the basis of the data fused by means 

Figure 8. Zoom on the empirical cumulative distribution functions characterising the position errors,
obtained in EXP#2.

Table 2. Values of the uncertainty indicators, calculated on the basis of the position errors, obtained
in EXP#2.

Uncertainty
Indicator

Radar
Data

Depth
Data MLP NARX KF

MEAE [m] 0.14 0.12 0.07 0.07 0.09
MEDE [m] 0.13 0.12 0.07 0.07 0.08
MAXE [m] 0.60 0.33 0.32 0.34 0.43
STDE [m] 0.08 0.05 0.04 0.05 0.06
AECDF 0.86 0.88 0.93 0.93 0.91

The analysis of the presented results is leading to the following conclusions:

• The fused estimates of the person’s position are characterised by lower bias and dispersion
when compared with the radar-data-based and depth-data-based estimates; moreover, the fused
estimates are only slightly affected by the obstacles occluding a person. It should be stressed
that in the case of the methods based on the artificial neural networks, the significant increase
in the accuracy of the position estimation has been achieved despite the fact that the artificial
neural networks were trained only on the synthetic data.
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• In experiment EXP#1, where the monitored person was occluded by the obstacles, the more
accurate estimates of the trajectories have been obtained by means of the NARX method than
by means of the MLP method. This result can be explained by the fact that in the case of the
recurrent neural network, the prediction of the person’s position at each time instant is based on
the past position of that person. When the monitored person “disappears” behind the obstacle,
larger measurement errors may corrupt the radar data and the depth data, but the recurrent
neural network may react to such sudden changes and mitigate their influence on the result of
the data fusion.

• If the values of the uncertainty indicators, calculated on the basis of the fused data, are concerned,
the best overall results have been obtained for the NARX method: it is reflected in the lowest
values of the mean error and the median error, as well as the AECDF indicator. Even though the
values of the maximum error and the standard deviation of the errors are slightly greater when
compared to the other methods, it does not affect the overall performance of the NARX method.

While the differences among the values of the AECDF indicator may seem insignificant, it is
worth noting that the decrease in its value by only a few hundredths may indicate a quite significant
distortion of the estimated trajectories. In Figure 9, the estimates of the movement trajectories from
EXP#1, obtained on the basis of the data fused by means of the NARX method and by means of the
WINFNS method, minimisation of weighted infinity-norm [37], are presented; for the NARX method
(Figure 9a), the value of the AECDF indicator is 0.85, while for the WINFNS method (Figure 9b), it
is 0.83. Moreover, even a small reduction of the uncertainty of the position estimates may have
significant impact when those estimates are used for determining quantities carrying information
important for medical and healthcare services.
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WINFNS method described in [37] (b); for the NARX method, the value of the AECDF indicator is
0.85, while for the WINFNS method, it is 0.83.

Finally, during the experiments, it has been observed that the number of neurons in the hidden
layer varying from 6 to 10 does not influence significantly the results of the data fusion; however, in
the case of a nonlinear autoregressive network with exogenous inputs, the increase in the number of
the hidden neurons may make the training more challenging because more complex networks are
prone to overfitting.

5.2. Uncertainty of Estimation of Healthcare-Related Parameters
5.2.1. Experiment EXP#1

The values of the uncertainty indicators, obtained on the basis of the radar data, depth data,
and fused data, acquired in EXP#1, are presented in Table 3.
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Table 3. Values of the uncertainty indicators obtained in EXP#1.

Uncertainty Indicator Radar Data Depth Data MLP NARX KF
Number of turns
ME –6.00 –0.73 –0.13 0.07 0.93
SE 1.08 0.91 1.36 1.34 1.20
Travelled distance [m]
ME –1.43 –6.86 –0.74 –0.79 –0.53
SE 0.42 0.13 0.30 0.33 0.25
Walking speed [m/s]
ME –0.03 –0.04 –0.02 –0.02 –0.01
SE 0.01 0.00 0.01 0.01 0.01

If the EXP#1 results, obtained for the radar data and for the depth data, are considered, it can be
noticed that:

• In the case of the radar data, the number of turns is significantly underestimated. This may
be explained by the smoothing of the radar data during their preprocessing: as a result, two
consecutive turns are often treated as one.

• In the case of the depth data, the travelled distance is significantly underestimated. This may be
explained by the obstacles occluding the monitored person and making the tracking impossible.

• The radar-data-based and depth-data-based estimates of the mean walking speed are
similarly accurate.

If the EXP#1 results obtained for the fused data are considered, it can be noticed that:

• The values of the uncertainty indicators are generally lower than the uncertainty indicators
obtained for the radar data and for the depth data.

• The estimates of the number of turns, obtained for the MLP method and the NARX method, are
considerably more accurate than those estimates obtained for the KF method—in the case of the
last method, the number of turns for each realisation of the scenario has been overestimated by
almost one. This may be explained by the corruption of the depth data related to “disappearing”
of the monitored person behind the obstacles and the inability of the KF method to mitigate
this phenomenon.

5.2.2. Experiment EXP#2
The dependence of the values of the uncertainty indicators on the walking speed is presented in

Figures 10–12. The analysis of those results leads to the following conclusions:

• In the case of the estimates of the number of turns, the values of the ME indicator, determined
on the basis of the radar data, are generally lower than zero—meaning that, regardless of the
walking speed, the number of turns is underestimated; on the other hand, the values of the ME
indicator, determined on the basis of the data fused by the KF method, are greater than zero,
which means that the number of turns is overestimated. The best results are obtained for the
depth data and for the data fused by means of the MLP method and the NARX method—the
values of the ME indicator, determined on the basis of those data, are not significantly affected
by the walking speed of the person.

• In the case of the estimates of the travelled distance and the estimates of the walking speed,
the values of the ME indicator, determined on the basis of the data fused by means of the KF
method, are slightly better than the values of this indicator, determined on the basis of the data
fused by means of the other methods. Moreover, for all the methods of data fusion, the values of
the ME indicator decrease with the increase in the walking speed of the monitored person. This
phenomenon is caused by the deviations of the estimates of the walking trajectory around the
corners of that trajectory—the greater the walking speed, the smoother the trajectory becomes
and the smaller the estimates of the distance and walking speed.
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6. Conclusions
In this paper, the useability of feedforward and recurrent neural networks for fusion of data

from impulse-radar sensors and depth sensors, in the context of healthcare-oriented monitoring of
elderly persons, has been investigated. A new method for fusion of data has been proposed, viz., a
method based on a nonlinear autoregressive network with exogenous inputs (NARX method), and
compared with a method based on a multi-layer perceptron (MLP method) as well as one reference
method based on a Kalman filter (KF method). All the artificial neural networks have been trained
on synthetic data. An extensive programme of experimentation, designed for comparison of all the
methods, has involved localisation of a person within a monitored area, and the estimation of several
parameters of gait, considered important for medical experts, viz., the number of turns made during
walking, the travelled distance, and the mean walking speed.

The results of experimentation have confirmed that the artificial neural networks trained on
synthetic data may be effectively used for fusing the data from the impulse-radar sensors and from
the depth sensors. The best overall results have been obtained for the NARX method: in the case
of the recurrent neural network, the estimate of the position of a person is based on the estimates
of that position at previous time instants; therefore, such network may effectively react to sudden
changes in the measurement data, caused by stops and occlusions, and mitigate their influence on the
estimated movement trajectory. This cannot be achieved for the feedforward neural network without
a feedback loop because it treats the measurement data independently, without taking into account
the movement history.
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