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Abstract: Nafion possesses many interesting properties such as a high ion-conductivity, hydrophilic-
ity, and thermal and chemical stability that make this material highly suitable for many applications
including fuel cells and various (bio-)chemical and physical sensors. However, the mechanical
properties of a Nafion membrane that are known to be affected by the viscoplastic characteristics of
the material itself have a strong impact on the performance of Nafion-based sensors. In this study, the
mechanical properties of Nafion under the cyclic loading have been investigated in detail. After cyclic
tensile loading (i.e., maximum elongation about 25% at a room temperature and relative humidity
about 40%) a time-dependent recovery comes into play. This recovery process is also shown being
strain-rate dependent. Our results reveal that the recovery behavior weakens after performing several
stress–strain cycles. Present findings can be of a great importance in future design of various chemical
and biological microsensors and nanosensors such as hydrogen or glucose ones.
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1. Introduction

Nafion, a brand name for a sulfonated tetrafluoroethylene-based fluoropolymer-
copolymer, has attracted a great attention since its discovery in the late 1960s. The interest
in Nafion is derived from its unique structure [1,2] and properties (i.e., good chemical
and thermal stability, high hydrophilicity of ionic-water domains, and ion-conductivity to
cations, as well as permeability to water, etc.); there it is used in various models [3] and ap-
plications ranging from various sensors [4–15], fuel cells [16], and water electrolyzers [17] to
chlor-alkali cells [18]. In addition, Nafion is the key constituent in the ionic polymer–metal
composites (IPMCs) working as sensors and actuators [19,20]. However, most Nafion ap-
plications relate to Nafion’s sensor capabilities. It is worth of noting that indispensable part
of Nafion-based microsensor/nanosensor development is the understanding of mechanics
of the sensor material. Hence, to enhance the sensitivity and reliability of the Nafion-based
sensors, the dependency of the fundamental mechanical properties of Nafion (e.g., the
Young’s modulus and the Poisson’s ratio) on the various external conditions must be
known [16,19]. As for mechanical properties, the character of tensile stress–strain response
is also of a great importance. The mechanical properties and structure of Nafion depend on
temperature, the level of hydration, the previous loading history [21–25], and thickness of
the Nafion (see Ref. [26] for Nafion in the form of thin film and Refs. [27,28] for a bulk mem-
branes). Modeling of the mechanical properties of Nafion takes into account various factors
affecting the behavior of Nafion, such as its membrane structure [29], morphology [30], ther-
modynamic activity of water [31], and/or its viscoelastic/viscoplastic character [23,32,33].
For example, the dependence of Young’s modulus of Nafion on the hydration level was
discussed by Nemat-Nasser et al. [34,35]. The Poisson’s ratio of the Nafion membranes
was reported to be around 0.4 in ambient conditions [36]. It has also been shown that the
Poisson’s ratio of the Nafion increases with increasing fraction of uncompressible water
molecules [37]. Then, the dependency of the mechanical properties of the “Nafion 117”
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membrane on temperature and humidity was evaluated by Bauer et al. [38]. Similarly, the
effect of cyclic loading on fatigue properties of Nafion membrane was also studied [39].
However, in these studies the authors considered many thermomechanical cycles without
focusing on the initial several loading cycles.

In this work, an experimental investigation on Nafion under cyclic loading is per-
formed. Unlike the cyclic loading study in [39], the present cyclic loading study involves
only several initial loading cycles. Beside the stress–strain behavior, the results of con-
ventional thermal analysis such as differential scanning calorimetry and thermodynamic
analysis are presented. As for stress–strain behavior, stress-free recovery as a function of
the strain rate has been studied. The origin of the recovery was elucidated to residual
stresses established after loading and following unloading. We remind the reader that the
shape memory phenomena were already reported [40]. Briefly, the temperature memory
effect refers to the capability of Nafion to memorize temperature at which the deformation
of Nafion sample occurs. After deformation, the phenomenon was observed through a
recovery stress increase when varying temperature at the iso-strain condition (strain kept
constant) [40]. Importantly, the strain recovery observed in our study bears some similari-
ties with the pseudoelastic effect of shape memory alloys [41] loaded above temperature
Af (austenite finish). The pseudoelastic recovery takes place at a constant temperature;
however unlike Nafion recovery, the pseudoelastic recovery proceeds immediately during
unloading. In addition, the main differences between the shape memory phenomena
observed in both the shape memory alloys and Nafion (i.e., in the present study the Nafion
in the form of 180 µm thick membrane is considered) are shown. Finally, the possible
cause of the behavior as well as the application of Nafion ultra-thin foils in design of
micro-/nanosensors is discussed.

2. Materials and Methods

A commercial Nafion membrane N117 of thickness about 180 µm was purchased
from IonPower company. The structure of commercially available Nafion-117 membrane is
shown in Figure 1. The used symbols are x = 6.5, and M+ is the exchangeable counterion
with a capacity of 0.91 meq g−1 (equivalent weight = 1100).
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Figure 1. The chemical structure of the used Nafion membrane-N117 where x = 6.5, and M+ stands
for an exchangeable counterion.

All the experiments were carried out in ambient temperature with a stable relative
humidity of ~40%. The transition temperatures were obtained using the differential scan-
ning calorimeter (DSC), (TA Instruments Trios v5.1.1.46572, New Castle, DE, USA). The
thermal rate during heating and cooling was 5 K/min. The used gas in the DSC chamber
was N2 with the gas flow 60 mL/min. Thermodynamic analysis was conducted using
a DMA analyser (DMA 850 tester from TA Instruments). The fixed frequency was 1 Hz,
and the temperature range was from 30 ◦C to 120 ◦C. The loss and storage modulus and
tan(delta) (internal friction) were evaluated in the temperature range. The mechanical tests
were caried out at room temperature on thermo-mechanical tester (Walter + Bay), described
in Ref. [42], with various strain rates. The sample stretching in the tester was controlled by
engineering strain.
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3. Results and Discussion

The dependency of heat flow on temperature is presented in Figure 2. As can be seen
from the results, two endothermic peaks at 60 ◦C and 170 ◦C during heating the sample
were observed. Both of these peaks marked as Tg1 and Tg2 represent the glass transitions.
According to Ref. [43], Tg1 and Tg2 peaks might be related to the change of mobility of the
Nafion’s main chain and to the side chain due to the interactions among the sulfonic acid
functional groups, respectively.
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Figure 2. Dependency of heat flow on temperature used for determination of the transition temperatures.

Figure 3 shows the dependency of the storage and loss moduli and tan(delta) on
temperature which ranges from 30 ◦C to 120 ◦C. The onset of the storage modulus, which
decreases during the sample heating, corresponds to the polymer softening at temperature
of 60 ◦C (see Figure 2). The increase in tan(delta) during heating up after exceeding Tg1 is
related to the internal friction in the membrane.
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Figure 3. The diagram of storage and loss moduli, and internal friction as a function of temperature
from 30 ◦C to 120 ◦C.

Finally, the effect of cyclic loading on the mechanical properties of Nafion which is
needed for the successful design of the various Nafion-based microsensors/nanosensors
was evaluated by performing a series of mechanical tests. At the beginning, the first strain
recovery at room temperature after one loading cycle was observed. Figure 4a shows
diagram of true stress versus true strain for a strain rate of 0.25%/s. The dependency of
strain recovery on time is given in Figure 4b.
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Figure 4. (a) Relationship between true stress and true strain and (b) Observed dependency of the
strain recovery on time.

It is noteworthy that a significant strain recovery after unloading can be observed.
Briefly, the strain returns from level 7.8% to 2.4% under a small load (i.e., the small load of
0.3 N keeps the sample stretched in order to facilitate strain reading in the measurement
apparatus) in 40 min. Then, in addition to this time-dependent strain recovery, during
unloading a large part of strain is also recovered, that is, from 22% to 7.8%.

We emphasize here that for the sensing purposes, it is necessary to understand how the
strain recovery depends on strain rate for the especially several loading cycles. Similarly, it is
also necessary to evaluate whether the Young’s modulus of Nafion is strain rate dependent.
We perform the cyclic loading, and the obtained experimental results are summarized in
Figures 5 and 6. The dependency of the engineering stress on engineering strain for various
strain rates (i.e., strain rates were 0.23%/s, 1%/s and 4%/s, respectively) and five loading
cycles is given in Figure 5. Figure 6 presents the engineering strain recovery versus time after
final (i.e., fifth) unloading. Finally, the Young’s modulus of Nafion sheet obtained from the
red tangent line at the starting linear part of the loading is also given in Figure 5.
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4. Conclusions

Based on the experimental results given in Figures 5 and 6, the following conclusion
can be drawn:

(1) The Young’s modulus does not depend on the strain rate; that is, the present study
considered Nafion sheet samples loaded with strain rates of 0.23, 1 and 4%/s, from
which the obtained Young’s moduli were approximately identical within the measure-
ment error;

(2) The strain recovery during unloading in the first cycle depends on the speed of
strain rate. Briefly, to achieve the larger unloading strain recovery requires the faster
strain rate;

(3) With an increasing number of loading cycles, the dependence of strain recovery on
the speed of strain rate decreases. Namely, the dependency of strain recovery on the
strain rate diminishes with the number of loading cycles. We also show that for all
study considered cases the strain recovery is decreases from 25% (first cycle) to about
~15% (final cycle);

(4) As for a time-dependent strain recovery after unloading (i.e., in the fifth cycle), the
amount of strain recovery strongly depends on the strain rate. The faster the strain
rate is, then the larger strain recovery is. For all the strain rates, the strain recovery
slows down with increasing time and is negligible after 4000 s. Besides, the time-
dependent strain recovery is due to the viscoplastic character of the polymer and
residual stresses established after loading (see modeling with the viscoplasticity
theory-based overstress [44,45]). The recovery is not complete due to some damage of
the material structure.

Interestingly, our results can be used to either evaluate defects in Nafion-based sensors
or can be used to design the humidity nanosensors. It means that for humidity sensors, the
hydration affects the heat flow (see Figures 2 and 3), and, correspondingly, it enables an
easily accessible determination of a relative humidity, particularly in cases of biosensors
operating in liquid environments. We foresee that due to the similarities of Nafion with



Sensors 2023, 23, 1488 6 of 8

the shape memory alloys (i.e., the shape memory effect and pseudoelasticity) [46], the
Nafion will also be a suitable candidate in design of nanomechanical-based mass spec-
trometers [47] or various metamaterials [48] such as those considered for biomedical and
energy applications.
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