
Citation: Kim, S.-H.; Kim, T. Local

Scheduling in KubeEdge-Based Edge

Computing Environment. Sensors

2023, 23, 1522. https://doi.org/

10.3390/s23031522

Academic Editor: Antonio Guerrieri

Received: 10 November 2022

Revised: 12 January 2023

Accepted: 26 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Local Scheduling in KubeEdge-Based Edge
Computing Environment
Seong-Hyun Kim and Taehong Kim *

School of Information and Communication Engineering, Chungbuk National University,
Cheongju 28644, Republic of Korea
* Correspondence: taehongkim@cbnu.ac.kr; Tel.: +82-43-261-2481

Abstract: KubeEdge is an open-source platform that orchestrates containerized Internet of Things
(IoT) application services in IoT edge computing environments. Based on Kubernetes, it supports
heterogeneous IoT device protocols on edge nodes and provides various functions necessary to
build edge computing infrastructure, such as network management between cloud and edge nodes.
However, the resulting cloud-based systems are subject to several limitations. In this study, we
evaluated the performance of KubeEdge in terms of the computational resource distribution and
delay between edge nodes. We found that forwarding traffic between edge nodes degrades the
throughput of clusters and causes service delay in edge computing environments. Based on these
results, we proposed a local scheduling scheme that handles user traffic locally at each edge node. The
performance evaluation results revealed that local scheduling outperforms the existing load-balancing
algorithm in the edge computing environment.

Keywords: edge computing; Kubernetes; KubeEdge; EdgeMesh; load balancer; microservice

1. Introduction

With the development of Internet of Things (IoT) technology, various IoT sensors
and devices are being deployed daily, and there is an increase in the number of artificial
intelligence services that can recognize IoT user behavior patterns and situations based
on the data collected from IoT devices [1,2]. In such a scenario, the user data are typically
transferred to the cloud located at the center of the network and are analyzed and processed
using cloud computing resources. However, cloud-based systems have a centralized
structural limitation in meeting the requirements of IoT application services [3,4], which
require a low response latency that is within tens of milliseconds. Edge computing was
proposed to solve this problem. Edge computing reduces the response time by placing
computational resources on locally distributed edge nodes instead of transmitting the
data to the central cloud, thereby meeting the requirements of time-critical IoT application
services [5].

A container is a unit of software that packages files such as libraries, binaries, and other
configuration files required to run an application on an operating system (OS). Therefore, it
provides the advantage of preventing program execution errors due to different environ-
ments such as networks, security, and build environments, thus driving them to operate
stably. The container simplifies the distribution, installation, update, and deletion of IoT
application services on edge nodes due to the lightness and portability of the container [6].
Moreover, various types of IoT application services can be provided simultaneously on
each edge node. As such, containers are the most suitable technology for providing IoT
application services in an edge computing environment. However, container orchestration
is required to monitor and manage resource states via multiple edge nodes in an edge
computing environment because containers can be applied only to the deployment and
management of application services on a single node [7,8].

Sensors 2023, 23, 1522. https://doi.org/10.3390/s23031522 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031522
https://doi.org/10.3390/s23031522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6246-6218
https://doi.org/10.3390/s23031522
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031522?type=check_update&version=1

Sensors 2023, 23, 1522 2 of 13

Kubernetes [9,10] is a representative container orchestration platform released by
Google, which provides the deployment, resource monitoring, and management of container-
based application services in multinode environments. It provides a series of processes
for managing IoT application services with containers, such as creation and deletion of
containers, scheduling to distribute the increased containers to appropriate nodes, and
clustering such that multiple nodes can be used as a single server [11].

KubeEdge [12] is a lightweight container orchestration platform that allows container-
based IoT application services to run on edge nodes. It incorporates the Kubernetes service
used in cloud computing into edge computing. KubeEdge can control edge nodes in the
same manner used to operate the Kubernetes cluster in the existing cloud environment and
can readily distribute various IoT application services such as machine learning, image
recognition, and event processing to edge nodes. EdgeMesh [13] essentially supports
service discovery and proxy functions for each pod in the application. It also provides
load balancing by distributing user traffic to each pod in the cluster. However, this load-
balancing function has a fundamental drawback in edge computing environments. In
an edge computing environment, edge nodes are geographically dispersed and the pods
of the applications are also distributed throughout the edge nodes. In other words, the
load-balancing function in EdgeMesh distributes the user traffic to the application pods in
the cluster. However, it encounters latency when forwarding requests between edge nodes,
thereby degrading the application throughput in the cluster [14]. To solve this limitation in
a KubeEdge-based edge computing environment, we propose a local scheduling scheme
that processes user traffic at the local node without forwarding the traffic to the remote
nodes. Experimental evaluation results prove that the local scheduling scheme can provide
low latency as well as improve the throughput of the cluster by suppressing the traffic
forwarding in edge computing environments.

The contributions of this study can be summarized as follows:

• To the best of our knowledge, this study is the first to evaluate the performance of
KubeEdge. We conducted diverse performance evaluations regarding the amount of
computational resources, in other words, the pod distribution throughout edge nodes
and the delay between edge nodes.

• It was observed that the throughput of the cluster can be degraded due to traffic
forwarding between edge nodes. We address the delay caused by the load balancing of
EdgeMesh, which negatively impacts the performance of edge computing environments.

• To overcome the performance degradation in a KubeEdge-based edge computing
environment, we propose a local scheduling scheme and compare the performance in
terms of throughput and latency, which provides important lessons for operating the
KubeEdge platform in an edge computing environment.

The remainder of this paper is organized as follows. Section 2 introduces related
research, and Section 3 describes the basic background of KubeEdge architecture, compo-
nents, and EdgeMesh. Section 4 describes the system model and the problem definition as
well as the proposed local scheduling scheme. Section 5 evaluates the diverse performance
of KubeEdge, such as the effect of pods and the effect of node-to-node delay between edge
nodes, and compares the load-balancing scheme and EdgeMesh’s round-robin scheme in
cluster performance. Finally, Section 6 concludes this paper.

2. Related Work

This section presents an analysis of studies related to KubeEdge and throughput
improvement techniques in edge computing environments. KubeEdge was announced by
Huawei [15] in 2018 as an open-source system that extends the functions of applications
requiring service distribution, expansion, and management to edge hosts. Yang et al. [16]
investigated artificial intelligence (AI) for networks (NET4AI) and EdgeMesh computing
for networks. They extended the role of cloud to communication networks and suggested
a development direction for integrated communication systems. They fused KubeEdge
technology with edge computing and mesh networking [17] and proposed the KubeEdge

Sensors 2023, 23, 1522 3 of 13

wireless platform for dynamic application services. The platform handles various objects
such as vehicles, people, and homes, connected to mesh networks, and shares compu-
tational resources. In particular, subscribers are considered mobile routers that build
dynamic mesh networks while supporting computational resource sharing and mesh
network subscription.

Zheng et al. [18] trained a lifelong learning model [19] to develop a lifetime thermal
comfort prediction framework that predicts thermal comfort. It was developed based on
KubeEdge–Sedna [20] as an edge–cloud synergy AI project at KubeEdge and was designed
to automatically learn the passive functions of the existing model. Knowledge of the
model, that is, meta-knowledge, can be used to predict the thermal comfort of people living
indoors, which can be extended to numerous building interiors and software contexts to
estimate long-term thermal comfort.

Rui Han et al. [21] proposed EdgeGossip on the KubeEdge platform, aiming to quickly
obtain model accuracy and avoid low-performance deviations during iterative training
in deep learning. EdgeGossip balances training time by estimating the performance of
multiple edge computing platforms during iterative training. It also provides the ability
to use the aggregated data points to identify areas related to the accuracy of the data
entered, improving the best-effort model accuracy. EdgeGossip is implemented on the
Gossip algorithm [22], and its effectiveness was demonstrated using real-time deep-learning
workloads. Mutichiro et al. [23] proposed StaSA, which can satisfy the quality of service
(QoS) requirements of users as an edge application. The STaSA scheduler improves cluster
resource utilization and QoS in edge–cloud clusters in terms of service time by automatically
assigning requests to different processing nodes and scheduling execution according to real-
time constraints. The performance of the proposed scheduling model was demonstrated
on the KubeEdge-based implementation. Tran et al. [24] presented the NDN network over
edge computing infrastructure to provide a disaster response support system. The authors
defined emergency group communication and disaster information exchange through
NDN. The feasibility of the proposed system was demonstrated by implementing the
KubeEdge-based infrastructure with NDN IoT devices.

With the development of container technology, studies on improving the production
environment of container-based applications have been conducted. Abouaomar et al. [25]
investigated resource provisioning at the network edge under latency and resource con-
sumption constraints. By studying the frequency of resource allocation by the head of
the edge node, they proposed a Lyapunov optimization framework on each edge device
to reduce the number of resource allocation operations. Consequently, they validated
that the proposed approach outperforms other benchmark approaches and provides low
latency and optimal resource consumption. Taherizadeh et al. [26] proposed a dynamic
multi-level auto-scaling technique for container-based application services, and [27–29]
proposed Kubernetes-based resource provisioning and service quality improvement mea-
sures. Le et al. [27] address the limitation of the Kubernetes horizontal pod autoscaler, in
that it is not suitable for different traffic distribution environments with real-time service
demand in edge computing environments. They proposed the traffic-aware horizontal pod
autoscaler to improve service quality by dynamically adjusting cluster resources according
to the network traffic distribution. Nguyen et al. [28] proposed a proxy for an improved
Kubernetes, referred to as RAP, which offloads latency caused by the load during load
balancing to other optimal nodes. Gupta et al. [29] proposed a method to containerize and
deploy deep-learning models to learn from edges and improve service quality by reducing
data latency and traffic. In addition, the article EdgeX over Kubernetes [30] proposed a
method to improve service quality by distributing computational resources that IoT gate-
ways handle, given the combination of cloud computing and edge computing platforms.
Choi et al. [31] proposed an intelligent service management technique that can handle large
amounts of data generated by a large number of devices in real time while solving various
problems such as connectivity and security in an industrialized IoT environment.

Sensors 2023, 23, 1522 4 of 13

Consequently, KubeEdge has been considered a key platform for building edge com-
puting infrastructure and providing application services. Nevertheless, comprehensive
performance evaluation and analysis of KubeEdge have not been performed. In this study,
we conducted an experimental performance analysis of KubeEdge in an edge comput-
ing environment. We observed that although the load-balancing feature of KubeEdge
generally provides high availability and scalability of the cluster, it can degrade the per-
formance due to delays between edge nodes. Therefore, we propose a local scheduling
scheme to overcome this problem and maximize the performance of KubeEdge-based edge
computing environments.

3. Preliminaries of KubeEdge

This section introduces the KubeEdge architecture and main components, and how it
works. We also discuss EdgeMesh, which is one of the important components providing
load balancing in KubeEdge.

3.1. KubeEdge Architecture

KubeEdge [12] is a lightweight open-source edge computing platform developed
under the Huawei initiative. It provides network management between edge nodes and
the cloud, in addition to the maintenance of sessions when edge nodes are offline, as it
aims to apply edge computing environments from the start of the design. It supports the
MQTT protocol to enable resource-limited IoT edge devices to communicate efficiently.
Figure 1 presents the architecture of KubeEdge, which consists of Cloud Core and Edge
Core structures, unlike the Kubernetes master node and worker node structures [12].
Internet of Things (IoT) application services operate on Edge Core, which is geographically
distributed in the edge layer, and Cloud Core manages application services. Edge Core
consists of EdgeD, EdgeHub, EventBus, DeviceTwin, and MetaManager. EdgeD runs and
manages container-based applications. It helps the administrator to deploy containerized
workloads or applications at Edge Core. EdgeD provides diverse functionalities such as pod
management, pod lifecycle event generator, secret management, and container runtime, as
well as deployment of workloads. EdgeHub supports functions such as updating resource
synchronization in the cloud and changing the state of edge devices via socket connectivity
between Cloud Core and Edge Core in edge computing environments. EdgeHub acts as
the communication link between the edge and the cloud. EdgeHub forwards messages
received from the cloud to the corresponding module at the edge and vice versa. EventBus
provides MQTT clients with functions to interact with IoT edge devices and supports
Publish/Subscribe functions such as sending MQTT topics to CloudCore. DeviceTwin
stores the state of IoT edge devices and synchronizes them to the cloud. It also provides
query interfaces for applications. MetaManager is a message processor between EdgeD
and EdgeHub. It is also responsible for storing and retrieving metadata from a database.

Cloud Core consists of controllers and CloudHub, and the controllers are composed of
edge controller and device controller. Edge controller connects the Kubernetes application
programming interface server (K8s API Server) and Edge Core. Edge controller adds,
updates, deletes, monitors, and synchronizes events between the K8s API Server and Edge
Core. Device controller is responsible for IoT device management. It synchronizes the IoT
device updates from Cloud Core and Edge Core. CloudHub is a component of Cloud Core
and is the mediator between controllers and the edge side. CloudHub monitors changes on
Cloud Core, caches messages, and allows for communication between Edge Core and the
controllers via socket communication with EdgeHub.

3.2. EdgeMesh

This subsection describes EdgeMesh, which is a data plane component of a KubeEdge
cluster. EdgeMesh [13] provides service discovery and traffic proxy functionality within
the KubeEdge cluster, in addition to the high availability of KubeEdge by connecting
edge nodes using LibP2P [32]. In the case of Intra-LAN, communication between edge

Sensors 2023, 23, 1522 5 of 13

nodes is provided through direct access. For Cross-LAN, communication between edge
nodes is supported via a tunneling technique using hole punching [33] or a traffic transfer
technique via relay. Metadata is distributed via the EdgeHub–CloudHub tunnel. Thus,
direct access to the cloud is not required, and by integrating the DNS server at the node
layer, reliability can be maintained without access to the cloud CoreDNS when searching
for services. EdgeMesh provides a load-balancing function using an Istio DestinationRule
in the service. Typically, round-robin and random schemes are used. While the round-robin
scheme distributes data equally, the random scheme randomly selects an endpoint and
distributes data.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 14

Figure 1. KubeEdge architecture and its components in cloud and edge.

Cloud Core consists of controllers and CloudHub, and the controllers are composed

of edge controller and device controller. Edge controller connects the Kubernetes applica-

tion programming interface server (K8s API Server) and Edge Core. Edge controller adds,

updates, deletes, monitors, and synchronizes events between the K8s API Server and Edge

Core. Device controller is responsible for IoT device management. It synchronizes the IoT

device updates from Cloud Core and Edge Core. CloudHub is a component of Cloud Core

and is the mediator between controllers and the edge side. CloudHub monitors changes

on Cloud Core, caches messages, and allows for communication between Edge Core and

the controllers via socket communication with EdgeHub.

3.2. EdgeMesh

This subsection describes EdgeMesh, which is a data plane component of a Ku-

beEdge cluster. EdgeMesh [13] provides service discovery and traffic proxy functionality

within the KubeEdge cluster, in addition to the high availability of KubeEdge by connect-

ing edge nodes using LibP2P [32]. In the case of Intra-LAN, communication between edge

nodes is provided through direct access. For Cross-LAN, communication between edge

nodes is supported via a tunneling technique using hole punching [33] or a traffic transfer

technique via relay. Metadata is distributed via the EdgeHub–CloudHub tunnel. Thus,

direct access to the cloud is not required, and by integrating the DNS server at the node

layer, reliability can be maintained without access to the cloud CoreDNS when searching

for services. EdgeMesh provides a load-balancing function using an Istio DestinationRule

in the service. Typically, round-robin and random schemes are used. While the round-

robin scheme distributes data equally, the random scheme randomly selects an endpoint

and distributes data.

4. Local Scheduling Scheme in KubeEdge

This section discusses how the load-balancing algorithms such as round-robin and

random schemes operate in KubeEdge. By defining the problem of KubeEdge’s load-bal-

ancing algorithms in an edge computing environment, we propose a local scheduling

scheme to overcome the aforementioned problem and improve the throughput and la-

tency in a KubeEdge-based edge computing environment.

CloudCore

CloudHub

EdgeD

EdgeHub

EdgeMesh-
Agent

EventBus

DataStore

Mapper
(Protocol)

MetaManager DeviceTwin

EdgeMesh-
Agent

Docker Containerd

EdgeMesh-
Server

C
lo

u
d

Ed
g

e

EdgeCore

Internet

Pod
A

K8s API Server

Kubectl

Pod
B

Pod
C

CRI-O

EdgeController
DeviceController

Controllers

Figure 1. KubeEdge architecture and its components in cloud and edge.

4. Local Scheduling Scheme in KubeEdge

This section discusses how the load-balancing algorithms such as round-robin and
random schemes operate in KubeEdge. By defining the problem of KubeEdge’s load-
balancing algorithms in an edge computing environment, we propose a local scheduling
scheme to overcome the aforementioned problem and improve the throughput and latency
in a KubeEdge-based edge computing environment.

4.1. KubeEdge’s Load-Balancing System

This subsection describes KubeEdge’s load-balancing system and its limitation. Gen-
erally, load balancing allows the distribution of the workload in an even manner among
the available resources. Specifically, it aims to provide a continuous service in the event
of a component failure by effectively provisioning application instances and resources.
Furthermore, load balancing can reduce the task response time and optimize resource
usage, thereby improving system performance at a reduced cost. Load balancing also offers
scalability and flexibility for applications that may widen and require additional resources
in the future.

KubeEdge provides load balancing via EdgeMesh by distributing user requests equally
across available pods. When the edge node receives user requests, it transmits them to
EdgeMesh-Agent, which then distributes the traffic to the remote edge nodes according
to the load-balancing policies. Round-robin in Figure 2a and Random in Figure 2b are
the representative load-balancing algorithms used in EdgeMesh, and their functions are
discussed as follows.

Sensors 2023, 23, 1522 6 of 13

Sensors 2023, 23, x FOR PEER REVIEW 6 of 14

4.1. KubeEdge’s Load-Balancing System

This subsection describes KubeEdge’s load-balancing system and its limitation. Gen-

erally, load balancing allows the distribution of the workload in an even manner among

the available resources. Specifically, it aims to provide a continuous service in the event

of a component failure by effectively provisioning application instances and resources.

Furthermore, load balancing can reduce the task response time and optimize resource us-

age, thereby improving system performance at a reduced cost. Load balancing also offers

scalability and flexibility for applications that may widen and require additional resources

in the future.

KubeEdge provides load balancing via EdgeMesh by distributing user requests

equally across available pods. When the edge node receives user requests, it transmits

them to EdgeMesh-Agent, which then distributes the traffic to the remote edge nodes ac-

cording to the load-balancing policies. Round-robin in Figure 2a and Random in Figure

2b are the representative load-balancing algorithms used in EdgeMesh, and their func-

tions are discussed as follows.

Figure 2. Load-balancing schemes in KubeEdge.

(a) Round-robin scheme: The round-robin scheme distributes user requests evenly

among the pod resources. For example, in Figure 2a, four application pods are deployed

to each Edge node 1, 2, and 3. Assuming that four user requests are received at Edge node

1, Edge node 1 will distribute the incoming requests evenly to each pod. Thus, the first

and second requests are handled by the pods in Edge node 1, while the third and fourth

requests are transmitted to pods of Edge nodes 2 and 3, respectively.

(b) Random scheme: The random schedule distributes user requests randomly to any

pod in the edge nodes. As shown in Figure 2b, the user requests received at Edge node 1

are distributed to individual pods throughout the cluster. For example, the first request is

passed to the pod in Edge node 1, and the second request is passed to the pod in Edge

node 3. Similarly, the third and fourth requests are passed to the pod in Edge nodes 1 and

2, respectively. It is interesting to note that the random scheme stochastically distributes

traffic evenly to individual pods as the user traffic increases, which is similar to that in the

round-robin scheme.

4.2. Problem Definition and Local Scheduling Scheme

In the load-balancing schemes in KubeEdge, the user traffic is evenly distributed re-

gardless of the location of the edge node where the pod is placed. In other words, Edge-

Mesh in KubeEdge distributes the user traffic to the remote edge nodes without consider-

ing the delay in forwarding the requests. However, in an edge computing environment,

the edge nodes are located far away from each other to cover a large-scale area, and the

forwarding delay between the edge nodes is significant enough to degrade the

Figure 2. Load-balancing schemes in KubeEdge.

(a) Round-robin scheme: The round-robin scheme distributes user requests evenly
among the pod resources. For example, in Figure 2a, four application pods are deployed to
each Edge node 1, 2, and 3. Assuming that four user requests are received at Edge node
1, Edge node 1 will distribute the incoming requests evenly to each pod. Thus, the first
and second requests are handled by the pods in Edge node 1, while the third and fourth
requests are transmitted to pods of Edge nodes 2 and 3, respectively.

(b) Random scheme: The random schedule distributes user requests randomly to any
pod in the edge nodes. As shown in Figure 2b, the user requests received at Edge node 1
are distributed to individual pods throughout the cluster. For example, the first request
is passed to the pod in Edge node 1, and the second request is passed to the pod in Edge
node 3. Similarly, the third and fourth requests are passed to the pod in Edge nodes 1 and
2, respectively. It is interesting to note that the random scheme stochastically distributes
traffic evenly to individual pods as the user traffic increases, which is similar to that in the
round-robin scheme.

4.2. Problem Definition and Local Scheduling Scheme

In the load-balancing schemes in KubeEdge, the user traffic is evenly distributed re-
gardless of the location of the edge node where the pod is placed. In other words, EdgeMesh
in KubeEdge distributes the user traffic to the remote edge nodes without considering the
delay in forwarding the requests. However, in an edge computing environment, the edge
nodes are located far away from each other to cover a large-scale area, and the forwarding
delay between the edge nodes is significant enough to degrade the throughput of the
cluster. Therefore, we point out that load-balancing traffic to remote edge nodes degrades
the performance of the KubeEdge cluster in an edge computing environment.

To solve the aforementioned problem, we propose a local scheduling scheme that
processes user requests via pods located at the local node that receives them. In the local
scheduling scheme, rather than transmitting the user requests to remote pods, they are
distributed equally to the pods in the edge node that receive the user requests. For example,
in Figure 3, four user requests are handled by two pods located at Edge node 1 without
forwarding them to the pods in the remote edge nodes. In this way, the proposed scheme
reduces the latency by preventing traffic forwarding between edge nodes in an edge
computing environment and improves the throughput of the overall system by handling
the user traffic immediately at the local edge nodes.

Sensors 2023, 23, 1522 7 of 13

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

throughput of the cluster. Therefore, we point out that load-balancing traffic to remote

edge nodes degrades the performance of the KubeEdge cluster in an edge computing en-

vironment.

To solve the aforementioned problem, we propose a local scheduling scheme that

processes user requests via pods located at the local node that receives them. In the local

scheduling scheme, rather than transmitting the user requests to remote pods, they are

distributed equally to the pods in the edge node that receive the user requests. For exam-

ple, in Figure 3, four user requests are handled by two pods located at Edge node 1 with-

out forwarding them to the pods in the remote edge nodes. In this way, the proposed

scheme reduces the latency by preventing traffic forwarding between edge nodes in an

edge computing environment and improves the throughput of the overall system by han-

dling the user traffic immediately at the local edge nodes.

Figure 3. Local scheduling scheme in KubeEdge.

5. Performance Evaluations

In this section, we first describe the experimental setup of a KubeEdge-based edge

computing environment. Then, we evaluate the performance of KubeEdge in terms of the

number of pods of individual edge nodes, the pod distribution on edge nodes, and the

delay between edge nodes by measuring the throughput and delay of individual edge

nodes in increasing concurrent requests. We also compare the cumulative throughput and

response time of the round-robin and local scheduling schemes to validate the feasibility

of the local scheduling scheme in an edge environment.

5.1. Experimental Setups

The KubeEdge clusters used for the performance evaluation consisted of one cloud

node and three edge nodes, as shown in Figure 4. The cloud node runs with 4 central

processing unit (CPU) cores and 8 GB of RAM, whereas edge nodes run with 4 CPU cores

and 4 GB of RAM. Both nodes were installed with Docker version 20.10.14, KubeEdge

version 1.9.1, Ubuntu 18.04.5, and Kubernetes API version 1.21.0 installed at a cloud node.

The controllers provided a scheduler function by distributing the pods to the edge nodes;

they were set to manually distribute the pods during the evaluation.

Figure 3. Local scheduling scheme in KubeEdge.

5. Performance Evaluations

In this section, we first describe the experimental setup of a KubeEdge-based edge
computing environment. Then, we evaluate the performance of KubeEdge in terms of the
number of pods of individual edge nodes, the pod distribution on edge nodes, and the
delay between edge nodes by measuring the throughput and delay of individual edge
nodes in increasing concurrent requests. We also compare the cumulative throughput and
response time of the round-robin and local scheduling schemes to validate the feasibility of
the local scheduling scheme in an edge environment.

5.1. Experimental Setups

The KubeEdge clusters used for the performance evaluation consisted of one cloud
node and three edge nodes, as shown in Figure 4. The cloud node runs with 4 central
processing unit (CPU) cores and 8 GB of RAM, whereas edge nodes run with 4 CPU cores
and 4 GB of RAM. Both nodes were installed with Docker version 20.10.14, KubeEdge
version 1.9.1, Ubuntu 18.04.5, and Kubernetes API version 1.21.0 installed at a cloud node.
The controllers provided a scheduler function by distributing the pods to the edge nodes;
they were set to manually distribute the pods during the evaluation.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14

Figure 4. Experimental setup.

The throughput was measured as the number of requests handled per second, and

the response time was measured as the average time that individual requests are pro-

cessed by the edge node, including the forwarding latency. The measurements were re-

peated 10 times to ensure that the results obtained were accurate, and an HTTP load-gen-

erator HEY tool [34] was used to generate the traffic.

5.2. Effect of Number of Pods

This subsection evaluates the effect of the number of pods with increasing concurrent

requests. Notably, in this evaluation we focused on a single location (Edge node 1). While

increasing the concurrent requests at Edge node 1 from 1 to 16, we measured the through-

put and response time when the number of pods was 1, 2, and 4, respectively.

As shown in Figure 5a, the throughput of Edge node 1 tends to increase as the in-

coming concurrent requests increase. However, it is noticeable that the throughput is

bounded by a certain level with respect to the number of pods. For example, when the

number of concurrent requests was 1, a throughput of approximately 139 req/s was noted,

regardless of the number of pods; this observation indicates the ability of a single pod to

handle the incoming user requests. When the number of concurrent requests was in-

creased to 16, the maximum throughput of one pod was 308 req/s, whereas four pods

could handle 779 req/s user requests. This indicates that an individual pod has its own

capacity in terms of handling requests, and the throughput can be increased via coopera-

tion with multiple pods. In addition, Figure 5b indicates that the average response time

can be decreased by exploiting multiple pods in the edge node. For instance, the average

response time decreased from 113 ms for one pod to 42 ms for four pods when the number

of concurrent requests was 16.

Figure 4. Experimental setup.

Sensors 2023, 23, 1522 8 of 13

The throughput was measured as the number of requests handled per second, and the
response time was measured as the average time that individual requests are processed
by the edge node, including the forwarding latency. The measurements were repeated
10 times to ensure that the results obtained were accurate, and an HTTP load-generator
HEY tool [34] was used to generate the traffic.

5.2. Effect of Number of Pods

This subsection evaluates the effect of the number of pods with increasing concurrent
requests. Notably, in this evaluation we focused on a single location (Edge node 1). While
increasing the concurrent requests at Edge node 1 from 1 to 16, we measured the throughput
and response time when the number of pods was 1, 2, and 4, respectively.

As shown in Figure 5a, the throughput of Edge node 1 tends to increase as the incoming
concurrent requests increase. However, it is noticeable that the throughput is bounded
by a certain level with respect to the number of pods. For example, when the number of
concurrent requests was 1, a throughput of approximately 139 req/s was noted, regardless
of the number of pods; this observation indicates the ability of a single pod to handle the
incoming user requests. When the number of concurrent requests was increased to 16,
the maximum throughput of one pod was 308 req/s, whereas four pods could handle
779 req/s user requests. This indicates that an individual pod has its own capacity in terms
of handling requests, and the throughput can be increased via cooperation with multiple
pods. In addition, Figure 5b indicates that the average response time can be decreased
by exploiting multiple pods in the edge node. For instance, the average response time
decreased from 113 ms for one pod to 42 ms for four pods when the number of concurrent
requests was 16.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 14

Figure 5. Performance at Edge node 1 with different numbers of pods: (a) throughput and (b) aver-

age response time.

5.3. Effect of Pod Distribution and Delay between Edge Nodes

We evaluated the effect of pod distribution on edge nodes as well as the delay be-

tween edge nodes while increasing the number of concurrent requests. To analyze the

effect of pod distribution, we allocated different numbers of pods to three edge nodes. For

example, 4-4-4 indicates that three edge nodes have the same number of pods, that is, 4

pods each, while 8-3-1 indicates that Edge nodes 1, 2, and 3 are allocated 8 pods, 3 pods,

and 1 pod, respectively. For the evaluation, we increased the number of concurrent re-

quests accessing Edge node 1 from 1 to 16. Notably, the incoming traffic at Edge node 1 is

load-balanced to Edge nodes 2 and 3 by the EdgeMesh module at KubeEdge, where we

used the round-robin scheme for load balancing in KubeEdge. It is noticeable that the

random scheme has a similar tendency of traffic distribution with the round-robin scheme

for high amounts of traffic from the stochastic point of view. Thus, both the round-robin

and random schemes can distribute the incoming traffic to Edge nodes 1, 2, and 3 in a ratio

of 4:4:4 when 4-4-4 pods are distributed on three nodes. Similarly, when pods are distrib-

uted in a proportion of 8-3-1, the incoming traffic is distributed to Edge nodes 1, 2, and 3

in a proportion of 8-3-1 because the round-robin scheme follows the policy of distributing

the traffic evenly to each pod. To measure the effect of delay between edge nodes in an

edge computing environment, we repeated the same evaluations by varying the delay

between the edge nodes as 0, 15, and 30 ms. Since the traffic forwarded to the remote edge

node is returned to Edge node 1 as a response, we measured the throughput and the av-

erage response time handled at Edge node 1 in a manner similar to that in the previous

subsection.

Figure 6a–c present the throughput when the pod distribution to edge nodes is 4-4-

4, 8-3-1, and 10-1-1, respectively, while Figure 6d–f show the corresponding average re-

sponse times. In Figure 6a–c, there is no difference in throughput according to the pod

distributions when the delay between edge nodes is 0 ms. For example, when the number

of concurrent requests is 1, the throughputs are approximately 132 reqs/s, 127 reqs/s, and

145 reqs/s for the pod distributions 4-4-4, 8-3-1, and 10-1-1, respectively. When the con-

current request increases to 16, the throughputs increase to approximately 1796 reqs/s,

1677 reqs/s, and 1726 reqs/s, respectively. In addition, the response times in Figure 6d–f

show steady response times of 6~9.5 ms according to the number of concurrent requests

irrespective of pod distribution. Thus, we can conclude that the KubeEdge cluster can

provide the same performance regardless of pod distribution in the case that there is no

delay between edge nodes because there is no difference between handling traffic locally

and remotely.

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16

th
ro

u
g

h
p

u
t

[r
eq

/s
ec

]

concurrent request

(a)

1 pod 2 pods 4 pods

0

20

40

60

80

100

120

1 2 4 8 16

av
er

ag
e

re
sp

o
n

se
 t

im
e

[m
s]

concurrent request

(b)

1 pod

2 pods

4 pods

Figure 5. Performance at Edge node 1 with different numbers of pods: (a) throughput and (b) average
response time.

5.3. Effect of Pod Distribution and Delay between Edge Nodes

We evaluated the effect of pod distribution on edge nodes as well as the delay between
edge nodes while increasing the number of concurrent requests. To analyze the effect of
pod distribution, we allocated different numbers of pods to three edge nodes. For example,
4-4-4 indicates that three edge nodes have the same number of pods, that is, 4 pods each,
while 8-3-1 indicates that Edge nodes 1, 2, and 3 are allocated 8 pods, 3 pods, and 1 pod,
respectively. For the evaluation, we increased the number of concurrent requests accessing
Edge node 1 from 1 to 16. Notably, the incoming traffic at Edge node 1 is load-balanced to
Edge nodes 2 and 3 by the EdgeMesh module at KubeEdge, where we used the round-robin
scheme for load balancing in KubeEdge. It is noticeable that the random scheme has a
similar tendency of traffic distribution with the round-robin scheme for high amounts of
traffic from the stochastic point of view. Thus, both the round-robin and random schemes

Sensors 2023, 23, 1522 9 of 13

can distribute the incoming traffic to Edge nodes 1, 2, and 3 in a ratio of 4:4:4 when 4-4-4
pods are distributed on three nodes. Similarly, when pods are distributed in a proportion
of 8-3-1, the incoming traffic is distributed to Edge nodes 1, 2, and 3 in a proportion of
8-3-1 because the round-robin scheme follows the policy of distributing the traffic evenly
to each pod. To measure the effect of delay between edge nodes in an edge computing
environment, we repeated the same evaluations by varying the delay between the edge
nodes as 0, 15, and 30 ms. Since the traffic forwarded to the remote edge node is returned
to Edge node 1 as a response, we measured the throughput and the average response time
handled at Edge node 1 in a manner similar to that in the previous subsection.

Figure 6a–c present the throughput when the pod distribution to edge nodes is 4-4-4,
8-3-1, and 10-1-1, respectively, while Figure 6d–f show the corresponding average response
times. In Figure 6a–c, there is no difference in throughput according to the pod distributions
when the delay between edge nodes is 0 ms. For example, when the number of concurrent
requests is 1, the throughputs are approximately 132 reqs/s, 127 reqs/s, and 145 reqs/s for
the pod distributions 4-4-4, 8-3-1, and 10-1-1, respectively. When the concurrent request
increases to 16, the throughputs increase to approximately 1796 reqs/s, 1677 reqs/s, and
1726 reqs/s, respectively. In addition, the response times in Figure 6d–f show steady
response times of 6~9.5 ms according to the number of concurrent requests irrespective of
pod distribution. Thus, we can conclude that the KubeEdge cluster can provide the same
performance regardless of pod distribution in the case that there is no delay between edge
nodes because there is no difference between handling traffic locally and remotely.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 6. Throughput and average response time according to pod distribution and delay between

edge nodes (a,d): 4-4-4, (b,e): 8-3-1, (c,f): 10-1-1.

However, both the throughput and the average response time are highly affected by

the pod distribution as the delay between edge nodes increases. For example, when the

delay is 30 ms, the pod distributions 4-4-4, 8-3-1, and 10-1-1 show about 755 req/s, 1180

req/s, and 1682 req/s, respectively, for 16 concurrent requests. This indicates that the

throughput degrades proportionally to the amount of traffic forwarded to the edge nodes.

In other words, 2 out of 12 requests in the 10-1-1 pod distribution are forwarded to the

remote edge nodes, whereas 8 out of 12 requests in the 4-4-4 pod distribution are handled

by remote edge nodes. Therefore, more than 50% of the throughput was degraded in the

4-4-4 pod distribution, in contrast to that of the 10-1-1 pod distribution. Interestingly, this

effect on the throughput degradation increases for higher delay between edge nodes and

the response time. Figure 6d–f also show a similar tendency. The average response time

in the 4-4-4 pod distribution is approximately 10~14.5 ms for a 15 ms delay, and it increases

to 15~20 ms for a 30 ms delay, while that in the 10-1-1 pod distribution does not have any

significant difference for the delay between edge nodes. In summary, the important lesson

is that although the load balancing of EdgeMesh is designed to efficiently utilize the pod

resource deployed in the edge nodes, the throughput and the average response time can

be degraded by the delay between edge nodes where they are geographically distributed

in an edge computing environment.

5.4. Effect of Load-Balancing Schemes

We evaluated the effect of the load-balancing schemes by comparing the round-robin

scheme in EdgeMesh and the proposed local scheduling scheme. To analyze the perfor-

mance in an edge computing environment, we used a different traffic distribution for each

pod distribution. In detail, we used 4:4:4, 8:3:1, and 10:1:1 traffic distributions for 6-6-6,

12-5-1, and 16-1-1 pod distributions, where x-y-z represents the number of pod distribu-

tions for each edge node in the KubeEdge cluster and x:y:z denotes the traffic distribution

0

500

1000

1500

2000

1 2 4 8 16

th
ro

u
g

h
p

u
t

[r
eq

/s
]

concurrent request

Pod distribution: 4-4-4

0 ms 15ms 30ms

(a)

0

5

10

15

20

25

1 2 4 8 16

av
er

ag
e

re
sp

o
n

se
 t

im
e

[m
s]

concurrent request

Pod distribution: 4-4-4

0ms 15ms 30ms

(b)

0

500

1000

1500

2000

1 2 4 8 16

th
ro

u
g

h
p

u
t

[r
eq

/s
]

concurrent request

8-3-1

0ms 15ms 30ms

(c)

0

5

10

15

20

25

1 2 4 8 16

av
er

ag
e

re
sp

o
n

se
 t

im
e

[m
s]

concurrent request

8-3-1

0ms 15ms 30ms

(d)

0

500

1000

1500

2000

1 2 4 8 16

th
ro

u
g

h
p

u
t

[r
eq

/s
]

concurrent request

10-1-1

0ms 15ms 30ms

(e)

0

5

10

15

20

25

1 2 4 8 16

av
er

ag
e

re
sp

o
n

se
 t

im
e

[m
s]

concurrent request

10-1-1

0ms 15ms 30ms

(f)

Figure 6. Throughput and average response time according to pod distribution and delay between
edge nodes (a,d): 4-4-4, (b,e): 8-3-1, (c,f): 10-1-1.

However, both the throughput and the average response time are highly affected
by the pod distribution as the delay between edge nodes increases. For example, when
the delay is 30 ms, the pod distributions 4-4-4, 8-3-1, and 10-1-1 show about 755 req/s,
1180 req/s, and 1682 req/s, respectively, for 16 concurrent requests. This indicates that the

Sensors 2023, 23, 1522 10 of 13

throughput degrades proportionally to the amount of traffic forwarded to the edge nodes.
In other words, 2 out of 12 requests in the 10-1-1 pod distribution are forwarded to the
remote edge nodes, whereas 8 out of 12 requests in the 4-4-4 pod distribution are handled
by remote edge nodes. Therefore, more than 50% of the throughput was degraded in the
4-4-4 pod distribution, in contrast to that of the 10-1-1 pod distribution. Interestingly, this
effect on the throughput degradation increases for higher delay between edge nodes and
the response time. Figure 6d–f also show a similar tendency. The average response time in
the 4-4-4 pod distribution is approximately 10~14.5 ms for a 15 ms delay, and it increases
to 15~20 ms for a 30 ms delay, while that in the 10-1-1 pod distribution does not have any
significant difference for the delay between edge nodes. In summary, the important lesson
is that although the load balancing of EdgeMesh is designed to efficiently utilize the pod
resource deployed in the edge nodes, the throughput and the average response time can be
degraded by the delay between edge nodes where they are geographically distributed in
an edge computing environment.

5.4. Effect of Load-Balancing Schemes

We evaluated the effect of the load-balancing schemes by comparing the round-robin
scheme in EdgeMesh and the proposed local scheduling scheme. To analyze the perfor-
mance in an edge computing environment, we used a different traffic distribution for each
pod distribution. In detail, we used 4:4:4, 8:3:1, and 10:1:1 traffic distributions for 6-6-6,
12-5-1, and 16-1-1 pod distributions, where x-y-z represents the number of pod distribu-
tions for each edge node in the KubeEdge cluster and x:y:z denotes the traffic distribution
accessing each edge node. We used 18 pods in the cluster and differentiated only the
pod distribution. In the same way, 12 concurrent requests were generated, and the traffic
distribution was designed to follow the pod distribution ratio to ensure that each edge
node utilizes the pod resources fully. In addition, we set the delay between edge nodes at
15 ms.

Figure 7 presents the throughput and the response time of the round-robin and
local scheduling schemes as the number of concurrent requests increases. As shown in
Figure 7a, the throughput of the round-robin scheme shows 871 req/s for the 4:4:4 traffic
distribution, while it achieves 1050 req/s for the 10:1:1 traffic distribution. This indicates
that the throughput can be decreased by increasing the amount of traffic delivered to the
remote edge nodes, as already discussed in the previous subsection. In the 4:4:4 traffic
distribution, Edge node 1 forwards 12/18 of the incoming traffic to the remote edge nodes
since the pods are distributed in the ratio of 6-6-6 to Edge nodes 1, 2, and 3. Similarly,
Edge nodes 2 and 3 forward 12/18 of the incoming traffic to the remote edge nodes while
handling the remainder of the traffic. In summary, Edge nodes 1, 2, and 3 forward 4×12/18,
4×12/18, and 4×12/18 incoming traffic to remote edge nodes in the 4:4:4 traffic distribution.
However, the 10:1:1 traffic distribution is evaluated using a 16-1-1 pod distribution to each
edge node, and Edge nodes 1, 2, and 3 transmit 10×2/18, 1×17/18, and 1×17/18 of the
incoming traffic to the remote edge nodes. Therefore, we can conclude that the 10:1:1 traffic
distribution distributes less traffic to the remote edge nodes compared with the 4:4:4 traffic
distribution. This leads to less degradation of the throughput compared with the case of the
4:4:4 traffic. The average response time in Figure 7c shows the traffic analysis results. While
all three edge nodes in the 4:4:4 traffic distribution show a response time of approximately
17 ms, Edge node 1 in the 10:1:1 shows the lowest average response time of 6 ms with
the 10×16/18 incoming traffic handled locally. On the other hand, Edge nodes 2 and 3 in
the 10:1:1 traffic distribution show a response time of approximately 50 ms, because the
1×17/18 incoming traffic is handled by the remote edge nodes.

In the local scheduling scheme, all the incoming traffic is processed at the edge
nodes that receive the traffic; thus, performance degradation due to traffic forwarding
to remote edge nodes does not occur. As a result, the local scheduling scheme achieves
high throughput regardless of the traffic distribution. It can be observed from Figure 7b
that the 4:4:4, 8:3:1, and 10:1:1 traffic distributions achieve throughputs of approximately

Sensors 2023, 23, 1522 11 of 13

1493, 1646, and 1644 req/s, respectively. It is also observed that local scheduling elim-
inates the request forwarding latency between the edge nodes, which results in a low
response time of approximately 8 ms regardless of the traffic pattern. Therefore, the local
scheduling scheme achieves the maximum throughput by handling all the incoming traffic
using the local edge nodes in an edge computing environment where the edge nodes are
geographically distributed.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14

Figure 7. Throughput and average response time according to the load-balancing schemes (a,c):

round-robin scheme, (b,d): local scheduling scheme.

6. Conclusions

KubeEdge is a representative open source–based edge computing platform that ex-

tends the core functionalities of Kubernetes to the edge. We conducted diverse perfor-

mance evaluations of KubeEdge in an edge computing environment in terms of the

throughput and response time according to the pod distribution and the delay between

edge nodes. On the basis of an experimental analysis, we found out that traffic forwarding

from load balancing can degrade the throughput of the cluster in an edge computing en-

vironment due to the geographical distribution between the edge nodes. To overcome this

problem, we propose a local scheduling scheme that handles traffic using local edge

nodes. The evaluation results show that the local scheduling scheme outperforms the

round-robin scheme in terms of the cumulative throughput and response time, regardless

of the traffic patterns. We expect that the local scheduling scheme will be used to optimize

the performance of edge computing environments. In the future, we will study the dy-

namic resource orchestration to adjust the containerized resources according to traffic de-

mand.

Author Contributions: Conceptualization, S.-H.K. and T.K.; funding acquisition, T.K.; investiga-

tion, S.-H.K.; methodology, S.-H.K. and T.K.; software, S.-H.K.; supervision, T.K.; visualization, S.-

871
1060

1505

0

500

1000

1500

2000

2500

4:4:4 8:3:1 10:1:1

th
ro

u
g

h
p

u
t

[r
eq

/s
]

traffic distribution

Round robin scheme

Edge 1 Edge 2 Edge 3

(a)

0

10

20

30

40

50

60

4:4:4 8:3:1 10:1:1
av

er
ag

e
re

sp
o

n
se

 t
im

e
[m

s]

traffic distribution

Round robin scheme

Edge 1 Edge 2 Edge 3

(b)

1493
1646 1644

0

500

1000

1500

2000

2500

4:4:4 8:3:1 10:1:1

th
ro

u
g

h
p

u
t

[r
eq

/s
]

traffic distribution

Local scheduling scheme

Edge 1 Edge 2 Edge 3

(c)

0

10

20

30

40

50

60

4:4:4 8:3:1 10:1:1

av
er

ag
e

re
sp

o
n

se
 t

im
e

[m
s]

traffic distribution

Local scheduling scheme

Edge 1 Edge 2 Edge 3

(d)

Figure 7. Throughput and average response time according to the load-balancing schemes (a,c):
round-robin scheme, (b,d): local scheduling scheme.

6. Conclusions

KubeEdge is a representative open source–based edge computing platform that ex-
tends the core functionalities of Kubernetes to the edge. We conducted diverse performance
evaluations of KubeEdge in an edge computing environment in terms of the throughput
and response time according to the pod distribution and the delay between edge nodes.
On the basis of an experimental analysis, we found out that traffic forwarding from load
balancing can degrade the throughput of the cluster in an edge computing environment
due to the geographical distribution between the edge nodes. To overcome this problem,
we propose a local scheduling scheme that handles traffic using local edge nodes. The
evaluation results show that the local scheduling scheme outperforms the round-robin
scheme in terms of the cumulative throughput and response time, regardless of the traffic
patterns. We expect that the local scheduling scheme will be used to optimize the perfor-

Sensors 2023, 23, 1522 12 of 13

mance of edge computing environments. In the future, we will study the dynamic resource
orchestration to adjust the containerized resources according to traffic demand.

Author Contributions: Conceptualization, S.-H.K. and T.K.; funding acquisition, T.K.; investigation,
S.-H.K.; methodology, S.-H.K. and T.K.; software, S.-H.K.; supervision, T.K.; visualization, S.-H.K.;
writing—original draft, S.-H.K.; writing—review and editing S.-H.K. and T.K.. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-
2022R1I1A3072355).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2017,

5, 439–449. [CrossRef]
2. Sadri, A.A.; Rahmani, A.M.; Saberikamarposhti, M.; Hosseinzadeh, M. Fog data management: A vision, challenges, and future

directions. J. Netw. Comput. Appl. 2021, 174, 102882. [CrossRef]
3. Zhou, N.; Georgiou, Y.; Pospieszny, M.; Zhong, L.; Zhou, H.; Niethammer, C.; Pejak, B.; Marko, O.; Hoppe, D. Container

orchestration on HPC systems through Kubernetes. J. Cloud Comput. 2021, 10, 16. [CrossRef]
4. Pahl, C. Containerization and the PaaS Cloud. J. Cloud Comput. 2015, 2, 24–31. [CrossRef]
5. Nguyen, N.D.; Phan, L.A.; Park, D.H.; Kim, S.; Kim, T. ElasticFog: Elastic Resource Provisioning in Container-Based Fog

Computing. IEEE Access 2020, 8, 183879–183890. [CrossRef]
6. Zhang, J.; Zhou, X.; Ge, T.; Wang, X.; Hwang, T. Joint task scheduling and containerizing for efficient edge computing. IEEE Trans.

Parallel Distrib. Syst. 2021, 32, 2086–2100. [CrossRef]
7. Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S.H.; Atiquzzaman, M. KEIDS: Kubernetes-based energy and interference driven

scheduler for industrial IoT in edge-cloud ecosystem. IEEE Internet Things J. 2020, 7, 4228–4237. [CrossRef]
8. Nguyen, N.; Kim, T. Toward highly scalable load balancing in kubernetes clusters. IEEE Commun. Mag. 2020, 58, 78–83. [CrossRef]
9. Muddinagiri, R.; Ambavane, S.; Bayas, S. Self-hosted kubernetes: Deploying Docker containers locally with minikube. In

Proceedings of the 2019 International Conference on Innovative Trends Advances Engineering and Technology (ICITAET),
Shegoaon, India, 27–28 December 2019; pp. 239–243.

10. Kubernetes. Production-Grade Container Orchestration. Available online: https://kubernetes.io/ (accessed on 18
September 2022).

11. Mondal, S.K.; Pan, R.; Kabir, H.M.D.; Tian, T.; Dai, H.-N. Kubernetes in IT administration and serverless computing: An empirical
study and research challenges. J Supercomput. 2022, 78, 2937–2987. [CrossRef]

12. KubeEdge. Kubernetes Native Edge Computing Framework. Available online: https://kubeedge.io/ (accessed on 18
September 2022).

13. EdgeMesh. As the Data Plane Component of the KubeEdge Cluster. Available online: https://github.com/kubeedge/edgemesh
(accessed on 18 September 2022).

14. De Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.
IEEE Access 2019, 7, 150936–150948. [CrossRef]

15. Xiong, Y.; Sun, Y.; Xing, L.; Huang, Y. Extend Cloud to Edge with KubeEdge. In Proceedings of the 2018 IEEE/ACM Symposium
on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 373–377.

16. Yang, T.; Ning, J.; Lan, D.; Zhang, J.; Yang, Y.; Wang, X.; Taherkordi, A. Kubeedge Wireless for Integrated Communication and
Computing Services Everywhere. IEEE Wirel. Commun. 2022, 29, 140–145. [CrossRef]

17. Akyildiz, I.F.; Wang, X.; Wang, W. Wireless Mesh Networks: A Survey. Comput. Netw. 2005, 47, 445–487. [CrossRef]
18. Zheng, Z.; Luo, P.; Li, Y.; Luo, S.; Jian, J.; Huang, Z. Towards lifelong thermal comfort prediction with KubeEdge-sedna: Online

multi-task learning with metaknowledge base. In Proceedings of the Thirteenth ACM International Conference on Future
Energy Systems (e-Energy ’22), New York, NY, USA, 28 June 2022; Association for Computing Machinery: New York, NY, USA;
pp. 263–276.

19. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Part, Christopher Kanan, Stefan Wermter, Continual lifelong learning
with neural networks: A review. Neural Netw. 2019, 113, 54–71. [CrossRef] [PubMed]

20. KubeEdge/Sedna, Overview of KubeEdge/Sedna. Available online: https://github.com/kubeedge/sedna (accessed on 18
September 2022).

http://doi.org/10.1109/JIOT.2017.2767608
http://doi.org/10.1016/j.jnca.2020.102882
http://doi.org/10.1186/s13677-021-00231-z
http://doi.org/10.1109/MCC.2015.51
http://doi.org/10.1109/ACCESS.2020.3029583
http://doi.org/10.1109/TPDS.2021.3059447
http://doi.org/10.1109/JIOT.2019.2939534
http://doi.org/10.1109/MCOM.001.1900660
https://kubernetes.io/
http://doi.org/10.1007/s11227-021-03982-3
https://kubeedge.io/
https://github.com/kubeedge/edgemesh
http://doi.org/10.1109/ACCESS.2019.2947652
http://doi.org/10.1109/MWC.004.2100038
http://doi.org/10.1016/j.comnet.2004.12.001
http://doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
https://github.com/kubeedge/sedna

Sensors 2023, 23, 1522 13 of 13

21. Han, R.; Li, S.; Wang, X.; Liu, C.H.; Xin, G.; Chen, L.Y. Accelerating Gossip-Based Deep Learning in Heterogeneous Edge
Computing Platforms. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1591–1602. [CrossRef]

22. Chen, J.; Ran, X. Deep Learning with Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
23. Mutichiro, B.; Tran, M.-N.; Kim, Y.-H. QoS-Based Service-Time Scheduling in the IoT-Edge Cloud. Sensors 2021, 21, 5797.

[CrossRef]
24. Tran, M.-N.; Kim, Y. Named Data Networking Based Disaster Response Support System over Edge Computing Infrastructure.

Electronics 2021, 10, 335. [CrossRef]
25. Abouaomar, A.; Cherkaoui, S.; Mlika, Z.; Kobbane, A. Resource Provisioning in Edge Computing for Latency-Sensitive Applica-

tions. IEEE Internet Things J. 2021, 8, 11088–11099. [CrossRef]
26. Taherizadeh, S.; Stankovski, V.; Cho, J. Dynamic Multi-level Auto-scaling Rules for Containerized Applications. Comput. J. 2019,

62, 174–197. [CrossRef]
27. Phuc, L.H.; Phan, L.-A.; Kim, T. Traffic-Aware Horizontal Pod Autoscaler in Kubernetes-Based Edge Computing Infrastructure.

IEEE Access 2022, 10, 18966–18977. [CrossRef]
28. Nguyen, Q.-M.; Phan, L.-A.; Kim, T. Load-Balancing of Kubernetes-Based Edge Computing Infrastructure Using Resource

Adaptive Proxy. Sensors 2022, 22, 2869. [CrossRef] [PubMed]
29. Gupta, N.; Anantharaj, K.; Subramani, K. Containerized Architecture for Edge Computing in Smart Home: A consistent

architecture for model deployment. In Proceedings of the 2020 International Conference on Computer Communication and
Informatics (ICCCI), Coimbatore, Tamilnadu, India, 25 September 2020; pp. 1–8.

30. Lee, S.; Phan, L.-A.; Park, D.-H.; Kim, S.; Kim, T. EdgeX over Kubernetes: Enabling Container Orchestration in EdgeX. Appl. Sci.
2022, 12, 140. [CrossRef]

31. Choi, H.; Song, J.; Yi, K. Brightics-IoT: Towards Effective Industrial IoT Platforms for Connected Smart Factories. In Proceedings
of the 2018 IEEE International Conference on Industrial Internet (ICII), Seattle, WA, USA, 21 October 2018; pp. 146–152.

32. Libp2p. A Modular Network Stack. Available online: https://libp2p.io/ (accessed on 18 September 2022).
33. Ford, B.; Srisuresh, P.; Kegel, D. Peer-to-Peer Communication Across Network Address Translators. In Proceedings of the annual

conference on USENIX Annual Technical Conference (ATEC ’05), Anaheim, CA, USA, 10–15 April 2005.
34. Hey, Tiny Program That Sends Some Load to a Web Application. Available online: https://github.com/rakyll/hey (accessed on

18 September 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPDS.2020.3046440
http://doi.org/10.1109/JPROC.2019.2921977
http://doi.org/10.3390/s21175797
http://doi.org/10.3390/electronics10030335
http://doi.org/10.1109/JIOT.2021.3052082
http://doi.org/10.1093/comjnl/bxy043
http://doi.org/10.1109/ACCESS.2022.3150867
http://doi.org/10.3390/s22082869
http://www.ncbi.nlm.nih.gov/pubmed/35458853
http://doi.org/10.3390/app12010140
https://libp2p.io/
https://github.com/rakyll/hey

	Introduction
	Related Work
	Preliminaries of KubeEdge
	KubeEdge Architecture
	EdgeMesh

	Local Scheduling Scheme in KubeEdge
	KubeEdge’s Load-Balancing System
	Problem Definition and Local Scheduling Scheme

	Performance Evaluations
	Experimental Setups
	Effect of Number of Pods
	Effect of Pod Distribution and Delay between Edge Nodes
	Effect of Load-Balancing Schemes

	Conclusions
	References

