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Abstract: The dynamic behavior of a Powered Two-Wheeler (PTW) is much more complicated than
that of a car, which is due to the strong coupling between the longitudinal and lateral dynamics
produced by the large roll angles. This makes the analysis of the dynamics, and therefore the
design and synthesis of the controller, particularly complex and difficult. In relation to assistance in
dangerous situations, several recent manuscripts have suggested devices with limitations of cornering
velocity by proposing restrictive models. However, these models can lead to repulsion by the users of
PTW vehicles, significantly limiting vehicle performance. In the present work, the authors developed
an Advanced Rider-cornering Assistance System (ARAS) based on the skills learned by riders running
across curvilinear trajectories using Artificial Intelligence (AI) and Neural Network (NN) techniques.
New algorithms that allow the value of velocity to be estimated by prediction accuracy of up to
99.06% were developed using the K-Nearest Neighbor (KNN) Machine Learning (ML) technique.

Keywords: powered two-wheeler dynamic behavior; maximum cornering velocity; advanced rider
assistance systems; k-nearest neighbor; machine learning

1. Introduction

Thanks to the introduction of recent technologies, systems and devices that interpret
signals from various sensors and computer-controlled components and safety standards
have reached high levels of reliability both for the driver and for the passengers of two-
wheeled vehicles [1,2]. Unlike what happened for four-wheeled vehicles, the progress and
technological evolution of safety devices for two-wheeled vehicles began with two decades
of delay. Throughout the years, improvements in relation to safety have concerned almost
exclusively the passive features: airbags, protective clothing, helmets, etc. For example, if
the ESC has been available on cars since 1995, the Kronreif und Trunkenpolz Mattighofen
(KTM) Austrian motorcycle company introduced the Motorcycle Stability Control (MSC) to
a motorcycle only in 2013.

Although model-free design methods have been investigated considerably, up to now,
most control synthesis methods and tools are categorized as physic model-based, and the
system subject to control is evaluated as a type of dynamic model of the system itself.

The design of the control system requires accurate mathematical modeling since the
closed-loop performance is strictly influenced by the dynamic behavior of the system
and the use of very accurate sensors and measuring instruments. The control system
is characterized by many closely interacting subsystems; advanced control systems are
requested for a competitive performance, and an explicit mathematical model is thought
for their design; the system seems to be safety critical and an extensive validation of the
closed-loop stability and performance by simulation is considered essential.
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Related Work

The importance of mathematical models is universally recognized for the design of the
control of these safety systems. For this purpose, different types of mathematical models are
used, such as detailed models for dynamic system simulation in multibody environments
and numerical models based on AI algorithms for control design.

Mathematical models dealing with dynamic simulation are generally quite heavier [3–5];
linearization is not always practicable and often involves a loss of accuracy [6,7]. This
involves the use of an overpowered on-board computer to assist the driver in better
confronting the risks. This is, of course, far from expedient for the motorcycle industry; for
this reason, other research was prompted to arise with the aim of simplifying the model [7]
or estimating the parameters [8]. Additionally, the two-wheeled is a vehicle whose balance
is difficult to recover; for example, there are few or even no actuators available to correct
the slip on the bend.

In their previous works, the authors tried to evaluate the maximum cornering velocity
using detailed multibody models attempting to also consider the influence of the pilot’s
movements [9–13]. Indeed, two vehicles, even if they have the same characteristics (weight,
wheelbase, tires, geometry, etc.), can perform very different dynamic cornering behaviors
depending on the rider that maneuvers the vehicle. Below in Table 1, the main control
systems designed and/or presented in the scientific literature have been classified, indi-
cating for each of them the principle, the use of the instrumentations and the advantages
and disadvantages.

Table 1. Principle, main advantage and disadvantage of existing methods.

Existing Methods Principle Advantages Disadvantages/Limitations

Learning a Curve Guardian
for Motorcycles [14].

Using IA to improve the curve
undertaking. Analyzing the
instruments’ measured data.

Lane localization, adding a
learned roll prediction
approach, using standard
maps for
real-world evaluation.

Does not anticipate the danger
before undertaking the curve.
Does not consider road grip in
the estimation of roll angle.

Powered Two-Wheeler Riding
Pattern Recognition Using a
Machine-Learning
Framework [15].

Using IA to predict rider
behavior. Analyzing the
instruments’ measured data.

Recognition of the driver
action by applying ML on a
dataset of measurement
collected by sensors.

Does not reply completely to
the challenge of anticipating
dangers on the curve.
Uses a set of sensors that may
raise costs.

Powered Two-Wheelers
Critical Events Detection and
Recognition Using
Data-Driven Approaches [16].

Development of critical event
detection methodology by
using AI
classification algorithms.

The classification of the events
with ML techniques, which
could constitute a good
database to characterize
critical events.

The experiences collected
based on a single model
HONDA CBF 1000 which is
not beneficial in case
of generalization.

Estimation of Mental
Workload during Motorcycle
Operation [17].

Development of a method for
mental workload when riding
a PTW.

Contributes to characterize
the driver behaviour by
estimating the level of fatigue.

Deal partially with the
challenges of PTW concerning
curve undertaking.

Lateral & Steering Dynamics
Estimation for Single Track
Vehicle: Experimental
Tests [18].

Development of on-board
instrumentations for lateral
and steering
dynamic estimation.

Deals with lateral and steering
dynamics estimation the
reconstruction of
unknown inputs.

Does not anticipate the danger
before undertaking the curve.
The loss of information due to
linearization is considerable.

A driver who knows his vehicle well has developed an aptitude so to maneuver it on
a bend better than the most intelligent existing robot can do (autonomous motorcycles [19]).
Our goal is to strengthen the driver’s skill by helping him know to bend more appropriately
and providing other information that he could not get directly with sensors.

To achieve this goal, we developed an efficient model based on ML for the prevention
of PTW cornering risks with minimum error. The ML techniques reported in the literature
are: Multiple Linear Regression (MLR), the Decision Tree (DT), Artificial Neural Network
(ANN) and K Nearest Neighbor (KNN), which are used in regression or classification
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contexts. Our choice was addressed to the ANN and KNN regression approaches because
of their suitability for the prediction of continuous quantities and given our previous
comparison of effectiveness [20]. Therefore, the choice to use the KNN method is for the
following three reasons:

• As explained in Section 3.1 (description of the methodology), given the nature of the
outputs (numerical observations), the form of regression of KNN appears to be the
most suitable.

• We conducted a comparison of the different methods and found that the ANN and
KNN gave the best results, but the ANN was unstable given its probabilistic behavior.
By calculating R2 indicator, we found that the ANN algorithm gives different values
that deviate from 25% to 90%.

• It is optimal, uses less resources and gives good performance, simple to deploy and
to interpret.

The challenges this study aims to address are:

• The complexity of the PTW (Powered Two Wheelers) dynamics;
• The lack of driver assistance systems for this type of vehicle;
• The real-time dynamic parameters sharing of information;
• The lack of databases in this field.

These challenges are the main obstacles that obstruct the constitution of a development
framework based on experience feedback and the design of an affordable driver assistance
system for the majority of users of this type of vehicle.

The majority of studies that addressed this topic (curve assistance systems) used an
instrumentational approach based on sensors or automatic estimators, but we could cite
previous studies conducted in the same spirit [21] in which the author aimed to characterize
critical curve situations using AI classification algorithms. Indeed, our work complements
his study.

On the other hand, at this stage of the state of the art, the framework has not yet been
completely finalized, and the works that arise complement each other. Notably, the use of
image recognition and AI for visual detection by camera, which is the main field currently
analyzed by researchers.

The research work carried out in this manuscript is organized as follows. Section 2
illustrates the proposed approach used to develop the rider-cornering-assistance system;
the formulation, the dynamic quantities considered, and their variation ranges are shown.
Section 3 describes the evaluation of the Vcurve correction coefficients through ML based on
the KNN regression approach. Section 4 reports the results interpretation and discussion.
Finally, in Section 5, the conclusions are showed.

2. Cornering Assistance System Formulation

The system studied consists of a triplet (vehicle, trajectory, driver}; they are related to
each other quantities that were null during the longitudinal trajectory (angles, forces and
moments, etc.). The system succeeded in going through the curve if the initial speed to take
the bend was correctly estimated and if, during the bend, the balance was not disturbed by
the environment and/or the driver maneuvers [9].

Efficient algorithms based on ML for the prevention of the PTW cornering risks with
a minimum error were developed. ANN and KNN regression approaches were used to
predict with high accuracy the continuous quantities involved in the cornering dynamic
of the PTW vehicle. A dataset was built by utilizing data from an open dataset source
(DataMC.org—Motorcycle Data Acquisition&motorcyclespecs.co.za) that were exploited
using known dynamic models and previously developed multibody dynamic models [10].
Our models were able to consider the rider’s movements and evaluate the dynamic re-
sponse of the PTW vehicle.

The method developed was based on an evaluation of the sideslip angle. During
curvilinear trajectory, each vehicle had its characteristic dynamic forces, and these depended
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on the vehicle geometric parameters, the contact road-tire and the rider actions (body
movements). In Figure 1, the dynamic forces involved in the vehicle equilibrium during
the curvilinear trajectory with non-zero sideslip angles are shown.
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PTW vehicle curvilinear trajectory was controlled by the handlebar, which was con-
nected to the front forks; unlike a car, simply steering does not produce an effective turn;
the riders are required to shift their weight and lean the vehicle to some angles (dependent
on the speed and turn radius) to maintain a correct trajectory. As with all circular motions,
the resultant between lateral force and rolling resistance in the front tire and lateral force
and driving force in the rear tire is a centripetal force that pulls the PTW vehicle into the
center of the turn. The tires provide the needed friction to maintain contact with the road
and the necessary front and rear sideslip angles [22].

For each PTW vehicle dataset “i”, the equilibrium control quantities (reported in
Figure 1) are presented as a function of other parameters that authors considered as
determinant parameters based on the results of their dynamic simulations. Next are
reported, divided by categories, these parameters used to develop effective algorithms
based on ML for the prevention of PTW cornering risks.

2.1. Vehicle Parameters
2.1.1. Know Parameters

In Figure 2, the PTW main geometrical and inertial parameters used in the multibody
approach are shown:

• PTW geometry: p: wheelbase; a: trial; ε: caster angle;
• Front assembly: Mf: front mass;
• Rear assembly: Mr: rear mass;
• Front wheel: Rf: wheel radius;
• Rear wheel: Rr: wheel radius.
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One simple and common way to characterize a PTW vehicle is by the ratio:

Rn = (an/bn)
(

M f /Mr

)
(1)

2.1.2. Unknown Parameters

In motion, some parameters changed their values continuously, especially in corner-
ing. These parameters participated in calculating the different forces and moments that
determined the equilibrium. We can mention in particular the coordinates of barycenter
Gf, the coordinates of barycenter Gr, the steering damper c, Kλf cornering stiffness, Kφf the
camber stiffness, Kλr cornering stiffness, Kφr the camber stiffness.

2.2. Tire-Road Parameters

The analysis of the relationship between tires and the road is the subject of extensive
studies [23,24]. Our study mainly focused on lateral force equilibrium conditions. In
Figure 3, the scheme of the lateral balance of the PTW vehicle during the curvilinear
trajectory is shown [10,23,24].
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The wheel–road contact is manifested by a deformation of the tire contact surface. The
resulting shape was a function of several parameters, in particular the characteristics of
the vehicle (tire pressure, load, etc.), the physical quantities generated by the cornering
action (roll angle, sideslip angle, etc.) and any presence of lateral forces and braking or
driving torques introduced further deformations to the contact patch. With respect to the
longitudinal “x” and transversal “y” axes, the patch was not usually symmetrical.

It follows that within the framework of a predictive approach to estimate the said
parameters, we rather sought the indicators that could differentiate one vehicle from
another. We selected the following parameters:

• The tires wear as a function of mileage traveled;
• The adherence to the road;
• Tire stiffness, a combination of tire pressure and tire type.
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2.3. Maneuver Parameters

Despite many studies carried out to model the rider’s behavior [10,25,26], motorcycle
dynamics still represent a notoriously thorny topic to deal with, mainly due to the following
problems:

• Because of the presence of the steering head, the description of vehicle kinematics will
be complex;

• To ensure the control of motorcycles, driver action is always required, and this is a
variation of driving conditions, such as speed;

• Riding style, such as the rider’s skill and experience, greatly affects vehicle performance.
• Figure 4 shows the scheme of PTW driver control system adopted in this study.
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In the present study, the PTW maneuverability condition was expressed as a function
of two parameters:

• The type of vehicle: two vehicles that are the same, or very similar, have a higher
correlation than motorcycles with different characteristics;

• The driver: drivers are always different since they may travel the same route at
different times and mileage.

2.4. Resultant of Parameters

Following the list of different parameters influencing the dynamics of the PTW vehicle
on curves, we can state the complexity of quantifying some parameters or even clarifying a
correlation between the parameters, knowing that most of them evolve with time. Indeed,
several works have tried to estimate dynamic parameters using conventional methods. In
particular, multibody models are widely used to estimate roll angle [27], lateral dynamics
forces [28], and attitude estimation [29,30].

The authors’ idea was to estimate an appropriate value of the heeling angle of PTW
vehicles by developing estimation algorithms based on on-board measurements. This is
mainly due to the fact that the sensors available to measure this variable turn out to be
bulky and expensive. Currently, algorithms are used for four-wheeled vehicles; however,
for two-wheeled vehicles, it is still an open topic. In the context of two-wheeled vehicles,
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the authors proposed neural network estimation algorithms that consider the standard
on-board measurements available in modern motorcycles to study the role of the most
significant signals for estimation.

The approach used in this paper served as a preliminary analysis of this estimation
problem because it did not require the direct derivation of physical parameters of motor-
cycle dynamics in its application. The experimental data collected covered a rich number
of maneuvers (66 tests) and were used to optimize the developed algorithms, as many
maneuvers were used to analyze the effectiveness of the algorithms.

Thus, our approach suggested an estimation of the parameters of the system consider-
ing all the factors that play a role in lateral dynamics (Equation (2)):

Vcurve = CVeh·Cct·CDr·Vre f (2)

where the coefficients are functions of the parameters described in Table 2:

• CVeh: Correction coefficient linked to the characteristics of the vehicle; this one is
expressed as:

CVeh = f
(

Rn, R f , Rr

)
(3)

Table 2. Parameters used in algorithms for cornering assistance system.

Category Parameter Measure Calculation/Estimation Method Training Ranges

Characteristics of the
vehicle

Rn Geometric ratio Provided (constant value) [0.008; 0.061]
R f Radius of front wheel [m] Provided (constant value) [0.085; 0.331]
Rr Radius of rear wheel [m] Provided (constant value) [0.084; 0.323]

Contact
road-tire

MlTire Mileage record of the tire [Km]

Expressed as a ratio reflecting the
state of wear of the wheel in relation

to
the mileage

[0.007; 0.995]

µlat Friction coefficient of the Road Estimated with ML method [7] [0.003; 0.998]

PTire Pressure [Bar] Expressed as a ratio reflecting the
state of pressure (date < 3 months) [0.5; 1.4]

TireType

Brand–width–Flank
height–Tire

structure–Diameter -load
index–velocity index–Wet grip

index [coding]

Provided
(constant value codified as a decimal) [0.003; 0.999]

Driver
behavior

Time Month/Day/Hour
[coding]

Available information, Expressed as
a ratio of Driving Time:
Driver/Referent driver

[0.7; 0.99]

Mldriver Record of the driver [Km] Expressed as a ratio of mileage:
Driver/Referent driver [0.5; 0.99]

Referent
vehicle

cposition Radius (m) Provided by GPS position [0.01; 0.05]
T Temperature (◦C) Available information Not considered
H Opto-electronic signal (mA) Available information Not considered

Vis weather visibility index Available information Not considered

• Cct: Correction coefficient linked to the road-tire relationship; it is expressed as:

Cct = f
(

MlTire, µlat, PTire, TireType
)

(4)

• CDr: Correction coefficient linked to the driver’s behavior; it is expressed as:

CDr = f (CVeh, Cct, Time, Mldriver) (5)
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• Vref: Velocity of the vehicle on the curve cposition performed by a referent driver at
Temperature “T”, Humidity “H”, and visibility “Vis”, expressed finally by:

Vre f = f
(
cposition, T, H, Vis

)
(6)

In case of the referent vehicle {Driver, Vehicle}, the velocity will only depend on the
driver records on similar conditions of the environment (correction coefficient = 1):

Vcurve = Vre f
(
cposition, T, H, Vis

)
(7)

3. Evaluation of the Vcurve Correction Coefficients through the ML KNN Method
3.1. Methodology Description

Table 2 classifies the previously introduced parameters, considering their nature and
the proposed method of estimation or measurement. Table 3 reports the values of the
parameters used in the first 10 of the 66 tests carried out. The complete table with all the
parameters used in the 66 tests is shown in Supplementary Materials.

Table 3. Parameter values used in the tests.

Test Vehicle Characteristics
of the Vehicle Contact Road-Tire Driver Behaviour Referent

Vehicle

Rn Rf (m) Rr (m) MlTire
(ratio) µlat

PTire
(ratio)

TireType
(ratio) Cveh Cct

Time
(ratio)

Mldriver
(ratio)

Cposition
(1/m)

P1 HONDA
CBR500R/F/X 0.017 0.182 0.201 0.29 0.80 1.0343 0.56 0.7558 0.6817 0.7 0.5 0.01

P2 LAGENDA
115 R6 0.012 0.180 0.178 0.25 0.90 0.5000 0.76 0.8044 1.0988 0.7 0.5 0.02

P3 LAGENDA
115 FZ150 0.019 0.117 0.121 0.42 0.84 0.5000 0.94 0.7200 1.1731 0.7 0.7 0.02

P4 HONDA
CBR500R/F/X 0.017 0.180 0.195 0.05 0.44 1.1060 0.26 0.7568 1.4538 0.7 0.8 0.01

P5 HONDA
CB650F 0.016 0.202 0.218 0.22 0.57 0.5000 0.26 0.7534 0.6444 0.9 0.8 0.03

P6 LAGENDA
115 XJ6 0.012 0.205 0.212 0.31 0.71 1.2020 0.64 0.8141 0.6418 0.9 0.5 0.05

P7
LAGENDA
115 XV950R

BOLT
0.021 0.254 0.239 0.24 0.39 0.5000 0.28 0.6882 0.4077 0.7 0.5 0.05

P8 HONDA
CB650F 0.019 0.207 0.210 0.46 0.21 0.5000 0.28 0.7011 1.2042 0.9 0.5 0.01

P9 LAGENDA
115 R1 0.012 0.190 0.190 0.77 0.44 0.5000 0.71 0.8040 0.8822 0.7 0.5 0.01

P10 LAGENDA
115 NMAX 155 0.012 0.125 0.117 0.90 0.56 0.6346 0.91 0.7924 0.0945 0.7 0.5 0.05

Our approach was based on credible learning, which means that in the learning phase,
we built the dataset considering only referent vehicles equipped with roll angle sensors,
accelerometer and drivers having a performant record and riding the most performant
vehicle. All referent vehicles travelled the same training trajectory. In addition to the
usual equipment, such as the tachometer, each referent vehicle was equipped with the
following sensors:

• Direct TPMS for measuring the pressure and temperature of each tire;
• Infrared sensor for detecting weather and light conditions;
• GPS system (possibility of connection with other equipment, such as smartphones);
• Electro-optical sensor combined Silicon Sensing MEMS (Micro Electro-Mechanical

System) gyroscope (CRS-07) for roll angle detection.

Thus, in the training phase and in each study case, between 291 and 300 experiences
covered different situations in the appropriate range visible in the last column present in
Table 2. The values reported in the section on the training camps varied according to the
parameters of the categories analyzed.

Considering the nature of outputs (parameters), we chose regression ML techniques
using the K nearest neighbor (KNN). We used “feature similarity” to predict the values
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of any new data point [31]. This means that a value was assigned to the new point based
on how it resembled the points in the training set. The output result was evaluated using
Equation (8).

ỹ(x̃) =
k

∑
i=1

wiy(xi) (8)

where wi is the weighting factor for xi, k is the number of neighbors, y is the response
variable and ỹ is the response variable prediction.

3.2. Friction Coefficient (µlat) Estimation Approach

As we can see in Table 2, parameters are either an unchanged quantity or a measure-
ment that evolves over time. The parameter that resides unknown is friction.

In our previous paper [31], we managed to estimate the adherence value thanks to
an approach based on the ML regression method KNN. This method is true only if the
vehicles covered by the dataset are similar with the same characteristics and operate under
the same conditions. Thus, the database was constructed based on the following criteria for
each measure xi:

• The quantities {Rn, Rf, Rr, TireType} are assumed as provided;
• The quantities {MlTire, T, H, Vis, PTire} are located in an interval at ±10%.

Consequently, based on the precited conditions for the dataset, the regression variables
are expressed as follows: xi =

{
Vir f , φr, cposition

}
, k = 2 number of neighbors, y = µi lat

which is the response variable and ỹ is the response variable predicted. On the training
phase, lateral adherence was calculated by using Equation (9) [9]:

µlat =

ρ
g ·V2

x −φr

1− ρ
g ·φr·V2

x
(9)

where µlat, ρ, vx, φr, g are respectively: coefficient of static friction, the curvature of the turn,
the longitudinal speed, the tilt angle of the road, and gravity.

On the operating phase, for a given curvature c, based on the measures of Vref and
φr we evaluated directly the adherence of this section of the road by our function ỹ(x̃). In
Figure 5, the comparison between µlat coefficients predicted and measured is shown.
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The similarity between predicted values and real values allowed us to repeat the
learning analyzed in [31], so that the new algorithm included the theoretical values. As for
the original forecast, the main results are shown below.

Considering that the prediction of the adherence coefficient was the subject of our
previous paper. We meant to repeat the learning so that the new algorithm took into
account the theoretical values. Hence, the similarity between the predicted and real values.

Likewise, the original prediction here is the results.
As an output, the road grip was evaluated using test data as a function of velocity

(Input). In Figure 6, we compared the prediction results given by the two techniques (KNN
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We found that the predicted road grip provided by the KNN model was closest to
the experimental values. More than that, ANN was unstable considering its probabilistic
behavior. By calculating R2 indicator, we found that the ANN algorithm gave different
values that varied from 25% to 90%.

3.3. Vehicle Characteristic Estimation

To evaluate the value of Cveh, we built another dataset of referent vehicles but with
different criteria for each measure xi:

• The quantities {Rn, Rf, Rr} are variable;
• The quantities {TireType, cposition} are assumed as provided;
• The quantities {MlTire, T, H, PTire, µlat} situated within an interval with mean values±10%.

Thus: Cct ≈ CDriver ≈ 1
Then, based on the above conditions for the dataset, the regression variables were

expressed as follows: xi =
{

Rn, R f , Rr

}
i
, k = 2 number of neighbors. The measured

correction coefficient of the vehicle y = CVehi
= Vi/Vre f

(
ci, Rn, R f , Rr

)
which is the

response variable and ỹ is the response variable prediction.
In the operating phase, for a given vehicle and based on the characteristics

{
Rn, R f , Rr

}
we evaluated directly the coefficient CVeh by the function ỹ(x̃). In Figure 7, the comparison
between CVeh coefficients predicted and measured is shown.
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3.4. Contact Road-Tire Prediction

To create a function that predicts the contact road-tire relationship, we built another
dataset of the referent vehicle but with different criteria for each measure xi:

• The quantities {TireType, PTire, µlat, MlTire} are variable;
• The quantities {Rn, Rf, Rr, cposition} are assumed as provided;
• The quantities {T, H, Vis} situated within an interval with mean values ±10%.

Thus: CVeh ≈ CDriver ≈ 1
Then, based on the precited conditions for the dataset, the regression variables are expressed

as follows: xi =
{

TireType, PTire, µlat, MlTire
}

i, k = 2 number of neighbors, the measured

correction coefficient of the vehicle y = Ccti =
Vi
V re f

(
ci, TireType, PTire, µlat, MlTire

)
, which is

the response variable and ỹ is the response variable prediction.
In the operating phase, for a given vehicle and based on the characteristics {TireType,

PTire, µlat, MlTire} we evaluated Cct coefficient using ỹ(x̃) function. In Figure 8, the compari-
son between Cct coefficients predicted and measured is shown.
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3.5. Rider Behavior Prediction

This time, to predict rider behavior, we built a dataset with ordinary vehicles for which
all the other parameters were fixed except those that we assigned to the driver, namely:
Time and the record of the driver mileage Mldriver. Thus:CVeh ≈ CCt ≈ 1.

Then, based on the precited conditions for the dataset, the regression variables were
expressed as follows: xi = {Time, Mldriver}i,k = 2 number of neighbors, the measured
correction coefficient of the vehicle y = CDriveri =

Vi
V re f (ci) which is the response variable

and ỹ is the response variable prediction.
In the operating phase, for a given rider and based on the data {Time, Mldriver}, we

can evaluate CDr coefficient using ỹ(x̃) function. In Figure 9, the comparison between CDr
coefficients predicted and measured is shown.
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3.6. Overall Results

In this section, the impact of the different correction coefficients on the accuracy of
the maximum predicted cornering velocity (Vmax) calculation is shown. Figure 10 shows
a signal enveloped within a frame (brown line) that follows the referent velocity realized
by the referent vehicle in 66 different tests. The correlation attests to the effectiveness of
the prediction method followed. Please note that the trajectory is the same, but the other
conditions are different for the 66 different dynamic situations tested.
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Comparing the predicted velocity (dotted line) with the real velocity (continous line)
of each scenario that considers the application of the correction coefficients (CVeh, Cct, CDr),
we can observe the high precision of the model. To evaluate the accuracy, we relied on the
measurement of MAE (mean absolute error) using Equation (10):

MAE =
1
n ∑n

i=1|yi − ŷi| (10)

where n, yi, ŷi, are respectively: the number of measurements; the value of measurements;
the corresponding predicted value; the mean of the measurements. The results shown
in Figure 11 highlight a relatively stable prediction for different values of K, but better
accuracy is given by K = 2 for each algorithm.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Predicted velocity vs. referent and real velocity. 

Comparing the predicted velocity (dotted line) with the real velocity (continous line) 
of each scenario that considers the application of the correction coefficients (CVeh, Cct, CDr), 
we can observe the high precision of the model. To evaluate the accuracy, we relied on the 
measurement of MAE (mean absolute error) using Equation (10): 𝑀𝐴𝐸 = 1𝑛 ෍ |𝑦௜ − 𝑦పෝ|௡௜ୀଵ  (10) 

where n, yi, 𝑦పෝ , are respectively: the number of measurements; the value of measurements; 
the corresponding predicted value; the mean of the measurements. The results shown in 
Figure 11 highlight a relatively stable prediction for different values of K, but better accu-
racy is given by K = 2 for each algorithm. 

 
Figure 11. Evolution of the MAE indicator as a function of KNN. 

However, different levels of performance were observed for each coefficient, which 
should be the subject of several factors discussed in the following section. 

In fact, the performance of the algorithms does not behave the same way with the 
variation of K (see also Figure 10). Nevertheless, the only case that reacts significantly to 
the variation of K is that of Cct prediction. This is explained by our database layout: the 
KNN algorithm exploits the correlation between the values; thus, the results are limited 

Figure 11. Evolution of the MAE indicator as a function of KNN.

However, different levels of performance were observed for each coefficient, which
should be the subject of several factors discussed in the following section.

In fact, the performance of the algorithms does not behave the same way with the
variation of K (see also Figure 10). Nevertheless, the only case that reacts significantly to
the variation of K is that of Cct prediction. This is explained by our database layout: the
KNN algorithm exploits the correlation between the values; thus, the results are limited
to the extent of the database that we have used and the diversity of the scenarios that it
represents.

4. Discussion

Using the KNN-ML technique, a prediction model of the lateral dynamics of PTW ve-
hicles was developed. The vector of inputs used in the model included the main parameters
that characterize the system (vehicle, driver, environment). This choice is not exhaustive,
but the acquisition of more measurements requires the possibility and verifiability of
ensuring reliable learning.

The developed prediction model allowed the evaluation of Vmax by means of correc-
tion coefficients in curvilinear trajectories to implement an effective ARAS. The correction
coefficients introduced in the previous section showed a different accuracy. Below, the
interpretation of the results is reported for each correction coefficient:



Sensors 2023, 23, 1540 14 of 17

• Vehicle characteristics estimation Cveh: The results showed a stability of the prediction
with good accuracy (MAE = 2.9% in the testing phase); this is mainly due to the fact
that inputs are known data (excluding tires) that are objectively identified;

• Contact road-tire prediction: This is a complex function. In fact, having neglected the
Kλ stiffness coefficients for the front and rear assemblies, which are notably impacted
by the effect of the shock absorbers, biased the results. On the other hand, given the
modest amount of data on our Dataset (291 measurements in total), the algorithm could
not obtain sufficiently efficient results (MAE ≈ 35%) despite acting on the coefficient K
(Number neighboring points). Consequently, we counted on the application on a more
consistent scale to be able to collect a sufficient quantity of data to improve this ratio;

• Rider behavior prediction: We obtained excellent results of precision and stability
(MAE ≈ 0.94%). In fact, the simplicity of the parameters made it possible because we
chose to reflect only two aspects that could characterize the driver (mileage, time).

The implementation of a conventional method involved the use of a considerable
number of sensors; this kind of equipment was not affordable for every user. As for our
developed model, the equipment needed was restricted to data sharing and continuous
improvement of the algorithms.

The effectiveness of the developed method was also proved by comparing the maxi-
mum cornering velocity values obtained with the present algorithms and the same values
calculated using the parametric multibody model of the PTW vehicle and rider developed
by one of the authors in the work “An advanced multibody model for evaluating rider’s
influence on motorcycle dynamics” [10].

By entering the values of the geometric and inertial parameters used in the evaluation
of the above algorithms, it was possible to have a numerical validation of the results
obtained using the multibody model described in [10]. The results obtained are shown in
Figure 12.
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method and the calculated multibody model of PTW vehicle.

The maximum values of cornering velocity Vmb calculated using the parametric
multibody model of the PTW vehicle had an average difference from the same values
evaluated with the algorithms developed in the present work Vref always less than 18%.

No AI-based project that proposed an ARAS-PTW was found in the literature. Only
the work [32,33] presents similarities to the present research. Here, the authors proposed
an approach based on a mathematical estimate. The function introduced is as follows:

J(x, u) = Wa(ax, uωΨ) + Wj(jx) + Wj(jΨ)− ux (11)

where Wa is the acceleration envelope function and Wj is the jerk envelopment function.
An additional term was introduced to promote speed.
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If we compare the proposed Equation (11) with our proposed one Equation (2), we can
state considering the difference of approaches that our approach considers all the variables
(Environment, Vehicle, rider) and is based on learning and the accumulation of experiences,
while the study proposed by [32] presents a real-time approach that requires access to
different parameters (sensor layout).

As shown in Figure 13, the author of [32] supposes that the initial speed to start the
curve is already known (velocity in point A); this constitutes the main difference from our
research. Precisely, this data is unknown since we cannot have an advanced knowledge
of the curve started. This is where our solution comes from, which uses historical data to
provide advanced knowledge of the curve to be started.
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Figure 13. Recommended cinematic quantities in curvilinear trajectory. (a) optimal speed profile;
(b) optimal longitudinal acceleration profile; (c) optimal jerk profile; (d) optimal trajectory.

Similar to our previous article based on AI [33], the present research aims to offer
assistance to the rider in critical situations by the acquisition of unknown parameters using
ML. The goal of the present research was to be able to continuously increase driving skills
while taking advantage of the magic of AI to prevent critical situations.

5. Conclusions

The work carried out aimed to set up a framework for an ARAS-PTW by using machine
learning to predict values that could not be measurable or for which instrumentation may
be expensive.

Thus, we chose to analyze cornering since it is one of the most critical dynamic situa-
tions that PTW vehicles can address. Our approach consisted of considering coefficients that
must be deployed to link a PTW vehicle (user of the solution) to a reference vehicle whose
dynamic parameters are correctly identified and that is placed under our total supervision.

The resulting algorithms were satisfactory given that the initial data that we used were
only experimental data with a limited number of records, and for Cct (correction coefficient
linked to road-tire interaction) correction, we did not consider one parameter that may
standardize the measures. In fact, the stiffness of the front and rear assemblies should be
integrated in future works.

The accuracy with which we measured using the proposed correction coefficients
could be (in worst scenario) 38.83%, but the new algorithms can allow us to estimate the
value of velocity by a prediction accuracy of up to 99.06%.
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Our model was meant to be developed in further steps in the frame established in our
research work, but it could also be used as a framework for other works.
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