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Abstract: The rapid development of electric vehicle (EV) technology and the consequent charging
demand have brought challenges to the stable operation of distribution networks (DNs). The problem
of the collaborative optimization of the charging scheduling of EVs and voltage control of the
DN is intractable because the uncertainties of both EVs and the DN need to be considered. In
this paper, we propose a deep reinforcement learning (DRL) approach to coordinate EV charging
scheduling and distribution network voltage control. The DRL-based strategy contains two layers,
the upper layer aims to reduce the operating costs of power generation of distributed generators
and power consumption of EVs, and the lower layer controls the Volt/Var devices to maintain the
voltage stability of the distribution network. We model the coordinate EV charging scheduling and
voltage control problem in the distribution network as a Markov decision process (MDP). The model
considers uncertainties of charging process caused by the charging behavior of EV users, as well
as the uncertainty of uncontrollable load, system dynamic electricity price and renewable energy
generation. Since the model has a dynamic state space and mixed action outputs, a framework of
deep deterministic policy gradient (DDPG) is adopted to train the two-layer agent and the policy
network is designed to output discrete and continuous control actions. Simulation and numerical
results on the IEEE-33 bus test system demonstrate the effectiveness of the proposed method in
collaborative EV charging scheduling and distribution network voltage stabilization.

Keywords: electric vehicle; distribution network; deep reinforcement learning; voltage control

1. Introduction

In recent years, electric vehicle (EV) technology has developed rapidly, driven by
breakthroughs in battery technology [1,2]. As a substitute for fossil fuel vehicles, EVs have
received extensive attention due to their environmentally friendly characteristics [2–5].
EVs can reduce traffic pollution emissions and have lower charging costs than refueling,
which has been widely accepted and deployed [6–9]. However, large-scale numbers of EVs
connected to the power grid will bring challenges, such as frequency excursion and voltage
fluctuation [10]. The voltage stability of the distribution network (DN) is an issue that
needs to be focused on. The uncontrolled charging process of EVs will affect the voltage
stability of the distribution network [11]. When EVs are connected to the power grid in
vehicle-to-grid (V2G) mode, this situation will further deteriorate. In addition, the access of
distributed generators (DGs) to the power system changes the direction of power flow, and
the injection of active power upstream by distributed generators (DGs) causes voltage rise
and interferes with Volt/Var control (VVC) equipment [12]. The intermittency, randomness,
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and fluctuation of renewable energy sources (RESs) can cause voltage fluctuations in the
distribution network [13].

VVC is used to improve the voltage stability of the distribution network. In tradi-
tional VVC practice, voltage-regulating devices, such as on-load tap changers (OLTCs),
voltage regulators (VRs), and switchable capacitor banks (SCBs), are leveraged to mitigate
voltage violations [14]. In [15], a support vector regression based model predictive control
(MPC) method was proposed to optimize the voltage of a distribution network. For the
renewable energy access problem controlled by inverters, a multistage method has been
widely used for the VVC of distribution networks [16,17]. To coordinate VVC equipment
and distributed power supply, neural networks and learning-based methods are widely
used. An artificial neural network (ANN) based approach was introduced for the VVC
of distributed energy resources at the grid edge [18]. The authors of [19] proposed a safe
off-policy deep reinforcement learning algorithm for VVC in a power distribution system. A
model-free approach based on constrained safe deep reinforcement learning was proposed
in [12] to solve the problem of optimal operation of distribution networks. Although the
aforementioned research has made some achievements in VVC, they did not consider the
effect of electric vehicle charging on voltage stability nor did they consider the possibility
of electric vehicles participating in voltage control.

EVs participate in the voltage regulation of distribution networks. On the one hand,
the charging behavior of EVs is stimulated by the electricity price; on the other hand,
EVs can operate in the V2G mode [20]. By adjusting the charging power or discharge
power of EVs, it is helpful to stabilize the voltage of the distribution network [21–24].
Researchers have performed much work on the problem of charging scheduling of electric
vehicles. The authors of [25] proposed an improved binary particle swarm optimization
(PSO) approach to solve the problem of the controlled charging of EV with the objective of
reducing the charging cost for EV users and reducing the pressure of peak power on the
distribution network. To avoid the limitations of deterministic methods in terms of models
and parameters and their inability to handle real-time uncertainty, deep reinforcement
learning is widely used in the charging scheduling problem for EVs. References [3,10]
proposed model-free approaches based on deep reinforcement learning and safe deep
reinforcement learning, respectively, for the charging scheduling of household electric
vehicles. Both consider the uncertainty of the system and do not need an accurate model
but only study the charging scheduling problem of home electric vehicles. When faced with
the problem of charging EVs on a larger scale, the charging process for EVs is managed
by an aggregator or central controller. However, the charging process of EVs is highly
uncertain, which requires the estimation and prediction of the charging demand of EVs.
Artificial intelligence approaches are currently of interest due to their advantages in dealing
with high-dimensional data and non-linear problems. A Q-learning-based prediction
method was proposed in [26] for forecasting the charging load of electric vehicles under
different charging scenarios. The authors of [27] proposed a demand modeling approach
based on 3D convolutional generative adversarial networks. Reference [28] designed a
deep learning-based forecasting and classification network to study the long-term and
short-term characteristics of the charging behaviors of plug-in EVs. To solve the problem
of EV cluster charging, [29] proposed a hybrid approach to reduce the power loss and
improve the voltage profile in the distribution system, and both the vehicle-to-grid and
grid-to-vehicle operational modes of EVs were considered in this work. However, the above
research only studies the charging problem of electric vehicles from the perspective of
demand response (DR). The capacity and access location of the EV charging load will affect
the power flow distribution of the distribution network, and disordered electric vehicle
charging will reduce the voltage stability of the distribution network. The authors of [30]
proposed an evolutionary curriculum learning (ECL)-based multiagent deep reinforcement
learning (MADRL) approach for optimizing transformer loss of life while considering
various charging demands of different EV owners. This work only focuses on the life of the
transformer and does not directly control the voltage. Reference [20] proposed a three-layer
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hierarchical voltage control strategy for distribution networks considering the customized
charging navigation of EVs. Although the hourly scheduling results of the OLTC are given
the day before, the voltage is controlled in minutes, and frequent voltage regulation will
reduce the life of the OLTC.

The above analysis shows that the current research is more concerned with the VVC of
DN or DR of EVs, and there are fewer studies that consider both and perform coordinated
optimization. However, the studies that do examine the coordinated optimization of both
do not consider the actual system comprehensively. The collaborative optimization of
EVs, schedulable DGs and VVC devices in an DN system faces some challenges. First, the
charging goals of EV users and the goal of maintaining voltage stability in the distribution
networks are mutually exclusive. Second, the distribution network has strong uncertainty
and nonlinearity, and the charging process of EVs has strong uncertainty due to arrival
time, departure time, and electricity price. Third, there are many homogeneous devices
controlled by discrete and continuous actions in the system.

To solve these challenges, we formulate a collaborative EV charging scheduling and
voltage control strategy based on DRL to comprehensively schedule the charging of EVs
and control the voltage of distribution networks. We establish an MDP model for the
charging scheduling of EVs and the voltage control problems of distribution networks. The
state variables of the system take into account the uncertainty of the EV charging process,
nodal loads, RES generation, and electricity price interacting with the main grid. The
purpose is to realize automatic voltage regulation and reduced EV charging cost though the
collaborative control of VVC devices and EVs, as well as controllable DGs. The design of
the reward function comprehensively considers the charging target of EVs and the voltage
control objective of DN. In contrast to the control strategies mentioned in the literature
above, which were graded according to time, the proposed control strategy synergistically
considers the problem of optimizing the scheduling of EVs and the voltage control of the
DN. The collaborative scheduling control strategy consists of two layers; the upper layer
manages the charging of electric vehicles and the lower layer regulates the voltage control
equipment. The control strategy is output by a designed deep neural network (DNN) and
trained using a model-free deep deterministic policy gradient (DDPG) method. A signal
rounding block is set up after the output layer of the DNN to obtain the discrete control
signals of VVC devices. The main contributions of this work are:

• A time-independent two-layer coordinated EV charging and voltage control frame-
work is proposed to minimize EV charging costs and stabilize the voltage of distribu-
tion networks.

• An MDP with unknown transition probability is established to solve the EV charging
problem considering the voltage stabilization of DN. The reward function is reasonably
designed to balance the EV charging target and voltage stability target.

• The model-free DDPG algorithm is introduced to solve the coordinated optimization
problem. A DNN-based policy network is designed to output hybrid continuous
scheduling signals and discrete control signals.

The rest of the paper is organized as follows: Section 2 presents the MDP model
and introduces the collaborative scheduling control strategy. Section 3 encompasses the
simulation experiments and analysis. Section 4 gives the conclusions.

2. Materials and Methods
2.1. Modelling of DN System

In this paper, we propose a collaborative EV charging and voltage control framework
on a DN system. As shown in Figure 1, EVs, controllable DGs, and RES are distributed in
the DN system. EVs are controlled by smart terminals that control the charging process and
pay for charging. The central controller (CC) collects information on the operating status
of the system though two-way real-time communication and based on this information,
outputs signal to control the controllable units through our proposed collaborative EV
charging and voltage control strategy. In the formula we established, the total operating
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time range of DN is divided into T time slots and the subscript t represents the specific time
slot. In the DN system, the subscript i ∈ Ωn is used to represent the nodes and Ωn is the set
of all nodes, the subscript ij ∈ Ωb is used to represent the branches, and Ωb is the set of all
branches. We then perform the detailed modelling of EVs, controllable DGs, and voltage
control devices in the DN system. The operational constraints of DN are subsequently
given, and the MDP model is finally established. It is worth noting that our model does
not require knowledge of the topology of the DN, the specific line parameters, and the
distribution and fluctuations of the load. The scheduling strategy is learned only according
to the observed system state.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 22 
 

 

information, outputs signal to control the controllable units through our proposed collab-

orative EV charging and voltage control strategy. In the formula we established, the total 

operating time range of DN is divided into 𝑇 time slots and the subscript 𝑡 represents 

the specific time slot. In the DN system, the subscript 𝑖 ∈ Ω𝑛  is used to represent the 

nodes and Ω𝑛  is the set of all nodes, the subscript 𝑖𝑗 ∈ Ω𝑏  is used to represent the 

branches, and Ω𝑏 is the set of all branches. We then perform the detailed modelling of 

EVs, controllable DGs, and voltage control devices in the DN system. The operational 

constraints of DN are subsequently given, and the MDP model is finally established. It is 

worth noting that our model does not require knowledge of the topology of the DN, the 

specific line parameters, and the distribution and fluctuations of the load. The scheduling 

strategy is learned only according to the observed system state. 

 

Figure 1. The collaborative EV charging and voltage control framework. 

2.1.1. Controllable Units in the Distribution Network 

1. EVs 

The control variable of an EV is its charging power and, in V2G mode, discharge 

power. For EVs connected to node 𝑖, the control variable is expressed as 𝑃𝑖,𝑡
EV, and in V2G 

mode, the value of 𝑃𝑖,𝑡
EV is positive for charging and negative for discharging. Under the 

intelligent charging strategy, the charging power constraints are: 

−𝑃𝑖,dis,max
EV ≤ 𝑃𝑖,𝑡

EV ≤ 𝑃𝑖,ch,max
EV , 𝑖 ∈ Ω𝑛, 𝑡 ∈ Ω𝑡 (1) 

where 𝑃𝑖,ch,max
EV  and 𝑃𝑖,dis,max

EV  are the maximum charging power and maximum discharg-

ing power of EV. 

The SOC represents the state of charge of the battery, which should meet the follow-

ing constraints during any scheduling period 𝑡 [31]: 

𝑆𝑜𝐶𝑖,𝑡+1
EV = {

𝑆𝑜𝐶𝑖,𝑡
EV + 𝑃𝑖,𝑡

EV ⋅ 𝜂𝑖,ch
EV ⋅ ∆𝑡 𝐸𝑖

EV⁄ ,       𝑖𝑓 𝑃𝑖,𝑡
EV ≥ 0

𝑆𝑜𝐶𝑖,𝑡
EV + 𝑃𝑖,𝑡

EV ⋅ ∆𝑡 (𝜂𝑖,dis
EV ⋅ 𝐸𝑖

EV)⁄ , 𝑖𝑓 𝑃𝑖,𝑡
EV < 0

, 𝑖 ∈ Ω𝑛, 𝑡 ∈ Ω𝑡 (2) 

𝑆𝑜𝐶𝑖,min
EV ≤ 𝑆𝑜𝐶𝑖,𝑡

EV ≤ 𝑆𝑜𝐶𝑖,max
EV , 𝑖 ∈ Ω𝑛, 𝑡 ∈ Ω𝑡 (3) 

Figure 1. The collaborative EV charging and voltage control framework.

2.1.1. Controllable Units in the Distribution Network

1. EVs

The control variable of an EV is its charging power and, in V2G mode, discharge
power. For EVs connected to node i, the control variable is expressed as PEV

i,t , and in V2G
mode, the value of PEV

i,t is positive for charging and negative for discharging. Under the
intelligent charging strategy, the charging power constraints are:

− PEV
i,dis,max ≤ PEV

i,t ≤ PEV
i,ch,max, i ∈ Ωn, t ∈ Ωt (1)

where PEV
i,ch,max and PEV

i,dis,max are the maximum charging power and maximum discharging
power of EV.

The SOC represents the state of charge of the battery, which should meet the following
constraints during any scheduling period t [31]:

SoCEV
i,t+1 =

{
SoCEV

i,t + PEV
i,t · ηEV

i,ch · ∆t/EEV
i , i f PEV

i,t ≥ 0

SoCEV
i,t + PEV

i,t · ∆t/
(

ηEV
i,dis · E

EV
i

)
, i f PEV

i,t < 0
, i ∈ Ωn, t ∈ Ωt (2)

SoCEV
i,min ≤ SoCEV

i,t ≤ SoCEV
i,max, i ∈ Ωn, t ∈ Ωt (3)
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where EEV
i is the capacity of the EV battery, ηEV

i and ηEV
i,dis are the charging rate and discharg-

ing rate, respectively, and SoCEV
i,max and SoCEV

i,min represent the maximum and minimum
SOC, respectively.

2. Controllable DGs

The control variables for controllable DGs are the active and reactive power output.
The active and reactive power outputs of DG at node i are denoted by PDG

i,t and QDG
i,t ,

respectively. The constraints of active and reactive power are:

0 ≤ PDG
i,t ≤ PDG

i,max, i ∈ Ωn, t ∈ Ωt (4)

0 ≤ QDG
i,t ≤ QDG

i,min, i ∈ Ωn, t ∈ Ωt (5)

where PDG
i,t and QDG

i,t represent the active and reactive power of DG.

3. Third OLTCs and VRs

The OLTC/VR is controlled by changing the tap position. The control variable of the
OLTC/VR on the access branch ij is expressed as lVR

ij,t , which varies in an integer range:

− lVR
ij,max ≤ lVR

ij,t ≤ lVR
ij,max, ij ∈ Ωb, t ∈ Ωt (6)

where lOLTC
ij,max represents the maximum adjustable position of the OLTC/VR.

4. SCBs

The SCB adjusts the amount of reactive power it provides by regulating the number of
operating units. The number of operating units of the SCB at node i is expressed as nSCB

i,t ,
which is taken in an integer range:

0 ≤ nSCB
i,t ≤ nSCB

i,max, i ∈ Ωn, t ∈ Ωt (7)

where nSCB
i,max is the maximum number of units that can be connected to operation.

2.1.2. Operational Constraints of the DN

The operational constraints of the distribution network are as follows:(
PS

t

)2
+
(

QS
t

)2
≤
(

SS
)2

, t ∈ Ωt (8)

Vi,min ≤ Vi,t ≤ Vi,max, i ∈ Ωn, t ∈ Ωt (9)

Iij,min ≤ Iij,t ≤ Iij,max, ij ∈ Ωb, t ∈ Ωt (10)

Equation (8) constrains the complex power that the substation can withstand, with PS
t ,

QS
t , and SS in the equation being the active power, reactive power, and maximum apparent

power of the substation, respectively. Equations (9) and (10) constrain the node voltage Vi,t
and branch current Ii,t, respectively.

2.1.3. MDP Model

The challenge of modeling the collaborative problem of EV charging scheduling and
voltage control in the distribution network is how to deal with various uncertainties in the
system. It is also necessary to balance the charging target of EV users and the voltage control
target of distribution network. Therefore, we establish an MDP model for the collaborative
optimization problem of the EV charging scheduling and distribution network voltage
control. The state variable, action variable, and reward function of the system are reasonably
designed in the model.
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1. State

The state variable of the system at any time t is defined as:

st = (PD
1,t−T+1, · · · , PD

1,t, QD
1,t−T+1, · · · , QD

1,t, PPV
1,t , PWT

1,t , SoCEV
1,t , tEV

1,arr, tEV
1,dep, SoCEV

1,dep, · · · ,

PD
i,t−T+1, · · · , PD

i,t, QD
i,t−T+1, · · · , QD

i,t, PPV
i,t , PWT

i,t , SoCEV
i,t , tEV

i,arr, tEV
i,dep, SoCEV

i,dep · · · ,

RS
t−T+1, · · · , RS

t , t), i ∈ Ωn, t ∈ Ωt

(11)

where PD
i,t and QD

i,t represents the active and reactive power demand of node i, respectively,
and the subscripts from (t− T + 1) to t− T + 1 indicate the information for the past T time
periods; RS

t−T+1, · · · , RS
t represents the historical electricity price of the past T slots; PWT

i,t
and PPV

i,t represent the power output of wind turbine (WT) and PV power output of node i,
respectively; and for the EV connected to node i, SoCEV

i,t represents the its state of charge at
timeslot t, tEV

i,arr, and tEV
i,dep represent the start charging time and departure time, respectively,

and SoCEV
i,dep represents the expected state of charge of EV at departure time tEV

i,dep.
The dimension of state space will explode when the system is large. In the distribution

network studied, we assume that the WT and PV are uncontrollable power supplies. To
reduce the complexity of the state space, the active power demand of node i can be replaced
by the net load demand of the node:

PNet
i,t = PD

i,t − PPV
i,t − PWT

i,t (12)

The simplified system state variable is represented as follows:

st = (PNet
1,t−T+1, · · · , PNet

1,t , QD
1,t−T+1, · · · , QD

1,t, SoCEV
1,t , tEV

1,arr, tEV
1,dep, SoCEV

1,dep, · · · ,

PNet
i,t−T+1, · · · , PNet

i,t , QD
i,t−T+1, · · · , QD

i,t, SoCEV
i,t , tEV

i,arr, tEV
i,dep, SoCEV

i,dep, · · · ,

RS
t−T+1, · · · , RS

t , t), i ∈ Ωn, t ∈ Ωt

(13)

2. Action

The control variables of the system include the active and reactive power of the DG,
the charging capacity of the electric vehicle, the tap position of the OLTC, and the number
of SCB units.

at =
(

PDG
1,t , QDG

1,t , PEV
1,t , nSCB

1,t , lOLTC
1,t , · · · , PDG

i,t , QDG
i,t , PEV

i,t , nSCB
i,t , lOLTC

i,t , · · ·
)

, i ∈ Ωn, t ∈ Ωt (14)

where the tap position of the OLTC and the number of SCB units are discrete actions and
the rest are continuous actions.

3. Reward function

The design of the reward function takes into consideration the operation cost of the
system and the voltage violations of the distribution network. The operating costs of the
system include the cost of the DN interacting with the main grid through the substation,
the generation costs of DG and the charging cost of EVs.

rt = −
[

α

(
CG

t + ∑
i∈Ωn

CDG
i,t + ∑

i∈Ωn

CEV
i,t

)
+ (1− α) ∑

i∈Ωn

CV
i,t

]
, t ∈ Ωt (15)

where α represents the weight coefficient, which indicates that the reward function is the
tradeoff value between the operating cost and the voltage stability target.

The first term CG
t calculates the cost of purchasing electricity from a power exchange

station.
CG

t = PS
t RS

t ∆t (16)

The second term CDG
i,t calculates the generation cost of the DG at node i.
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CDG
i,t = ai

(
PDG

i,t

)2
+ biPDG

i,t + ci (17)

where ai, bi, and ci are the generation cost coefficients.
The third term CEV

i,t calculates the charging cost of EVs.

CEV
i,t = PEV

i,t RS
i,t∆t (18)

We assume that all EVs in the DN system are connected through V2G to take full
advantage of the flexibility of EVs to participate in regulating the voltage of the DN, and
that the tariff is settled according to the trading tariff of the substation.

The fourth term CV
i,t calculates the penalty of voltage violation, corresponding to the

node voltage constraint given in Equation (9).

CV
i,t = σ · (max(0, Vi,t −Vi,max) + max(0, Vi,min −Vi,t)) (19)

where σ is the penalty coefficient of voltage deviation.

4. Objective

Define J(π) as the expected cumulative discount return over the scheduling cycle:

J(π) = Eτ∼π

[
r0 + γr1 + · · ·+ γT−1rT

]
(20)

where γ ∈ [0, 1] is the discount factor and τ represents the system trajectory under policy π.

2.2. Deep Reinforcement Learning Solution

In this section, a DRL-based approach is introduced for collaborative EV charging
scheduling and distribution network voltage control. The problem in Section 2.1 is first
transformed into the RL framework. Then we design a DNN to handle the output of mixed
discrete and continuous actions and train the DNN by DDPG [32]. The agent of DDPG
consists of two layers. All dispatching signals and control signals are output by the upper
layer of the agent, and the lower layer obtains a complete reward value by controlling the
controllable units in the distribution network.

2.2.1. DRL Based Approach

Under the reinforcement learning framework, the learning agent interacts with the
constructed MDP environment model. The optimization problem is transformed into a
standard reinforcement learning framework with the following objective:

Vπ∗(st) = max
at∈A(st)

Qπ∗(st, at) (21)

where Qπ∗ is the optimal action–value function. The action–value function Qπ(st, at)
describes the expected rewards for taking action at and then following policy π in state st,
which is used in many reinforcement learning algorithms. It is denoted by Equation (22).

Qπ(st, at) = Eri>t ,si>t ,ai>t∼π [rt|st, at ] (22)

The optimal action–value function Qπ∗ can be derived by solving the Bellman equation
recursively. Then, we can obtain the optimal policy π∗, which means the optimal action at ∼ π∗

can be obtained. This optimization problem can be described by Equations (23) and (24).

Qπ∗(st, at) = Eπ∗

[
rt + γ · max

at+1∈A(st)
Qπ∗(st+1, at+1)

]
(23)

π∗(st) = arg max
at∈A(st)

Qπ∗(st, at) (24)
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The Bellman equation will be difficult to solve when faced with complex problems. To
address this problem, value-based methods use look-up table or deep neural network to
estimate the optimal action–value function Qπ∗ and update it iteratively. The approximation
function is usually described in the form of a function Q

(
s, a
∣∣θQ) with respect to the

parameters θQ and the parameters are optimized with the objective of minimizing the loss
function Loss based on the temporal difference theory.

Loss
(

θQ
)
= Est∼ρβ ,at∼β

[(
yt −Q

(
st, at

∣∣∣θQ
))2

]
(25)

where B is the batch size of the samples sampled from the replay buffer and yt is the
target value:

yt = rt(st, at) + γ ·Q
(

st+1, µ(st+1)
∣∣∣θQ
)

(26)

Reinforcement learning that uses an approximation function to estimate the value
function is known as value-based RL methods. However, they have some disadvantages in
practical applications, especially when dealing with problems with continuous action spaces
where a good scheduling strategy cannot be obtained. Therefore, we use policy-based
reinforcement learning methods, which directly approximate the policy and optimize the
policy function through the gradient ascent method until a convergent policy is obtained.

The deep deterministic policy gradient (DDPG) [32] algorithm is introduced to solve
the complex coordinate EV charging and voltage control problem with high-dimensional
and continuous action spaces by only using low-dimensional observations. The DDPG
algorithm is a policy-based DRL algorithm with actor–critic architecture. Both actor and
critic contain two neural networks, with actor consisting of two DNN with parameters
θµ and θµ′ , and critic consisting of two multilayer perceptron (MLP) with parameters
θQ and θQ′ , respectively. The construction of the DDPG algorithm is shown in Figure 2.
Similar to standard reinforcement learning, DDPG has a learning agent that interacts with
a distribution network environment in discrete timesteps. The input of the DDPG agent
is the system state st at time step t and the output is action at. We assume the studied
DN environment is fully observed. To ensure independence between samples when
using neural networks, DDPG uses experience replay technology to ensure independence
between the samples used for target value updating. After each interaction of the agent
with the environment, we can obtain a sample containing st, at, rt, and st+1, and store this
sample in the replay buffer. The agent continues to interact with the environment until
the set condition is met, then B samples are randomly sampled from the replay buffer
to minimize the loss (Equation (25)) of the critic network and to calculate the gradient
(Equation (27)) of the actor network to softly update the parameters of the critic and actor
networks, respectively.
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The DDPG algorithm combines the success of the actor-critic approach and DQN [33]
using dual networks on top of the deterministic policy gradient (DPG) algorithm. The DPG
algorithm is based on the actor–critic structure, which consists of an actor and a critic. The
critic Q(s, a) is learned using the Bellman equation as in Q-learning. According to Equation
(26), the update rule for the parameters of the critic is given by Equation (27).

Loss
(

θQ
)
=

1
B ∑i

(
yi −Q

(
si, ai

∣∣∣θQ
))2

(27)

The actor is a parameterized actor function µ(s|θµ) that specifies the current policy by
deterministically mapping states to actions. The parameters of the actor’s value network
are updated based on the policy gradient method. The policy gradient algorithms apply a
gradient ascent method to update policy parameters and rely on the sampled sequence of
decisions when interacting with the environment. The actor is updated by following the
applying the chain rule to the expected return from the start distribution J. The update rule
for the parameters of the actor is given by Equation (28):

∇θµ J ≈ Est∼ρβ

[
∇θµ Q

(
s, a|θQ)|s=st ,a=µ(st |θµ)

]
= Est∼ρβ

[
∇aQ

(
s, a|θQ)|s=st ,a=µ(st)∇θµ

µ(s|θµ)|s=st

]
≈ 1

B ∑
i
∇aQ

(
s, a
∣∣θQ )|s=si ,a=µ(si)

· ∇θµ µ(s|θµ)|si

(28)

where J is the expected return from the start distribution, µ is the deterministic target
policy, θ is the parameter of the function approximator, ρ is the discounted state visitation
distribution for policy, β is a different stochastic behavior policy, and si is the state of the
ith sample in the small batch of samples sampled from the replay buffer.

2.2.2. Design of the Parameterized Policy Network

The proposed DDPG uses a multilayer perceptron (MLP) to approximate the policy
and output the continuous action value. We design a DNN to approximate the coordinated
policy. Figure 3 illustrates the architecture of the designed policy network. The status
information on the system’s renewable energy output PWT

t , PPV
t , load demand PL

t , real-
time LMP price RS

t , and SOC of EV SoCt is fed into the network and output as a defined
continuous action vector. To ensure the stability and convergence of the learning process,
all input state data are normalized according to their respective min–max values. RNN
can be used as a policy network when the state variables contain information from the
past T time periods. In our model, the state variables only contain information from the
current moment to reduce the dimensionality of the state space, so we choose a DNN as
the policy network to extract the feature information of the system state variables. The
final layer of the network uses tanh as the activation function and outputs continuous
values in the range [−1, 1]. To output discrete control actions, we add an integral block
behind the output layer to output discrete control signals to OLTC and CB. In this way, the
mixed discrete continuous action output at is obtained. The min–max block in the figure
behind the output layer represents the limit on the range of output continuous actions,
corresponding to the constraints on DGs and EV in Section 2. To alleviate the problem of
a vanishing gradient or exploding gradient, a rectified linear unit (ReLU) is used as the
activation function of each neuron in the hidden layer. The details of the architecture of the
policy network of the proposed DDPG structure is provided in the Table 1.
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Table 1. Policy network structure.

Layer Output Dimension

Input layer (state space) NS

Full connection layer + ReLU (units 256) 256
Full connection layer + ReLU (units 128) 128
Full connection layer + ReLU (units 64) 64

Full connection layer + tanh (action dimension) NA

Round block and inverse-transform block NA = NA
D + NA

C

Output of hybrid action = NA

2.2.3. Practices Implementation

The scheduling process for DN can be summarized as the offline training and online
scheduling process in Figure 4. The coordinate EV charging and voltage control strategy
in the agent contains two layers. The upper layer is the dispatching layer, which outputs
the control signals of all dispatchable units according to the system status. The lower layer
is the voltage control layer, which is the response for receiving these control signals and
controlling the dispatchable units in the DN system. The parameters (weights and biases)
of the initial policy of the agent are random and the policy network cannot output the
optimal action. Therefore, the policy network of the agent needs to be trained offline using
historical environmental data before it can operate practically. The parameters of the DNN
are updated through iterative interaction with the environment and the accumulation of
experience. With this approach, the agent can gradually optimize the network parameters
to more accurately approach the optimal collaborative strategy.

The agent is trained in a centralized mode using historical system data and then run
in online mode. During the training process, the voltage layer calculates the penalty of
voltage fluctuation in the reward function by running a simulated distribution network
system. The pseudocode for the training procedure of the DRL-based method is presented
in Algorithm 1.
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Algorithm 1 DDPG-based Learning Algorithm

1 Initialize weights θQ and θµ of critic network Q
(
s, a
∣∣θQ) and actor network µ(s|θµ)

2 Initialize weights θQ′ ← θQ , θµ′ ← θµ of target network Q′ and µ′
3 Initialize experience replay buffer R
4 for episode = 1, 2, . . . , M do
5 Receive initial observation state s1
6 for t = 1, 2, . . . , T do
7 Choose at = µ(st|θµ) and do simulation using pandapower
8 Observe reward rt and the next state st+1
9 Store transition (st, at, r1, st+1) in R
10 Sample a random minibatch of B transitions (si, ai, ri, si+1) from R
11 Set yi = ri + γ ·Q′

(
si+1, µ′(si+1|θµ′)

∣∣θQ′) according to Equation (26)

12
Update critic network parameters by minimizing the loss, see Equation (27):

Loss = 1
B ∑i

(
yi −Q

(
si, ai

∣∣θQ))2

13
Update the actor policy using the sampled policy gradient, see Equation (28):

∇θµ J ≈ 1
B ∑

i
∇aQ

(
s, a
∣∣θQ )|s=si ,a=µ(si) · ∇θµ µ(s|θµ)|si

14

Softly update the target networks using the updated critic and actor network
parameters:

θQ′ ← τθQ + (1− τ)θQ

θµ′ ← τθµ + (1− τ)θµ

15 end for
16 end for

In Algorithm 1, all network parameters (weights and bias) of the DDPG are initialized
before starting training. At the beginning of each episode, the environment is reset in
order to obtain the initial state of the system. Then, the policy network under the current
parameters is used to interact with the environment for T time steps. During the interaction,
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the immediate reward, the observed state at the next moment, current state and the action
are composed to be one sample, and this sample is stored in the replay buffer. Next, a
random batch of samples from the replay buffer is used to update the parameters of the
actor and critic networks of DDPG according to the conditions.

After the offline training, the trained network parameters are preserved for online
operation. In practical operation, the preserved network parameters are loaded, and the
system state is input to output the control signals for the collaborative strategy. The agent
only outputs the control signal to the system through the dispatching layer, and the voltage
control layer no longer calculates the penalty of voltage fluctuation. The pseudocode for
the practical running process of the algorithm is presented in Algorithm 2.

Algorithm 2 Online Running Algorithm

1 Input system state st
2 Output EV charging/discharging schedule and voltage control signals
3 for t = 1, 2, . . . , T do
4 Obtain historical information and EV charging demand
5 Build observation state st according to Equation (13)
6 Choose action at according to Equation (24) using the trained Algorithm 1
7 Output EV charging/discharging schedule and voltage control signals
8 end for

3. Results and Discussion

In this section, we present the details of simulation experiments to test the proposed
method and prove the effectiveness of the method through the analysis of the simulation
results. The simulations are trained and tested using a personal computer with an NVIDIA
RTX-3070 GPU and one Intel (R) Cores (TM) i7-10700K CPU. The code is written in Python
3.7.8, the reinforcement learning algorithm is implemented using the deep learning pack-
age TensorFlow 1.14.0 [34], and the distribution network environment is realized using
pandapower 2.10.1 [35].

3.1. IEEE-33 Node System and Parameter Settings

The performance of the proposed learning method is evaluated on a modified IEEE-33
node system [36]. Figure 5 shows the topology of the test feeder system. An OLTC is set
at bus 0 to connect to the external grid, which has 11 tap positions with an adjustment
range of −10% to 10% (2% per tap). Two SCBs with a capacity of 400 kVar are connected
at node 17 and node 30, each containing four units. A controllable DG is connected at
node 17 and node 32, respectively, and a WT and a PV are provided at nodes 21 and 24,
respectively. The detailed parameter settings of DGs and RES are presented in Table 2.
To reflect the complexity of the system, we evenly distributed the EV charging stations
throughout the test system. As shown in Figure 5, EV charging stations are set up on nodes
8, 13, 19, 22, and 29, each of which can be connected to a different number of EVs. Nissan
Leaf is considered a typical EV prototype, and the maximum charge/discharge power for
each vehicle is set at 6 kW and the battery capacity is set at 24 kWh. The charging and
discharging efficiency of EVs is set at 0.98 and 0.95, respectively. As suggested by [3,37],
the EV arrive time, departure time, and battery SOC at the arrival time obey truncated
normal distribution. These distributions and the specific parameter settings are presented
in Table 3. The safe range for the SOC of EV battery is [0.2, 1.0]. The objective is to minimize
the total operating cost of the system and the fluctuation of node voltage. The safe range of
nodal voltages is set between 0.95 p.u. and 1.05 p.u.
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Table 2. Operation parameters of controllable units in the distribution network.

Type and
Number Parameters

DG
NO. Maximum

Power (kW)
Minimum

Power (kW) a (USD/kWh2)
b

(USD/kWh)
c

(USD/h)

1 300 100 0.0175 1.75 0
2 400 100 0.0625 1 0

RES
NO. Maximum power (kW) Minimum power (kW)

WT1-2 15 0
PV1-2 8 0

Table 3. Parameter setting of EVs.

Variable Distribution Boundary

Arrival time tEV
arr ∼ N

(
9, 12) 8 ≤ tEV

arr ≤ 10
Departure time tEV

dep ∼ N
(
18, 12) 17 ≤ tEV

dep ≤ 19
Initial SOC SoCEV

dep ∼ N
(
0.6, 0.12) 0.4 ≤ SoCEV

dep ≤ 0.8

The time-series data in the California Independent System Operator (CAISO) [38] are
used to simulate the electricity prices, load demand, and RES generation in the distribution
network system. We downloaded data for 2019 and 2020 and used these two years as the
training set and test set, respectively. To ensure the load data meet the requirements of the
considered system, it is necessary to process the downloaded load data. First, normalize
the downloaded load data and then multiply the node base load power of the standard
IEEE-33 node system for setting. The output data of the downloaded wind turbine and
photovoltaic are processed in the same way.

To verify the effectiveness and scalability of the coordinated strategy, two simulation
cases are designed based on the load capacity that the system can handle: Case 1 contains
5 EVs and Case 2 contains 50 EVs. Electric vehicles have a characteristic of having more
parking time than driving time, and EV users prefer to charge at night when electricity
prices are lower. Therefore, we set up fewer EVs in the simulation scenario of Case 1 and
more EVs in the simulation scenario of Case 2. In Case 1, the EVs considered in the system
are charged during the daytime, with a charging scheduling time range of 8:00 a.m. to
19:00 p.m. for a total of 12 h. In Case 2, the EVs are charged during the nighttime, with a
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charging time range of 20:00 p.m. to 7:00 a.m. for a total of 12 h. The expected charge level
would be no less than 80% to alleviate low range anxiety.

The proposed method is compared with several benchmark approaches, including
DRL-based DQN [33], soft actor–critic (SAC) [39] and proximal policy optimization (PPO)
method [40]. The policy network of DQN contains three hidden ReLU layers and 64
neurons each, and SAC has the same policy network structure as DDPG, both containing
three ReLU layers with 256, 128, and 64 neurons, respectively, and an output layer with
tanh as the activation function and using the same approach to obtain hybrid actions.
Eleven levels of optional actions are set in the action space of DQN, and SAC and PPO
output actions are present in the same way as DDPG. Additional parameters considering
the algorithm are given in Table 4. These algorithms choose the same parameter to realize
the voltage fluctuation to ensure the competitiveness of the comparison results.

Table 4. Parameter setting of the algorithm.

Symbol Parameters Numerical

M Training episode 3000
lra Learning rate of actor 0.00001
lrc Learning rate of critic 0.001
τ Soft update coefficient 0.01
R Memory capacity 25,000
B Batch size 48
γ Discount factor 0.95
α Trade-off factor 0.5
σ Penalty of voltage fluctuation 100,000

3.2. Simulation Comparison of Voltage Control Performance

Figure 6 shows the results of the system nodal voltages using the DDPG algorithm.
Figure 6a,c shows the results for the node voltage with voltage control in Case 1 and Case
2, respectively, and Figure 6b,d shows the results for node voltage without voltage control
in Case 1 and Case 2, respectively. Comparing Figure 6a,c and Figure 6b,d vertically, it
can be observed that the voltage of the system decreases as the load of the electric vehicles
in the system increases. The comparison results show that controlling the voltage while
scheduling the electric vehicle allows the voltage at each node in the system to be in the
safe range, indicating that our proposed coordinated control strategy can implement the
safe control of the node voltage of the system.
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Figure 7 compares the average cumulative voltage violation (CVV) of the proposed
DDPG method and the comparison method for five independent runs of the training
process with different random seeds. As shown in Figure 7a, in Case 1, DDPG learns a safe
and stable voltage control strategy after 500 training episodes. However, the SAC in the
comparison algorithm converge after 1000 episodes of training, and the DQN and PPO
converge after more than 2500 episodes. In Case 2, DDPG can converge to a lower average
CVV after 1000 training episodes. Both PPO and SAC require 1500 training episodes
to converge, and DQN, although converging after 2000 training episodes, still has large
fluctuations, which are related to the discretization of its action output. The comparison
algorithms have poorer performance in voltage control, both exhibiting higher values of
voltage violations.
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different learning algorithms. (a) Average CVV of Case 1; (b) average CVV of Case 2.

The control results of the coordinated control strategy for the OLTC and SCB in Case 1
and Case 2 are given in Figure 8. Combined with the node voltage results in Figure 6a,c,
both the OLTC and SCB can be controlled to ensure that the voltage at each node of the
system is in the range of [0.95, 1.05], thus avoiding voltage dropout and voltage overrun.



Sensors 2023, 23, 1618 16 of 22Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

  

(a) (b) 

Figure 8. Control results for the OLTC and SCB. (a) Results of Case 1; (b) results of Case 2. 

3.3. Simulation Comparison of Cost Reduction Performance 

Figure 9 compares the cumulative operating cost curves of the proposed method with 

several other EV scheduling strategies, including the constant power charging strategy 

(CPC), TOU excitation strategy and PSO-based scheduling strategy without voltage con-

trol (NVC). In the constant power charging strategy, the charging power of the EV is set 

to the maximum charging power of the battery. The TOU price used in the simulation is 

given in Table 5 [20]. As shown in Figure 9a, the cumulative operating cost for DDPG, 

CPC, TOU, and NVC in Case 1 are USD 0.974M, USD 1.219M, USD 1.096M, and USD 

0.722M, respectively. Compared with CPC and TOU, DDPG reduces the operating cost 

by 20.1% and 11.1%. As shown in Figure 9b, the cumulative operating cost for DDPG, 

CPC, TOU, and NVC in Case 2 are USD 9.35M, USD 13.468M, USD 10.272M, and USD 

7.309M, respectively. Compared with CPC and TOU, DDPG reduces the operating cost 

by 30.58% and 8.98%. Although the scheduling strategy without voltage control has the 

lowest cumulative operating cost, it cannot guarantee the stability of the system voltage. 

Combined with the above analysis, the following conclusion can be drawn. Our proposed 

DDPG approach ensures system voltage stability at the expense of some economy. 

  

(a) (b) 

Figure 9. Comparison of the cumulative cost of different scheduling methods on the test set. (a) 

Comparison results of Case 1; (b) comparison results of Case 2. 

Table 5. Time of use electric price. 

Type Time Period Price (USD/kWh) 

Valley 1:00–8:00 0.295 

Peak 9:00–12:00, 18:00–21:00 0.845 

Figure 8. Control results for the OLTC and SCB. (a) Results of Case 1; (b) results of Case 2.

3.3. Simulation Comparison of Cost Reduction Performance

Figure 9 compares the cumulative operating cost curves of the proposed method with
several other EV scheduling strategies, including the constant power charging strategy
(CPC), TOU excitation strategy and PSO-based scheduling strategy without voltage control
(NVC). In the constant power charging strategy, the charging power of the EV is set to
the maximum charging power of the battery. The TOU price used in the simulation is
given in Table 5 [20]. As shown in Figure 9a, the cumulative operating cost for DDPG,
CPC, TOU, and NVC in Case 1 are USD 0.974M, USD 1.219M, USD 1.096M, and USD
0.722M, respectively. Compared with CPC and TOU, DDPG reduces the operating cost
by 20.1% and 11.1%. As shown in Figure 9b, the cumulative operating cost for DDPG,
CPC, TOU, and NVC in Case 2 are USD 9.35M, USD 13.468M, USD 10.272M, and USD
7.309M, respectively. Compared with CPC and TOU, DDPG reduces the operating cost
by 30.58% and 8.98%. Although the scheduling strategy without voltage control has the
lowest cumulative operating cost, it cannot guarantee the stability of the system voltage.
Combined with the above analysis, the following conclusion can be drawn. Our proposed
DDPG approach ensures system voltage stability at the expense of some economy.
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Figure 9. Comparison of the cumulative cost of different scheduling methods on the test set. (a) Com-
parison results of Case 1; (b) comparison results of Case 2.
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Table 5. Time of use electric price.

Type Time Period Price (USD/kWh)

Valley 1:00–8:00 0.295
Peak 9:00–12:00, 18:00–21:00 0.845
Flat 13:00–17:00, 22:00–24:00 0.56

Figure 10 compares the cumulative rewards of the proposed DDPG method and the
comparison method for five independent runs of the training process with different random
seeds. Figure 10a shows the convergence curves of the different DRL methods in Case
1. From Figure 10a it can be seen that DDPG is able to learn an economical EV charging
strategy after 500 episodes of training. The SAC in the comparison method is measured
to converge after 1500 episodes, while the DQN requires more training to converge. The
cumulative return of DDPG, DQN, SAC, and PPO during the training process converge to
USD 1.2135M, USD 2.5023M, USD 1.8798M, and USD 1.4392M, respectively. Compared to
DQN, SAC, and PPO, DDPG can reduce the cost by 51.5%, 35.4%, and 15.7%, respectively.
Figure 10b shows the convergence curves of the different DRL methods in Case 2. DDPG in
Figure 10b converges after 1000 training episodes, while PPO, SAC, and DQN all requires
2000 training episodes to converge. The cumulative return of DDPG, DQN, SAC, and
PPO are USD 3.2181M, USD 4.6912M, USD 4.4152M, and USD 3.7642M, respectively.
Compared to DQN, SAC, and PPO, DDPG can reduce the cost by 31.4%, 27.11%, and
14.51%, respectively. Additionally, as can be seen in Figure 10, DDPG and PPO are able
to achieve higher returns than SAC and DQN. Compared to PPO, DDPG has a faster
convergence rate and more stable convergence results. Combined with the training results
in Figure 7, we can conclude that DDPG has a faster and more stable performance than
popular DRL methods in learning a safe and economical coordinated control strategy. The
average running time of training and testing (one-step) of all algorithms is listed in Table 6.
DQN has the longest training time compared to the DRL method that outputs continuous
actions because it has a discrete action space. As the number of controllable units in the
system increases, the training time of DQN increases as the action space increases.
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Figure 10. Comparison of average reward during the training process for different learning algo-
rithms. (a) Comparison results of Case 1; (b) comparison results of Case 2.

The scheduling results for DGs and EVs in Case 1 are given in Figure 11. The purple
star symbol on the SOC curve in Figure 11b indicates the SOC value at the start of EV
charging. From the SOC curve the following conclusions can be drawn, our proposed
charging strategy can charge the EV with goal of reducing charging costs and the reward
function is designed to balance the EV charging target with the DN voltage control target.
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Based on the SOC values at the end of charging process, the battery of the EV is not always
fully charged; this is because we consider the voltage stability of the DN when scheduling
the EV for charging. The voltage constraint of the DN prevents the EVs from being perfectly
filled but the desired level can still be achieved.

Table 6. Average time consumption on training and online computation by different learning algorithms.

DDPG DQN SAC PPO

Case 1
Training (h) 13.57 28.36 18.64 16.85
Testing (s) 0.0014 0.0016 0.0014 0.0015

Case 2
Training (h) 14.85 40.46 20.81 18.72
Testing (s) 0.0024 0.0032 0.0026 0.0027
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4. Conclusions

In this paper, we proposed a DRL approach based on DDPG for coordinate EV charging
and voltage control problems in distribution networks. The proposed two-layer scheduling
control strategy enables the agent to learn an economical scheduling strategy and maintain
the voltage stability of the distribution network. The proposed method is data-driven and
does not rely on uncertain models in the system. The designed policy network can directly
generate hybrid continuous scheduling and discrete control signals. The simulation experi-
ment is tested on a modified IEEE-33 node system and the real-world power system data
are used for training and testing. Two simulation cases of different scenarios are designed
to verify the effectiveness and scalability of the proposed approach. Simulation results
demonstrate that the proposed approach can successfully learn an effective policy to charge
EVs in a cost-efficient way, considering voltage stability. The numerical results demonstrate
the effectiveness of the DDPG approach, which can significantly reduce the operating cost
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of the system in both Case 1 and in Case 2 scenarios and has a faster convergence rate
compared to the other DRL methods used for comparison. The comparison results show
that the proposed approach is well balanced to take into account the charging demand of
EVs and the voltage stability of the distribution network.

The charging scheduling of EVs is a complex process, and more physical characteristics
should be considered. For future work, the impacts of battery degradation and V2G
operation on the EV charging process should be carefully considered in order to establish a
more realistic environment.
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Nomenclature

Abbreviations
EV Electric vehicle
DN Distribution network
DRL Deep reinforcement learning
DDPG Deep deterministic policy gradient
MDP Markov decision process
V2G Vehicle-to-grid
DG Distribute generator
VVC Vol/Var control
RES Renewable energy source
OLTC On-line tap changer
VR Voltage regulator
CB Capacitor bank
MPC Model predictive control
ANN Artificial neural network
DR Demand response
DNN Deep neural network
CC Central controller
SOC State of charge
WT Wind turbine
PV Photovoltaic
DQN Deep Q-network
DPG Deterministic policy gradient
MLP Multilayer perceptron
LMP Locational marginal prices
SAC Soft actor–critic
CVV Cumulative voltage violation
CPC Constant power charge
TOU Time of use
PSO Particle swarm optimization
NVC No voltage control
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Subscript and Superscripts
i Index of node
ij Index of branch
t Index of time slot
ch Charging
dis Discharging
arr Arrive time of EV
dep Departure time of EV
s Substation
D Load demand
Net Net load demand
G Main grid
V Voltage
µ Critic network
Q Actor network
Variables
P Active power
SoC State of charge
Q Negative power
R Electricity price
l Tap position of OLTC/VR
n Number of SCB unit in operation
V Nodal voltage
I Branch current
s State of DN
a Action of policy
r Reward
θ Parameters of actor network
µ Parameters of critic network
ρ Discounted state visitation distribution
β Stochastic behavior policy
Sets
Ωt Set of time slots
Ωn Set of nodes
Ωb Set of branches
Parameters
η Charging/discharging efficiency
S Apparent power of substation
α Weight coefficient
a Cost coefficient of DG (USD/kWh2)
b Cost coefficient of DG (USD/kWh)
c Cost coefficient of DG (USD/h)
σ Penalty coefficient
γ Discount factor
M Max training episode
R Capacity of replay buffer
B Batch size
τ Soft update factor
∆t Interval of one time step
T Number of time steps
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