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Abstract: Reliable fault diagnosis and condition monitoring are essential for permanent magnet
synchronous motor (PMSM) drive systems with high-reliability requirements. PMSMs can be subject
to various types of damage during operation. Magnetic damage is a unique fault of PMSM and
concerns the permanent magnet (PM) of the rotor. PM damage may be mechanical in nature or be
related to the phenomenon of demagnetization. This article presents a machine learning (ML) based
demagnetization fault diagnosis method for PMSM drives. The time-frequency domain analysis
based on short-time Fourier transform (STFT) is applied in the process of PM fault feature extraction
from the stator phase current signal. Moreover, two ML-based models are verified and compared in
the process of the automatic fault detection of demagnetization fault. These models are k-nearest
neighbors (KNN) and multiLayer perceptron (MLP). The influence of the input vector elements, key
parameters and structures of the models used on their effectiveness is extensively analyzed. The
results of the experimental verification confirm the very high effectiveness of the proposed method.

Keywords: permanent magnet synchronous motor; fault diagnosis; condition monitoring; demagne-
tization; short-time Fourier transform; artificial intelligence; machine learning; neural networks

1. Introduction

Permanent magnet synchronous motors (PMSMs) have attracted much attention in the
last twenty years in a wide range of applications such as sustainable energy wind power
generation, robotics, electric vehicles, aerospace, industrial drives and many other fields.
This is due to their high efficiency, high power density, excellent dynamic performance and
simple, integrated design [1,2]. PMSMs also guarantee quiet operation, a high power factor
and a long lifetime. This results in their widespread use in household appliances, HVAC
and other commercial applications [3].

PMSM is a kind of motor in which permanent magnets (PMs) are installed on the rotor
to provide excitation. Thanks to such a rotor design, there are no excitation losses caused
by the flowing current in the rotor cage, compared, for example, to induction motors [4].
Despite many advantages, PMSMs, such as other electric motors, are exposed to various
types of damages. These damages can be divided into electrical, mechanical and magnetic
faults [5]. Electrical faults are mainly stator winding failures, in particular short-circuits,
which are caused by insulation damage [6]. Among the mechanical damage, eccentricity
and bearing damage are the most common [7].

Magnetic damage is a damage specific to PMSMs. It is related to the PMs of the rotor.
Damage to PMs can be divided into mechanical damage of the PM (cracks, chipping) and
those associated with the phenomenon of demagnetization [1,8]. There are many possible
causes of demagnetization, such as excessive operating temperature, PM aging, severe flux
weakening, and inter-turn short circuits (ITSCs) in stator winding [9]. In the case of the
ITSC, a current with a very high amplitude flows in the shorted part of the winding, which
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causes local temperature increases. This is associated with the risk of exceeding the Curie
temperature, and thus damage to the PM [10].

Additional exposures are also connected with the normal operation of the drive
system. During the normal operation of the PMSM drive, the magnetic field generated
in the stator winding opposes the magnetic field coming from the PM. This continuously
repeated process, over time, especially in the case of overcurrent, gradually contributes
to the demagnetization of the PMs [11]. Demagnetization not only disturbs the air-gap
flux density symmetry, stator phase currents, voltages and the generated electromagnetic
torque, but also increases the acoustic noises, vibrations and copper losses. This also results
in a lower overall efficiency of the drive system. Moreover, the motor draws a higher
current to keep the reference speed and load compared to a machine with undamaged
magnets, which further raises the temperature of the stator winding.

In modern drive systems, the high reliability and stability of the system operation play
a key role. Effective fault detection ensures safe operation, speed up of the maintenance
process and decreases unexpected downtime and additional costs. Considering the growing
popularity of PMSMs, predictive maintenance, fault diagnosis and condition monitoring
of these machines have also become very important [12]. In the case of PMSM drives, the
diagnosis of PM faults is especially important, taking into account the negative effects
associated with demagnetization.

Over the years, several methods have been developed for the diagnosis of the PMSM
demagnetization [13]. Most of them are based on the processed diagnostic signals such
as axial flux, back electromotive force (EMF), vibration and stator phase current. Signal
processing methods allow the extraction of the characteristic fault features. These methods
can be divided into frequency and time-frequency domain analysis. Among the methods
that carry out the analysis in frequency domain, spectral analysis of the signal using
the fast Fourier transform (FFT) is dominant. It consists in the analysis of increases in
the amplitudes of frequency components characteristic of PM damage [14,15]. The zero
sequence voltage components (ZSVCs) FFT analysis was proposed in [16] for the early
detection of the PMSM rotor demagnetization. It was shown that local demagnetization
reduces the amplitude of the ZSVC and this may enable fault identification. However,
it is limited by the need to provide access to the neutral point of the stator windings.
The other diagnostic signals combined with FFT are axial flux [17], back EMF [18] and
vibration [19]. However, the FFT-based demagnetization fault diagnosis methods have also
some limitations. The main limitation is the fact that after the processing of the time-domain
signal using the FFT analysis, information about the time of occurrence of a given frequency
component is lost. In addition, a long measurement of time is needed to achieve sufficient
frequency resolution and symptoms extraction effectiveness. These limitations are devoid
of methods that realize time-frequency analysis [20].

The result of signal processing realized by time-frequency domain methods contains
information about the time of the frequency components occurrence. This is an important
advantage, especially in the field of fault diagnosis, as it can allow one to determine the
potential cause of the failure at a later stage. Time-frequency domain methods include,
among others, the continuous wavelet transform [21], Hilbert–Huang transform [22],
Wigner–Ville distribution [23] and short-time Fourier transform (STFT). The use of STFT
analysis has not been studied in detail for use in fault diagnosis of PMSM demagnetization,
especially in combination with methods that allow automation of the fault diagnosis
process. Another, novel method used for the localization of the PM damage that is based on
the analysis of the output signals of three toroidal yoke coils wound around the stator yoke
is proposed in [24]. Vold–Kalman filtering order tracking is employed for the real-time
rotor demagnetization fault features extraction from the torque ripples in [25].

All of the above-mentioned methods can be successfully applied for the symptoms
extraction of the PMSM demagnetization fault. However, this is not sufficient for modern
fault diagnosis systems. The idea of industry 4.0 also involves requirements for full au-
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tomation of various processes, including predictive maintenance, condition monitoring and
fault detection. Machine learning (ML) algorithms can be used to meet these requirements.

There have been several studies on fault detectors that are based on ML learning
algorithms. In general, they can be divided into classical ML algorithms and artificial
neural networks (ANNs), with both shallow and deep structures. In the diagnosis of PMSM
demagnetization fault, the use of ANNs has been most often analyzed in the literature.
The largest amount of research related to the development of PMSM fault detectors refer
to the application of the NN with shallow structure-feedforward multiLayer perceptron
(MLP). It is proposed for the PM demagnetization fault detection, among others, in [26].
In [27] the possibility of detecting this type of fault using a self-organizing Kohonen map
trained with data obtained from the finite element method (FEM) based on the PMSM
model is investigated. ITSC and demagnetization fault diagnosis strategy based on a
self-attention-based severity estimation network is proposed in [28].

In recent years, increasing attention has been paid to the application of deep neural net-
works (DNNs) and, in particular, convolutional neural networks (CNNs) in fault diagnosis
of electric motors. In [11], the PM damage fault diagnosis method based on the raw signal
analysis combined with the CNN model is proposed. The demagnetization fault diagnosis
method based on the analysis of a stator phase current combined with CNN is proposed
in [29]. However, with signal preprocessing stage used in the fault diagnosis process, classic
ML algorithms such as k-nearest neighbors (KNN) may be sufficient. Nevertheless, they
have been extensively studied in the past for their applicability to induction motors and
PMSM electrical faults diagnosis [30–32], rather than to detect PMSM demagnetization.

This paper proposes an application of STFT analysis of the stator phase current signal
to extract PM damage symptoms in PMSM drives and compares two ML algorithms: KNN
and MLP for the automatic detection of this type of damage. The main contributions of this
research are as follows:

(1) Evaluation of the applicability of STFT analysis of the stator phase current signal to ex-
tract PM damage symptoms in PMSM drives, based on experimental tests performed
under different operating conditions of the drive system.

(2) Determination of the fault features that are the most sensitive to PM damage, being at
the same time the least dependent on motor operating conditions.

(3) Development of the hybrid diagnostic method combining STFT analysis and ML-
based models: KNN and MLP for PM fault detection in PMSM drives.

(4) Detailed verification of the input vector elements, key parameters and structure of
selected ML algorithms on the PM fault detectors effectiveness.

(5) Comparison of the effectiveness of KNN- and MLP-based PM fault detector models,
and proving that the use of a simple KNN algorithm is sufficient to achieve very high
detection effectiveness while maintaining a significantly shorter model response time
compared to MLP.

The paper consists of six sections. Following this introduction, Section 2 describes
the details of the physical modeling of the PMSM rotor PM damage and the impact of this
failure on the stator phase current waveforms. Section 3 is devoted to the theoretical basis
of the STFT analysis. Section 4 describes the experimental setup used in this research. The
next section presents the STFT-based PM damage extraction part. The training process and
experimental verification of the effectiveness of ML-based PM fault detectors are presented
in Section 5. The paper ends with a conclusion section.

2. Impact of the PM Damage on the PMSM Drive Stator Phase Current Waveforms

The theoretical analysis, including circuit- and FEM-based mathematical models of
the PMSM with demagnetization fault has been raised many times in the past in the
literature [27,33–35]. This study focuses on the impact of PM damage on the stator phase
current and on the extraction of symptoms of these faults from this diagnostic signal.
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2.1. Physical Modeling of PMSM Rotor PM Damage

PMSM demagnetization faults can be physically modeled by removing parts of the
magnets (mechanical damage) [36], the installation of weaker PMs in the rotor through
manufacturers [37] or by heat treatment [26]. In the case of the heat treatment the PMs
have to be removed to avoid the situation when a very high temperature would damage a
greater number of PMs caused by thermal inertia. The PM demagnetization performed
by heat treatment is also associated with difficulties in accurately determining the degree
of PM damage [11]. In the first approach, mechanical damage to the PM is not subject to
these limitations and has been realized, among others, in [11,27,38]. The PM damage of the
PMSM rotor used in this study was also implemented according to this method.

The construction of the rotor of the tested PMSM is shown in Figure 1a. The part of
the magnets of one pole pair corresponding to ≈20% of a single PM area was removed
along the rotor on opposite sides to implement partial demagnetization and to elimi-
nate the unwanted effect of PMSM rotor unbalance, as indicated by red dashed boxes in
Figure 1a. A side view of the rotor with a marked removed part of one pole is shown in
Figure 1b. An illustration of the front of the rotor with implemented PM fault is presented
in Figure 1c. Considering a motor with four pole pairs, it can be assumed that about 5% of
the demagnetization is modeled for the tested PMSM.
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Figure 1. PMSM rotor with damaged PM: (a) construction of the tested PMSM rotor, (b) side view of
the damaged rotor, (c) illustrative front of the rotor with implemented PM fault.

2.2. Analysis of Stator Phase Current Waveforms and Its FFT Spectrum

In the case of PMSMs, the source of the rotor magnetic field is the PM. Regardless
of the type of damage to the magnets, the strength of the rotor (PM) flux decreases as a
result of demagnetization. Since the electromagnetic torque of PMSMs is proportional
to the cross-product of the current vector and PM flux linkage, the motor needs more
(larger) current to maintain the same load torque level when demagnetization has occurred
compared to an undamaged machine. In addition, the periodically repeated disturbances
of the PM magnetic field introduced by the PM damage causes distortions in the induced
back EMF. As a result of the appearance of these distortions, the shape and amplitude of
the stator phase current waveforms are also affected. The stator phase current waveforms
for an undamaged rotor and rotor with damaged PMs (≈5% of demagnetization) during
motor operation at nominal speed and nominal load torque are shown in Figure 2. A direct
comparison of a phase A stator current waveform for an undamaged rotor and rotor with
a PM fault is presented in Figure 3. The analysis of the waveforms presented in these
figures shows that the PM damage causes fluctuations in the amplitudes of the stator phase
currents and a slight distortion of their sinusoidal waveforms. This is due to the additional
harmonics that are included in these waveforms as a result of partial demagnetization.
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Figure 2. Stator phase current waveforms for (a) an undamaged rotor and (b) rotor with damaged
PMs (partial demagnetization), experimental study (TL = TN, fs = fsN = 100 Hz).
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Figure 3. Comparison of the phase A stator current waveform for an undamaged rotor and rotor
with damaged PMs (partial demagnetization), experimental study (TL = TN, fs = fsN = 100 Hz).

To isolate the stator phase current waveforms changes caused by the PM damage,
signal preprocessing methods are utilized. The classic approach to extracting PMSM
demagnetization symptoms is based on the FFT analysis of the stator phase currents. The
frequencies of the spectral components whose amplitudes increase as a result of PM damage
are calculated as follows [11,39]:

fPMDamage = fs

(
1± k

pp

)
= fs ± k fr (1)

where: fs—fundamental frequency of the supply voltage, fr—rotational frequency, pp—
number of pole pairs, k—consecutive positive integers (1, 2, 3. . . ).

The FFT spectra of the stator phase current in phase A for the undamaged PMSM
and the rotor with the discussed damaged to the PM for nominal operating conditions are
shown in Figure 4. Based on the comparison of these spectra it can be concluded that the
amplitude increase in the frequencies described by Equation (1) is visible, especially for the
k = {−2; 4; 6; 10; 12; 22}. For this reason, changes in the amplitudes of these harmonics will
be especially tracked in the STFT analysis step described later in this paper.
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Figure 4. Comparison of the FFT spectra of the stator phase current in phase A for undamaged motor
and rotor with damaged PM (partial demagnetization), experimental study (TL = TN, fs = fsN = 100 Hz).

3. Short-Time Fourier Transform Theoretical Basis

Information about the time of failure may be very important in the field of electric
motor fault diagnosis. Based on this information, a potential cause of the failure can be
found. While the result of FFT analysis does not contain information about the time
of occurrence of a given frequency component, the result of STFT analysis retains this
important information. STFT is also suitable for analyzing non-stationary signals [40].

The principle of STFT is based on dividing a signal in the time domain into windows
of the same width, and then the frequency content of each of these windows is calculated
using the FFT. The size of the window defines the time and frequency resolution of the
STFT analysis. The shorter the window, the better the resolution in the time domain and
the worse in the frequency domain [41].

STFT calculates the FFT of a function over a symmetric window function w(t), which is
translated by time t and modulated at frequency ω, according to the following equation [42]:

S(t, ω) =

∞∫
−∞

f (t)w(τ−t)e−jωτdτ (2)

The result of STFT analysis is a spectrogram of the signal. It is a three-dimensional plot
of the energy of the frequency content of a signal as it changes over time. It is expressed
as follows:

spectrogram(t, ω) =|S(t, ω)|2 (3)

In real implementations, signals are sampled at a fixed sampling frequency (fp), There-
fore, Equation (2) in the discrete domain can be expressed by the following equation:

SD[m, k] =
n=N−1

∑
n=0

x[n]w[n−mH]e−j 2πnk
N (4)

where: N—number of FFT points, n—time-domain input sample index, x[n]—input sample,
w[n]—window function, H—window size (width), k—frequency index.

STFT analysis requires defining its key parameters at the algorithm design. These
parameters include sampling frequency fp, number of input samples Nt, window size H
and type of window function w[n]. Their detailed description and analysis of the impact of
selected parameters on STFT results can be found, among others, in [20,42].
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4. Experimental Setup

The real view of the motor test stand is presented in Figure 5a. The main part is a
2.5 kW PMSM supplied from a Topline 8400 voltage source inverter (VSI) by Lenze (Lenze,
Aerzen, Germany) (Figure 5b) and operating in the field-oriented control (FOC). This motor
is tested with an undamaged rotor inside and also a rotor with a damaged PM. Details
on the physical modeling of partial demagnetization are discussed in Section 2. The rated
parameters of the tested motor are grouped in Table A1 in Appendix A. The load for the
tested motor is provided by a second PMSM with a higher rated power of 4.7 kW.
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PMSM
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Figure 5. Real view of the experimental setup (a) motor test stand, (b) inverter Lenze 8400 Topline,
(c) data acquisition system—industrial PC NI PXI 1082 (National Instruments, Austin, TX, USA) with
NI DAQ card PXI-4492 (National Instruments, Austin, TX, USA).

Analyzed diagnostic signals (stator phase currents) are measured with LEM LA 25-NP
(LEM, Meyrin, Switzerland) multi-range current. These signals are then transferred to a
data acquisition system. The data acquisition system consists of a national instruments (NI)
DAQ NI PXI-4492 measurement card, with a 24-bit resolution A/D converter. It is housed
inside an industrial PC (NI PXI 1082) (Figure 5c) with a NI PXI-e-8400 (National Instruments,
Austin, TX, USA) quad-core embedded controller based on Intel Core i7-5700EQ processor
and 4GB of RAM. The diagnostic application is developed using LabVIEW and MATLAB
software. The Lenze engineer software is used to control the tested PMSM, while the
VeriStand software is used to set the load torque of the loading motor. The block diagram
of the experimental setup is presented in Figure 6. The tests are carried out for various
values of the load torque in range TL = (0÷ 1)TN, with the step of 0.2TN, and various power
supply frequencies.
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Figure 6. Block diagram of the experimental setup.

5. STFT Based Extraction of the PMSM Rotor Permanent Magnet Damage Symptoms

In the scope of this research, extraction of the symptoms of damage of the PM magnet
(partial demagnetization) is carried out by means of STFT analysis of the stator phase
current signal. The amplitude level of selected harmonics can be useful information about
the condition of the rotor. Therefore, the changes in the amplitudes of the frequencies
characteristic of rotor PM damage will be analyzed in this section.

STFT spectrograms of the stator phase current for an undamaged motor and a motor
with a damaged PM of the rotor, operating with different set load torques, fs = 80 Hz
and window width of 2048 samples, corresponding to a data collection time of 0.25 s,
are shown in Figure 7a,b. STFT spectrograms for the nominal power supply frequency
(fs = fs = 100 Hz) for the same rotor conditions are presented in Figure 8. For both cases,
the spectrograms show an increase in the amplitude values of the frequency components
described by Equation (1) for the k = {−2; 2; 4; 6; 10; 12; 18; 22}.
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Figure 7. STFT spectrograms of the stator phase current component for (a) an undamaged rotor and
(b) rotor with damaged PMs (TL = var, fs = 80 Hz).
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Figure 8. STFT spectrograms of the stator phase current component for (a) an undamaged rotor and
(b) rotor with damaged PMs (TL = var, fs = fsN = 100 Hz).

In order to select the frequency components that are the most sensitive to rotor PM
damage, the amplitude values of individual harmonics are compared for an undamaged
motor and motor with a partially demagnetized rotor. The comparison is performed
based on the experimental verification carried out in a wide range of motor operating
conditions. The amplitudes comparison for different values of the load torque level TL in
range TL = (0 ÷ 1)TN, with the step of 0.2 TN, and nominal power supply frequency fs =
fsN = 100 Hz is shown in Figure 9. The influence of the fs value is illustrated in Figure 10.
Based on the analysis of these results it can be inferred that the amplitude of each of the
selected frequency components increases as a result of PM damage. For a more thorough
analysis, in the next step, only the increases in individual frequency components as a result
of partial demagnetization are analyzed.
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Figure 9. The impact of the damaged PM (partial demagnetization) of the PMSM rotor and TL on the
amplitude levels of the frequency component in the stator phase current STFT spectrogram (a) TL = 0,
(b) TL = 0.2TN, (c) TL = 0.4TN, (d) TL = 0.6TN, (e) TL = 0.8TN, (f) TL = TN.
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Figure 10. The impact of the damaged PM (partial demagnetization) of the PMSM rotor and fs on
the amplitude levels of the frequency component in the stator phase current STFT spectrogram
(a) fs = 60 Hz, (b) fs = 70 Hz, (c) fs = 80 Hz, (d) fs = 90 Hz.



Sensors 2023, 23, 1757 12 of 26

In order to evaluate only the effect of PM magnet damage on the amplitude level of a
given frequency component and to compare the increases between different harmonics, the
amplitude increase caused by the PM damage in relation to the value for an undamaged
rotor is analyzed:

ADIFF( fPMDamage) = ADamaged( fPMDamage)− AUndamaged( fPMDamage), (5)

where: fPMDamage—characteristic frequency component for PM damage calculated according
to Equation (1) for different k, ADamaged—amplitude of the fPMDamage component for damaged
rotor PM, AUndamaged—amplitude of the fPMDamage component for undamaged rotor.

The amplitude increases (differences between the amplitude value for damaged and
undamaged rotor) of the selected frequency components characteristic of the PM fault
together with the average difference ADIFFAvg and standard deviation σ for different load
torques set and power supply frequencies are grouped in Tables 1 and 2, respectively.

Table 1. The analysis of amplitude increases of the selected frequency components characteristic of
the PM fault for different load torques.

Failure
Frequency
fPMDamage

TL [p.u]

ADIFFAvg
[dB]

σ

[dB]
0 0.2TN 0.4TN 0.6TN 0.8TN TN

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

fs – 2fr 11.30 10.45 10.72 10.05 9.69 9.66 10.31 0.64
fs + 2fr 1.90 2.60 1.50 1.30 2.30 2.70 2.05 0.58
fs + 4fr 15.10 18.30 17.80 16.08 16.50 16.40 16.70 1.17
fs + 6fr 23.20 23.55 21.50 19.77 14.10 18.90 20.17 3.49

fs + 10fr 19.23 19.80 18.80 18.30 18.70 18.00 18.81 0.65
fs + 12fr 14.87 17.63 15.77 15.30 9.96 9.70 13.87 3.27
fs + 18fr 17.35 14.40 12.40 4.05 2.83 2.58 8.94 6.55
fs + 22fr 10.20 9.52 11.36 14.20 15.96 14.00 12.54 2.55

Table 2. The analysis of amplitude increases of the selected frequency components characteristic of
the PM fault for different power supply frequency.

Failure
frequency
fPMDamage

fs [Hz]

ADIFFAvg
[dB]

σ
[dB]

60 70 80 90 100

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

ADIFF
[dB]

fs − 2fr 4.57 7.53 8.34 8.88 9.66 7.80 1.96
fs + 2fr 1.69 3.51 2.06 5.70 2.70 3.13 1.59
fs + 4fr 18.00 15.13 18.69 14.57 16.40 16.56 1.78
fs + 6fr 14.40 6.47 19.28 17.00 18.90 15.21 5.25

fs + 10fr 17.90 18.60 18.71 19.20 18.00 18.48 0.54
fs + 12fr 14.08 17.81 16.04 12.64 9.70 14.05 3.12
fs + 18fr 3.18 0.38 0.80 1.90 2.58 1.77 1.18
fs + 22fr 12.05 11.92 8.11 12.07 14.00 11.63 2.15

On the basis of the presented results, it can be concluded that the highest increases in
the amplitudes caused by PMSM rotor PM damage are visible for the following frequency
components in the stator phase current STFT spectrogram: fs + 4fr, fs + 6fr, fs + 10fr and fs +
12fr. The standard deviation of these increases for different motor operating conditions is
also low, which allows us to conclude that they are not very sensitive to changes in motor
operating conditions (TL and fs). Nevertheless, it would be difficult to manually define a
single threshold value for the amplitude of selected characteristic frequency components,
valid over a wide range of PMSM drive operating conditions, the exceeding of which would
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indicate PM damage. In addition, such approach does not allow generalization for different
motor operating conditions. Therefore, in the next step, the analysis of the possibility of
using these amplitudes as input vector elements of the ML-based PM fault detectors of PM
to automate the fault detection process will be conducted.

6. Machine Learning Based Detectors of the PMSM Demagnetization Fault

Automating the condition monitoring and fault diagnosis process is critical for modern
drive systems. This study proposes and compares two ML-based models for the rotor PM
fault (partial demagnetization) detection of a PMSM drive. The analyzed models are a
simple ML algorithm KNN and a shallow neural network MLP.

6.1. Theoretical Basics
6.1.1. KNN

In the field of data classification, the KNN algorithm is considered one of the most
fundamental ML algorithms [43,44]. The principle of the KNN algorithm is based on
calculating the distance between a new data point and points that were involved in the
training process (training data set). The new point is then assigned to the class to which the
most points from its neighborhood belong. The number of neighboring points K (nearest
neighbors) has to be determined at the model design stage [45,46].

The choice of K value has a major impact on the final accuracy of the classifier
model [30,37]. Nevertheless, there is no specific definition of how to determine the K
value. Therefore, it is necessary to check the results for different values to find the best one.
This is often overlooked in many works that apply this model for fault diagnosis purposes.

At the stage of designing a classifier model based on the KNN algorithm, it is also
necessary to choose a suitable function for calculating the distance between neighboring
points. In the literature, various distance metrics are proposed [45]. Let A and B be a
feature vectors: A = (x1, x2, . . . , xn) and B = (y1, y2, . . . , yn), where n is the feature space
dimensionality. The most popular functions that have been used in the past to calculate
the distance are the Euclidean, Minkowski, Mahalanobis and correlation functions. They
are expressed by Equations (6)–(9), respectively. Among them, the most popular is the
Minkowski distance metric [47]. The details of the KNN algorithm are discussed by the
authors in [30,43–47].

dEuclidean(A, B) =

√
n

∑
i=1

(xi − yi)2 (6)

dMinkowski(A, B) = (
n

∑
i=1
|xi − yi|r)

1
r

(7)

dMahalanobis(A, B) =

√
(

x1 − y1

σ1
)

2
+ (

x2 − y2

σ2
)

2
(8)

dCorrelation(A, B) =

n
∑

i=1
(xi − µi)(yi − µi)√

n
∑

i=1
(xi − µi)2

n
∑

i=1
(yi − µi)2

(9)

6.1.2. MLP

Among all types of neural network structures, one of the most widely used in the field
of fault diagnosis is the MLP. MLP is characterized by a simple structure that includes an
input layer, one or more hidden layers and an output layer. A characteristic feature of this
type of neural network is that each neuron of a layer is connected to each neuron of the next
layer. Compared to DNNs, MLPs are also characterized by simplicity of implementation.
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At the stage of designing a data classifier, which is based on the MLP model, it is
necessary to determine its structure (number of hidden layers, number of neurons in each
layer) and type of activation function. The output of an exemplary MLP model with two
hidden layers can be expressed by the following equation:

yk = f (2)(
M

∑
m=1

w(2)
km f (1)(

N

∑
n=1

w(1)
mnxn+w(1)

m0) + w(2)
k0 ) (10)

where: xn—n-th value of the input, yk—output value of the k—th neuron, f (1), f (2)—
activation function of the first and second layer, w-weight of the neuron in the selected layer.

The process of training the MLP involves modifying the weights to minimize the
objective function [48]. The most commonly used algorithm in the MLP model training
process is the Levenberg–Marquardt algorithm.

6.2. Development of the PMSM Demagnetization Fault Detectors

Based on the STFT analysis of the stator phase current, four elements are initially
applied as the input vector of the ML-based PM damage fault detector models under
development. These elements are amplitudes of the frequency components selected in
the previous stage of the research: X = [Afs+4fr, Afs+6fr, Afs+10fr, Afs+12fr]. However, in the
further part of the research, an attempt will also be made to reduce the dimensionality
of the input vector, analyzing the impact of individual elements of input vector on the
accuracy of the model.

The dataset consists of 1080 input vectors. 70% of the input vectors are used in the
training process. The remaining 30% are used for offline verification. The vectors that
are included in the dataset correspond to the different conditions of the rotor PM magnet:
0 for the undamaged rotor and 1 for the damaged PM, and also the different operating
conditions of the analyzed PMSM (TL = {0; 0.2TN; 0.4TN; 0.6TN; 0.8TN; TN}, fs = {80 Hz,
90 Hz, 100 Hz}). The database was collected during experiments conducted at the test stand
described in Section 4. Distribution of the selected pairs of the fault features (amplitudes of
the selected harmonics that are elements of the input vector) for the complete dataset are
presented in Figure 11. Based on the analysis of this figure, it can be concluded that there is
a clear division into the class of undamaged and damaged PM for each of the pair. It can be
also seen that the values for damaged PM are much more concentrated.

In the following subsections, the process of training, hyperparameters tuning, and
offline verification of the analyzed ML-based PM fault detector models are presented. The
accuracy of these models is compared for different parameters. Accuracy defines how often
the model’s predictions (responses) are equal to the actual (true) labels. It is defined by the
following equation:

Accuracy =
nactual

Nt
· 100% (11)

where nactual is the number of input vectors that the ML model classified correctly and Nt is
the total number of vectors included in the training set.
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Figure 11. Distribution of the proposed fault features pairs for undamaged and damaged PM
(a) (Afs+4fr, Afs+10fr), (b) (Afs+4fr, Afs+6fr), (c) (Afs+6fr, Afs+12fr), (d) (Afs+10fr, Afs+12fr).

6.2.1. KNN

In this subsection, the accuracy of the KNN-based PM fault detector is verified for
four different distance metrics and a different number of K parameters. The accuracies
of the classifier models for different parameters are shown in Figure 12 and grouped in
Table 3. An accuracy of 100% is achieved for KNN with Euclidean and Minkowski distance
metrics in the entire analyzed range of K values. In the case of the Mahalanobis distance,
100% accuracy is achieved for K values in the range of 3 ÷ 15. The lowest model accuracy
is achieved for the correlation distance metric.
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Table 3. The KNN classifier accuracies for different key parameters.

K [-]
Distance Metric

Euclidean Minkowski Mahalanobis Correlation

3 100.0% 100.0% 100.0% 83.3%
4 100.0% 100.0% 100.0% 83.6%
5 100.0% 100.0% 100.0% 83.7%
10 100.0% 100.0% 100.0% 83.7%
15 100.0% 100.0% 100.0% 82.4%
20 100.0% 100.0% 99.9% 81.3%
25 100.0% 100.0% 99.9% 79.4%
30 100.0% 100.0% 99.9% 79.2%
35 100.0% 100.0% 99.9% 79.4%
40 100.0% 100.0% 99.6% 79.8%
45 100.0% 100.0% 99.6% 79.8%
50 100.0% 100.0% 99.6% 80.4%
75 100.0% 100.0% 99.6% 78.3%

100 100.0% 100.0% 99.5% 76.6%

The computational complexity of the algorithm increases along with the increasing
value of the K parameter. Too low K will increase bias and cause misclassifications, leading
to underfitting. Therefore, the values of K = 1 and K = 2 are omitted [43]. Taking into
account the computational complexity, to select the best model from those characterized
by 100% accuracy, the training times for K = 3 and different types of distance metric is
compared. The fastest training time (0.847 s) is obtained for KNN with the Euclidean
distance metric. For Minkowski and Mahalanobis distances, the times achieved are 0.954 s
and 1.001 s, respectively. Based on this detailed analysis, the further tests (off-line and on-
line experimental verification) will be conducted for the KNN-based PM damage detector
with these parameters.

To reduce the dimensionality of the input vector, the accuracy of the model is verified
by successively removing elements of the input vector with the smallest increase as a result
of the PM fault (according to the Tables 1 and 2). For the following input vector: X = [Afs+4fr,
Afs+6fr, Afs+10fr] (with Afs+12fr removed), the accuracy of the KNN model is still equal to
100%. Nevertheless, removing Afs+4fr reduced the accuracy to 99.9%, and Afs+4fr to 98.3%.
Therefore, the final input vector consists of three elements (Afs+4fr, Afs+6fr, and Afs+10fr).

As it was mentioned in the previous subsection, in the offline tests the remaining
30% (324) of the vectors included in data set are used. To evaluate and compare the effec-
tiveness of the proposed PM damage fault detectors, the detection effectiveness index DEFF
is introduced. It is the ratio of the correctly classified PM states (damaged or undamaged
PM) to the number of input vectors. The DEFF index is defined as follows:

DEFF =
YC

YC + YM
· 100 %, (12)

where: YC—number of correct PM state classifications performed by the model, YM—
number of PM state misclassifications performed by the model.

The KNN-based PM fault detector model response to the test data set is shown in
Figure 13. The DEFF value for this test is as high as 100%.
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Figure 13. KNN-based PM magnet damage detector responses to the test vectors.

6.2.2. MLP

To select the structure of the MLP models, a constructivist approach is applied. This
means that the neurons in the hidden layers are gradually added, and the accuracy of the
model is verified for each structure. In the training process, the Levenberg–Marquardt
gradient algorithm is applied.

The accuracies of the MLP model for the different network structures are presented in
Figure 14 and grouped in Table 4. Based on this comparison, it can be concluded that each
of the analyzed structures achieved 100% accuracy of the model. The first of these models
(4-5-1) is used in further tests due to its simpler structure. The loss function (mean square
error) values during the training process are presented in Figure 15.
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Figure 14. The impact of the MLP structure on the MLP classifier accuracy.

Table 4. The MLP classifier accuracies for different structure of the network.

MLP Structure Accuracy

(4-5-1) 100.0%
(4-7-1) 100.0%
(4-9-1) 100.0%

(4-12-1) 100.0%
(4-15-1) 100.0%



Sensors 2023, 23, 1757 18 of 26

Sensors 2023, 23, 1757 18 of 27 
 

 

Table 4. The MLP classifier accuracies for different structure of the network. 

MLP Structure Accuracy 

(4-5-1) 100.0% 

(4-7-1) 100.0% 

(4-9-1) 100.0% 

(4-12-1) 100.0% 

(4-15-1) 100.0% 

 

Figure 15. Loss (mean square error) function during the training process of the selected MLP model. 

 

Figure 16. MLP-based PM magnet damage detector responses during to the test vectors. 

6.3. On-Line Tests of the PM Fault Detectors 

Aiming to the final evaluation of the effectiveness of the developed ML-based PM 

damage detectors, their detection effectiveness is verified in the online tests. The online 

operation of the detectors is verified for both undamaged and damaged PM and with 

successively increased load torque. The load torque is increased with a step of 0.2TL, up 

to the rated value TN. Excerpts from the STFT spectrogram of the stator phase current STFT 

spectrogram showing changes in the frequency components whose amplitudes are used 

as the elements of the input vector of the developed models, as well as the responses of 

the KNN detector operating at fs = 80 Hz and an undamaged rotor are shown in Figure 17. 

The dashed frames indicate the frequency of components whose amplitudes are elements 

of the input vector. In this case, the KNN model correctly classified the condition of the 

rotor with 100% effectiveness, generating at its output information about the undamaged 

Epoch    

L
o

ss
  
  

 

 

Test vector number [-]

R
o

to
r 

P
M

 s
ta

te
 

Figure 15. Loss (mean square error) function during the training process of the selected MLP model.

As in the case of the KNN model, to reduce the dimensionality of the input vector, the
accuracy of this model is verified by successively removing elements of the input vector.
For the following input vector: X = [Afs+4fr, Afs+6fr, Afs+10fr] (with Afs+12fr removed) the
accuracy of the MLP model is also equal to 100%. The removing of Afs+4fr decreased the
accuracy to 99.87%, and Afs+4fr to 99.7%. Therefore, the final input vector consists of the
same elements as in the case of the KNN-based detector (Afs+4fr, Afs+6fr, and Afs+10fr).

The responses of the MLP model to the vectors that are included in the test set are
shown in Figure 16. The detection effectiveness for this verification is equal to 100%. In the
next stage of the research, online tests are conducted to evaluate the developed PM fault
detector models.
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Figure 16. MLP-based PM magnet damage detector responses during to the test vectors.

6.3. On-Line Tests of the PM Fault Detectors

Aiming to the final evaluation of the effectiveness of the developed ML-based PM
damage detectors, their detection effectiveness is verified in the online tests. The online
operation of the detectors is verified for both undamaged and damaged PM and with
successively increased load torque. The load torque is increased with a step of 0.2TL, up to
the rated value TN. Excerpts from the STFT spectrogram of the stator phase current STFT
spectrogram showing changes in the frequency components whose amplitudes are used
as the elements of the input vector of the developed models, as well as the responses of
the KNN detector operating at fs = 80 Hz and an undamaged rotor are shown in Figure 17.
The dashed frames indicate the frequency of components whose amplitudes are elements
of the input vector. In this case, the KNN model correctly classified the condition of the
rotor with 100% effectiveness, generating at its output information about the undamaged
rotor in the whole range of analyzed load torques. The damaged rotor PM case is shown in
Figure 18. The achieved detection effectiveness of the KNN model equals 100%. The results
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of the same tests but conducted for a nominal power supply frequency (fs = fsN = 100 Hz)
are shown in Figures 19 and 20. While the results of the MLP-based PM damage detector
for the same cases are presented in Figures 21–25. For the MLP model, the DEFF in all cases
equals 100%. This confirms the high performance of the STFT analysis in the extraction of
PM damage symptoms and a very good choice of the elements of the model input vector.

6.4. Summary

The use of the STFT analysis of the stator phase current signal and a thorough analysis
of the increases in harmonic amplitudes made it possible to select the components most
sensitive to PM damage. The selection of the input vector elements of the applied ML
models allowed the achievement of 100% accuracy of the KNN and MLP models, as well
as DEFF = 100% during off-line and on-line tests. To choose the best of the two discussed
ML models, their response times are compared. In Figure 25 the comparison of the MLP-
and KNN-based PM fault detectors response time for 500 iterations is presented. In the
case of the KNN model, the response time is about three times shorter compared to the
MLP detector. The average response time for the KNN model equals 0.0020 s, whereas for
the MLP model it is 0.0071 s. The comparison of the details of the analyzed models are
grouped in Table 5.

Table 5. The comparison of the analyzed ML-based PM faul detectors details.

ML-Based PM Fault Detector

KNN MLP

Accuracy [%] 100.0 100.0
Offline test DEFF [%] 100.0 100.0
Online tests DEFF [%] 100.0 100.0

Response time [s] 0.0020 0.0071
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Figure 17. (a) Part of the stator phase current STFT spectrogram, (b) response of the KNN-based fault
detector for undamaged rotor (TL = var, fs = 80 Hz).
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Figure 18. (a) Part of the stator phase current STFT spectrogram, (b) response of the KNN-based fault
detector for damaged PM rotor (TL = var, fs = 80 Hz).
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Figure 19. (a) Part of the stator phase current STFT spectrogram, (b) response of the KNN-based fault
detector for undamaged rotor (TL = var, fs = fsN = 100 Hz).
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Figure 20. (a) Part of the stator phase current STFT spectrogram, (b) response of the KNN-based fault
detector for damaged PM rotor (TL = var, fs = fsN = 100 Hz).
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Figure 21. (a) Part of the stator phase current STFT spectrogram, (b) response of the MLP-based fault
detector for undamaged rotor (TL = var, fs = 80 Hz).
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Figure 22. (a) Part of the stator phase current STFT spectrogram, (b) response of the MLP-based fault
detector for damaged PM rotor (TL = var, fs = 80 Hz).
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Figure 23. (a) Part of the stator phase current STFT spectrogram, (b) response of the MLP-based fault
detector for undamaged rotor (TL = var, fs = fsN = 100 Hz).
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Figure 24. (a) Part of the stator phase current STFT spectrogram, (b) response of the MLP-based fault
detector for damaged PM rotor (TL = var, fs = fsN = 100 Hz).
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Figure 25. Comparison of the MLP- and KNN-based PM fault detectors response time.

7. Conclusions

In this paper, an effective PMSM demagnetization fault detection method based on
STFT analysis of the stator phase current and ML-based models is proposed. The presented
experimental verification results confirm the applicability of STFT analysis in the process
of the extracting rotor PM damage symptoms in PMSM drives.

Careful selection of the input vector elements of the analyzed ML models: KNN and
MLP, resulted in 100% model accuracy and 100% effectiveness in off-line and on-line tests
of these detectors. The significant impact of the choices of these elements, as well as the
key parameters of the ML models on their effectiveness were also analyzed and confirmed.

Among the most important conclusions arising from the analysis of the results of the
presented research is that with an efficient symptom extraction stage, it is not necessary to
use more advanced ML algorithms such as neural networks, including those with a deep
structure, but simple ML algorithms such as KNN can be used. This allowed not only the
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achievement of high effectiveness, but also very short training and response time (0.0020 s),
three times shorter compared to the MLP model (0.0071 s).

Taking advantage of the simplicity of the KNN algorithm and its high effectiveness in
PM fault detection, further research will focus on the embedded (microcontroller) imple-
mentation of the fault diagnosis system that will be based on the proposed methodology.
In addition, the effect of measurement accuracy: sampling frequency, noise effects, on-
detection effectiveness will also be considered in the scope of future research.
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Appendix A

Table A1. Rated parameters of the tested PMSM.

Name of the Parameter Symbol Units

Power PN 2500 [W]
Torque TN 16 [Nm]
Speed nN 1500 [r/min]

Stator phase voltage UsN 325 V
Stator current IsN 6.6 [A]

Frequency fsN 100 [Hz]
Pole pairs number pp 4 [-]

Number of stator turns Nst 2 × 125 [-]
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