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Abstract: Stress is an increasingly prevalent mental health condition across the world. In Europe, for
example, stress is considered one of the most common health problems, and over USD 300 billion are
spent on stress treatments annually. Therefore, monitoring, identification and prevention of stress are
of the utmost importance. While most stress monitoring is carried out through self-reporting, there
are now several studies on stress detection from physiological signals using Artificial Intelligence
algorithms. However, the generalizability of these models is only rarely discussed. The main goal of
this work is to provide a monitoring proof-of-concept tool exploring the generalization capabilities of
Heart Rate Variability-based machine learning models. To this end, two Machine Learning models
are used, Logistic Regression and Random Forest to analyze and classify stress in two datasets
differing in terms of protocol, stressors and recording devices. First, the models are evaluated using
leave-one-subject-out cross-validation with train and test samples from the same dataset. Next, a
cross-dataset validation of the models is performed, that is, leave-one-subject-out models trained on
a Multi-modal Dataset for Real-time, Continuous Stress Detection from Physiological Signals dataset
and validated using the University of Waterloo stress dataset. While both logistic regression and
random forest models achieve good classification results in the independent dataset analysis, the
random forest model demonstrates better generalization capabilities with a stable F1 score of 61%.
This indicates that the random forest can be used to generalize HRV-based stress detection models,
which can lead to better analyses in the mental health and medical research field through training
and integrating different models.

Keywords: heart rate variability (HRV); stress monitoring; e-health; IoT; stress bio-markers;
generalizability

1. Introduction

Stress is typically defined as the reaction people have when faced with demands
and pressures bigger than their ability to handle [1], and it is an increasingly prevalent
mental health condition across the world. While acute stress responses to situations are
normal, constant long-standing stressors characterized as chronic can lead to severe health
problems such as hypertension and cardiovascular diseases [1]. In Europe, for example,
stress is considered one of the most common health problems, and it is estimated that over
USD 300 billion are spent on stress treatments every year [2]. Therefore, the monitoring,
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identification and prevention of stress is of the utmost importance. Stress has usually
been quantified through self-report metrics (e.g., questionnaires such as the Perceived
Stress Scale [3]), which take into account the individuals’ subjective experience. This state,
related to how individuals perceived threats in the world, is psychological stress. However,
physiological parameters are linked to emotional states; for example, changes in heart rate,
cortisol levels, blood volume pulse, brain activity and electrodermal activity are all linked
with stress [1].

Typically, biomarkers and physiological data related to stress can be collected with
the use of sensors in laboratory experiments, in which specific stressors can be applied
to participants to induce acute stress [4]. However, for greater validity and applicability,
stress-related data must also be collected and analyzed in real-world environments. In this
context, allowing study participants to self-report their stress levels throughout the day
might provide valuable insight into more chronic types of stress. The Ecological Momentary
Assessment (EMA) methodology, which focuses on repeated measurements throughout the
day to allow self-report closer to real experiences, can be used here [5]. In addition, many
wearable technologies collect physiological data related to stress states. For example, heart
rate variability (HRV)—the variation in time between consecutive heart beats and one of
the most widely used stress-related features—can be collected with the use of wearable
devices such as the Empatica E4 wristband.

Using self-reports and HRV data from wearable technologies allows researchers to
access labelled data of stress states, in which the labels are the stress self-report of partici-
pants and the dataset is composed of physiological measurements. In this context, Machine
Learning (ML) models can be used to predict the stress level of participants based on data
collected in real-world environments. If successful, prediction models can go one step
further than simply quantifying stress states and be used to identify, in real-time, if an
individual is stressed and, in turn, prevention strategies can be used to reduce stress levels
(e.g., a meditation app can be triggered).

Therefore, models based on real-life data can be developed in two ways: (i) a model
is trained on more accurate and less noisy laboratory data; and tested on real-life, more
representative data; (ii) a model is trained solely on real-life data.

The goal of this study was to develop proof-of-concept monitoring models built on
data collected in daily life environments using these two approaches and focusing on
HRV data. First, a model was trained based solely on data collected from a laboratory
experiment, and a model based solely on data collected in daily life. Then, laboratory
data were used to train a model which was tested on real-life data, in order to validate the
generalizability of the models.

The paper is divided as follows: after a brief related work overview is presented,
Section 2 describes materials and methods, including experimental protocols for the
two studies (laboratory and daily life), as well as the ML models used in the analyses.
Section 3 presents the results and discussion, and Section 4 finishes the paper with our
final conclusions.

1.1. Related Work

Many studies [1,6–8] provide a review of the features and AI methods used in stress
prediction as well as a survey of stress prediction in laboratory and real-life scenarios with
mobile and wearable technologies. Among the many details presented, of note HRV is
widely used for stress prediction. In addition, the accuracy for methods that use HRV in
laboratory environments lies somewhere between 70–90%, and the accuracy tends to fall in
unrestricted daily life experiments to somewhere between 60–80%. Daily life experiments
also tend to use a suite of behavioural and physiological parameters.

A study carried by Can et al. [4] defines a nomenclature for four types of stress
detection studies: laboratory-to-laboratory known context (LLKC), laboratory-to-laboratory
self-report (LLSR), daily-to-daily self-report (DDSR), and laboratory-to-daily self-report
(LDSR). Using this nomenclature, our study will focus on DDSR and LDSR types. In their
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study, the authors collected self-reports and physiological measures with the Empatica
E4 in a laboratory experiment, and also collect daily life data using the Empatica and an
EMA methodology for the self-report, collecting four data points over a period of seven
days. Using only real-life HRV data, they achieved results from 65% to 68.30% across
several models with 10-fold cross validation, with the best models being a Multi-layer
Perceptron and Logistic Regression (LR). When using laboratory data combined with real-
life self-report, the accuracy increased to over 70% for most models, with best results being
observed with the Random Forest (RF) and Logistic Regression models (accuracy of 71.78%)
and the Support Vector Machine (SVM, 73.44%).

Giannakakis et al. [9] investigated HRV parameters in order to recognize stress using
different machine learning algorithms. They used a personalized baseline for each partic-
ipant in order to eliminate inter-subject variability and use it to normalize data. Models
were applied to HRV features before and after a pairwise transformation. The selected
features fed machine learning systems achieving a classification accuracy of 84.4% for the
transformed features with a Support Vector Machine (SVM) model and 75% accuracy with
a RF model without transformation.

R. Castaldo et al. [10] also used different models to detect stress from linear and
non-linear HRV features. The dataset they used was recorded from 42 university students,
during oral examination (stress) and at rest after a vacation. They reached around 80%
accuracy with all the models including the SVM, C4.5 and AdaboostM1.

Hovsepian et al. [11] trained an SVM using Electrocardiograms (ECG) and respiration
data in both laboratory (n = 24) and real-life settings (n = 20, 1-week data). The model
predicted the probability that a user was stressed with an accuracy of 90% in the laboratory
and 72% in real-life. Gjoreski et al. [12] combined SVMs and RFs, using a wrist device to
collect acceleration and physiological measures in laboratory and real-life. The data from
the laboratory was used to build a stress detector on 4-min windows with RFs showing
a 83% accuracy score. SVMs were trained with the last 10 outputs of the RF detector and
an activity-recognition algorithm to classify 20 min of data according to the stress level
detected. The accuracy without this additional context is 76%, increasing to 92% with the
SVM detector.

It is true that stress detection using HRV features have been investigated thoroughly
in various studies, some of which are cited above. Several AI models are used on different
datasets and many of them yield fairly high accuracy scores. However, the comparability
of these studies is very difficult given the many differences in terms of sensors, stressors
and preprocessing approaches. Furthermore, the generalizability of these models is almost
never discussed.

One way to tackle this problem would be to use cross dataset analysis to study the
generalizability of a model and measure of how useful the results of a study are for a
broader application. Although there is intensive research in the field of stress monitoring
from physiological signals, there is only a few publicly available datasets.

One of the first stress datasets was published by Healey et al. [13]. It included ECG,
trapezius muscle signal, skin conductance and respiration from 24 subjects during 50 min
real-world driving. Protocol validation was achieved by administering questionnaires and
conducting video coding for some of the subjects. This is one of the rarer studies to have
been carried out in an ambulatory environment.

Another stress dataset of note is the SWELL dataset [14]; composed of a variety of data
such as HRV, body postures, facial expressions, and skin conductance, providing interesting
behavioural data in addition to physiological ones. The dataset was collected from an
experiment of 25 subjects in their work spaces while they performed typical knowledge
work under stressful conditions such as time pressure and email interruptions. Various data
including computer logging, facial expression, body postures, ECG and skin conductance
were recorded in neutral and stressful conditions.

The Database for Emotion Analysis using Physiological Signals (DEAP) [15] is com-
posed of Electroencephalograms (EEG) readings and other peripheral physiological signals
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such as Galvanic Skin Reponse (GSR), Electromyograms (EMG), respiration among others,
from 32 participants watching music videos together with self-report.

Furthermore, Schmidt et al. [16] recently used the Wearable Stress and Affect De-
tection Data Set (WESAD) which uses the Empatica E4 as well as a chest-band to collect
respiration data, with self-reports composed of several stress questionnaires for ground
truth. Using HRV features in addition to Electrodermal Activity (EDA), temperature and
others, the authors achieved accuracies on a variety of ranges from around 60% to 90%
depending on the data used and the model, for binary stress classification. Of note for our
work, the RF model achieved an accuracy of 88% for Empatica data.

Soleymani et al. [17] created the MAHNOB-HCI multimodal database. They recorded
the peripheral physiological signals including ECG, GSR, Skin Temperature and respiration
from 24 participants after eliciting their emotion by 20 affective movies.

1.2. Paper Contribution

This paper presents one of the first explorations of the generalizability of HRV-based
machine learning models for stress detection. The study uses a specific approach, includ-
ing a leave-one-subject-out cross-validation and a cross-dataset analysis, which are more
representative of real-world applications. Furthermore, training the models on labora-
tory data and testing them on real-world data makes the study particularly noteworthy.
Laboratory data are often more controlled and consistent than real-life data, making it
easier to obtain accurate measurements and labels. Additionally, it is typically collected
in a controlled environment, which can reduce the amount of noise and variability in the
data. On the other hand, real-world data often contain more variability and noise, making
it a more challenging test for the model. Evaluating the model on ambulatory data can
help identify any limitations or weaknesses in the model and provide insights into how it
can be improved. Moreover, multiple evaluation scores are computed in order to have a
comprehensive understanding of the model’s performance. They provide different insights
into the model’s performance and can help identify limitations and allow to take into
account the specific costs of different types of errors. This research makes a significant
contribution to the field by showing the applicability of HRV-based models for stress detec-
tion in real-world settings. It highlights the potential of these models to be widely used in
various populations and environments.

2. Materials and Methods
2.1. Datasets

In this study, two different datasets were used to test ML model’s generalizability on
data collected in different setups using different sensors. The experimental studies were
conducted independently on different subjects in distinct time frames. They were approved
by unrelated institutional review boards and IRB numbers were obtained for both datasets
introduced below.

2.1.1. Multi-Modal Stress Dataset (MMSD) for Real-Time, Continuous Stress Detection

MMSD [18] is a multimodal acute stress dataset from a laboratory study (IRB 202077,
31 August 2020). It includes physiological signals such as Electrocardiograms (ECG),
Photoplethysmograms (PPG), Electrodermal Activity (EDA) and Electromyograms (EMG)
from 74 subjects recorded in three different states successively: 15 min relaxation; 20 min
stress and 10 min recovery. The sample includes 38 women aged 19 to 63 years old
(mean age: 33 y.o ± 12.5) and 36 men aged 21 to 79 years old (mean age: 35 y.o ± 13).
A representative sample of the French population in terms of age and gender was chosen
for the study. Only healthy volunteers who did not have any chronic diseases such as
chronic stress, cardiovascular diseases or other conditions that could affect the collected
signals were included [18].

The initial phase of the study, in which participants were in a state of relaxation, was
used as the benchmark. A measurement of cortisol taken immediately after this phase was
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used to compare to a second measurement taken after a stress phase, in order to confirm
the effectiveness of the stressors used in the study. Stress was induced using serious
games such as Stroop Color Word Test (SCWT) and mental arithmetic. The validity of
the protocol was established using both psychological questionnaires and a physiological
measure of cortisol before and after the stress phase. The State-Trait Anxiety Inventory
form S (STAI-S) was used as a self-report of state anxiety. It consists of 20 items that ask
subjects to rate how they feel at the present moment. It is commonly used in research and
clinical settings to assess stress levels in adults [19]. Since only volunteers without chronic
stress were included in the study, there was no need to use a baseline measurement for
chronic stress. The increase in both cortisol levels and STAI-S scores after exposure to the
stressors was sufficient to confirm the presence of acute stress. In this paper, only HRV
signals obtained from ECG signals were analyzed. The first phase of the study, in which
participants were in a state of relaxation, and the third phase, in which they were in a state
of recovery, were combined into one category as a non-stress or baseline condition because
both are characterized by a reduction in the body’s physiological arousal. During relaxation
and recovery, the body’s parasympathetic nervous system is activated, which promotes
relaxation and rest whereas during a stress state, the body’s sympathetic nervous system
is activated, causing the release of stress hormones and other physiological responses in
response to a perceived threat.

2.1.2. University of Waterloo Stress Dataset (UWS)

UWS dataset [20] contains physiological data including HRV, EDA, and ECG from
27 subjects recorded during two weeks in their personal, real-life environment. The sample
includes 19 women—32% aged 18–24; 27% aged 25–34; 26% aged 35–44; 5% aged above
65%—and 8 men—25% aged 18–24 and 25–34; 50% aged 35–44. Participants were recruited
from a random sample in Ontario, and due to difficulty in finding participants unhealthy
individuals (i.e., answered yes to having chronic disease, illness, smoking or drug use)
were allowed (for this sample, 5 women responded yes to the aforementioned question).
Since this dataset is comprised of real-life data, it is important to note no control or baseline
was used.

The Empatica E4 wristband is used to record data and the main objective was to
identify stress in ambulatory, daily life conditions. Labelling is based on self-reports
collected approximately every three hours through the Depression, Anxiety and Stress
Scale (DASS-21) using only questions related to stress. It consists of 7 items, each rated on a
four-point Likert scale (0–3) based on how much the item has applied to the person over
the past three hours. Data segments are labeled as stress when the DASS questionnaire
following the segment indicates a score higher than 7, which on DASS-21 represent mild
levels of stress and above [21]. Subjects reported being stressed 17% of the time on average.
Overall, 70% of the UWS dataset was comprised of female participants. In this paper, HRV
signals recorded by the Empatica E4 are analyzed for stress identification. This dataset
collection was approved by the University of Waterloo Research Ethics Board (IRB 43612,
6 October 2021).

2.2. Heart Rate Variability Analysis and Feature Extraction

HRV is a measure of the RR intervals and is often used as a measure of stress because
it reflects the balance between the sympathetic (SNS) and parasympathetic (PNS) branches
of the autonomic nervous system. The RR interval, or “normal-to-normal” (NN) interval, is
the time interval between consecutive heartbeats in an ECG signal. The normal range for
RR intervals may vary depending on the individual and their physical condition [22,23].
The typical range is between 300 and 1300 ms, or 0.3 and 1.3 s. This equates to a heart rate
of 45 to 200 beats per minute [24]. When the body is in a state of stress, the SNS is more
active leading to a less variable heart rate and thus a decrease in HRV. Conversely, when
the body is in a state of relaxation, the PNS is dominant leading to an increase in HRV [25].
Therefore, measuring HRV can provide insights into an individual’s stress levels through
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several features. In this study, HRV analysis is performed using various Python Toolboxes
including HRV [26], Time Series Feature Extraction Library (TSFEL) [27], Python toolbox
for Heart Rate Variability (pyhrv) [28]. Features are computed over side-by-side 5 min
segments for the UWS dataset. On the other hand, for the MMSD dataset, 5 min segments
with a 1 min sliding window is used to increase the number of analyzed windows.

Pre-processing steps are required prior to any HRV analysis in order to handle data
losses and bias caused by errors in the signal.

They include :

1. Deletion of abnormal beats (RR > 1.3 s or RR < 0.3 s)
2. Data imputation

Since missing data affect HRV features and may lead to false conclusions, a quality
criteria is used to discard segments with a high percentage of missing data (Pmissing ≤ 50%).
It is computed over each window as explained in the pseudo code below (Algorithm 1).

Algorithm 1 Percentage of missing data for each HRV window

1: for each RR[i] in the window (i from 1 to length of HRV window) do
2: Compute gap = T[i]− T[i− 1]
3: if gap > 1.3 s then
4: Compute mean RR over last 10 values (meanRR)
5: Compute N, the number of missing RR in the gap: N = Floor value ( gap

RRmean
)

6: end if
7: Compute Ntot, the total number of missing RR in the window Ntot = ∑ N
8: Compute percentage of missing data: Pmissing = 100 ∗ Ntot

Length of window+Ntot
9: end for

RR[i] is the RR value at position i, and T[i] its timestamp

Only 5 min segments that met the quality criteria are interpolated using a shape-preserving
piecewise cubic Hermite interpolating polynomial (PCHIP) before HRV analysis [29].

The missing data threshold (Pmissing ≤ 50%) and imputation approach (PCHIP inter-
polation) were selected based on the findings of a previous study [29]. There is likely to
be an error in the estimation of HRV parameters due to the interpolation of missing data.
The estimation error can vary depending on the specific parameter, some HRV features
being more sensitive to interpolation than others [29]. Moreover, deleting abnormal heart-
beats in HRV signals can lead to data loss. While ectopic beats often occur due to false
peak detection, they can also be caused by physiological phenomena such as premature
ventricular or atrial contractions [30]. In these cases, suppressing ectopic peaks may remove
important physiological information from the analysis. It is therefore important to consider
the potential impact of ectopic peak suppression on the HRV analysis.

A total of 61 features in the time, frequency, and non-linear domains are computed
among the most used HRV features, and are listed in the Table 1 along with the Python
toolbox used for each set of features.

In this study, frequency domain analysis is performed using Fast Fourier Transform
(FFT) on signals re-sampled at 8 Hz. HRV spectrum is aggregated into very low fre-
quency (VLF) (0.003–0.04 Hz), low frequency (LF) (0.04–0.15 Hz), and high frequency (HF)
(0.15–0.4 Hz) [31].

Table 2 summarizes the datasets dimensions with class sizes and number of subjects.
The dimensions of the UWS dataset are much greater than the MMSD dataset despite

the number of subjects being lower. This is because in the first dataset, subjects were
recorded every day for two weeks compared to the 40 min duration for each subject in
the latter dataset. In addition, as can be seen from Table 2, since the data were collected
in real-life without any stress stimuli, the UWS dataset is extremely imbalanced with a
positive class (stress) representing less than 7% of the entire dataset. This implies that
specific pre-processing methods adapted to imbalanced datasets should be used prior to
any analysis.
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Table 1. List of computed HRV features.

Toolbox Time Domain Frequency Domain Non Linear

pyHRV
[32]

Number of NNi, Mean NNi,
Maximum NNi, Mean heart rate,

Min, Max heart rate,
Heart rate standard deviation,

Mean NNI difference,
Min, Max NNI difference,

sdnn, rmssd, sdsd,
nn50, pnn50, nn20, pnn20,
tinnn, tinnm, tinn, tri_index

Total power,
Very low frequency,

Low frequency,
High frequency,

Low frequency
High frequency

Normalized low frequency,
Normalized high frequency

SD1, SD2,
SD1
SD2

TSFEL
[27]

Absolute energy, Auto correlation,
Median, std, Entropy,
Inter-quartile range,

Mean absolute deviation,
Mean absolute difference,
Mean, Median difference,

Median absolute deviation,
Median absolute difference,
Kurtosis, Skewness, slope

Band-width, Spectral entropy,
Spectral decrease, Spectral distribution,

Spectral kurtosis, Spectral roll 95,
Spectral skewness, Spectral variance,
Spectral centroid, Median frequency

Energy, Human energy
Fundamental frequency

Area under the curve of the signal

Table 2. Number of subjects and HRV windows for each dataset.

Dataset Subjects Positive Class
(Stress)

Negative Class
(Non Stress) Total Size

MMSD 68 622 818 1440 × 60

UWS 25 532 7560 8092 × 60

2.3. Classification Models

A logistic regression model (LR) was used in this study. This model is usually relevant
when the objective is to predict a categorical dependent variable—such as in this case
Stress (2) VS No Stress (1). The ’LogisticRegression’ package from the SKLEARN library in
Python was used.

A Random Forest model (RF) was also used to classify stress versus non-stress states in
both datasets due to its numerous advantages, such as robustness to outliers and non-linear
data and requiring very little pre-processing. Moreover, over-fitting can be prevented
thanks to simple hyper-parameters optimization and pre-pruning techniques by prema-
turely stopping the growth of the decision tree. The model was implemented using the
‘RandomForest’ package from the SKLEARN library in Python.

A grid search with a 10-fold cross-validation was used for hyper-parameter optimisa-
tion. The model was optimized over the ROC AUC score since in this case, positive and
negative classes are equally important. Hyper-parameters tuned to prevent the model from
over-fitting include MIN-SAMPLES SPLIT, the minimum number of samples required to
split an internal node and MIN-SAMPLES-LEAF the minimum number of samples per leaf
node The number of decision trees grown based on a bootstrap sample of the observations
N-ESTIMATORS and the number of features to consider when looking for the best split MAX

FEATURES were also tuned in the grid search.
The grid search was only performed on the MMSD dataset and the same hyper-

parameters are used in all analyses. This choice is due to the quality of data, which is
assumed to be better in laboratory conditions and the fact that labels are more accurate.

The analysis’ steps were two-fold:

1. Independent analysis: the RF and LR models are used to analyze MMSD and UWS
datasets independently using a Leave-one-subject-out (LOSO) approach.



Sensors 2023, 23, 1807 8 of 15

2. Cross dataset analysis: The RF and LR models are trained on MMSD dataset and
tested on the UWS. The end goal is to assess the models’ ability to adapt properly to
new, previously unseen data.

Specific pre-processing steps are required before using any ML model to avoid false
conclusions caused by extremely imbalanced datasets.

First, extreme outliers are removed using the 1.5 Interquartile Range (IQR) method [33].

IQR = Q3−Q1. (1)

where Q1 is the first quartile of the data, i.e., 25% of the data lies between minimum and
Q1. Q3 is the third quartile of the data, i.e., 75% of the data lies between minimum and Q3.

To detect the outliers using this method, a new range was defined and any data
point lying outside this range is considered as an outlier and is deleted. The range is as
given below:

Lower bound : (Q1− 1.5 ∗ IQR). (2)

Upper Bound : (Q3 + 1.5 ∗ IQR). (3)

When scale is taken as 1.5, then according to the IQR method any data which lie
beyond 2.7σ from the mean (µ), on either side, shall be considered as outlier. This decision
range is the closest to what Gaussian Distribution considers for outlier detection.

Secondly, in order to balance the classes, the training set is upsampled using the
SMOTE [34] method in order to avoid over-fitting over the negative class. Only the train
set is upsampled to make sure the model is tested on original real-life data. Finally, both
train and test sets are scaled using the ROBUSTSCALER from SKLEARN library. This Scaler
removes the median and scales the data according to the IQR range computed on the
samples in the training set. Relevant statistics are then used to transform the test set.

The split was achieved over subjects so that windows from the same subject would
always be in the same set. This is in order to avoid contamination between train and test
sets. A (LOSO) cross validation was used for an accurate estimate of model’s performance
and because of the small size of the datasets. This method is also more representative of
reality where the end goal would be to classify data from each new subject.

2.4. Evaluation Metrics

A number of metrics were used in order to have a deep understanding of our model’s
performance especially given the extremely imbalanced datasets. F1-score is computed as
the harmonic mean of precision and recall where:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

=⇒ F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (4)

where

TP = True Positive, HRV windows of stress classified as stress,
FP = False Positive, HRV windows of relaxation classified as stress,
FN = False Negative, HRV windows of stress classified as relaxation.

To tackle the class imbalances, the MACRO-average f1-score is computed given the fact
that classes are equally important.

Metrics are also presented for each class in order to see how well each class is recog-
nized by the RF model.

Moreover, ROC AUC scores are computed since they capture more than one aspect of
the classification by taking both false positives and negatives into account through the True
Positive Rate (TPR) and False Positive Rate (FPR):
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TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

=⇒ AUC ROC =
1 + TPR− FPR

2
. (5)

Finally, specificity, also known as true negative rate was computed. It is a measure of
the model’s ability to correctly identify negative examples (non stress).

Specificity (TNR) =
TN

TN + FP
, (6)

This performance metric is relevant in the context of imbalanced datasets because the
model may be trained to prioritize accuracy over identifying the negative examples of the
minority class. By using specificity as a performance metric, it ensures that the model is
able to identify the majority class (non stress) with a high degree of accuracy, while still
maintaining a high sensitivity for the minority class (stress).

Python functions were used to compute the metrics namely “f1_score” and
“roc_auc_score” from Sklearn Library. Scores from the cross-dataset analysis are an in-
dicator of the generalizability of the model trained with laboratory data on signals collected
in an ambulatory environment. By using the (LOSO) cross-validation, it is possible to avoid
both over-fitting and train/test sets contamination.

3. Results and Discussion

In this section, results from our evaluations are presented for each analysis. As ex-
plained above, the RF model parameters are chosen using a grid search on the MMSD
dataset. The grid search yielded the hyper-parameters summarized in Table 3.

Table 3. Grid Search parameters for the RF model.

RF Hyper-Parameters

criterion = ’entropy’, max_features = ’sqrt’, max_depth= 6 min,_samples_split = 2,
n_estimators = 200

This model is used to classify stress versus non stress conditions in all analyses
introduced above using a (LOSO) cross validation for MMSD and UWS analyses.

3.1. Independent Analysis

Results from the independent datasets are presented in Tables 4 and 5, best scores are
highlighted in bold.

Table 4. Classification scores from MMSD dataset using RF and LR models.

Model F1 Specificity ROC AUC F1 Stress F1 Non Stress

RF 0.63 0.54 0.7 0.58 0.68

LR 0.71 0.66 0.76 0.71 0.71

Table 5. Classification scores from UWS dataset using RF and LR models.

Dataset F1 Specificity ROC AUC F1 Stress F1 Non Stress

RF 0.75 0.7 0.79 0.63 0.86

LR 0.61 0.69 0.7 0.45 0.76

The LR model outperformed the RF model on the MMSD dataset. Using the LR model,
both Stress and Non Stress classes are well recognized with an f1 score of 71% for each class
and an accuracy of 74%. For the UWS dataset on the other hand, the RF model gave better
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results but the stress class is less well recognized. Although good classification scores are
reached on the UWS dataset, it is important to note that one questionnaire is used to label
the previous three hours, and thus, these results may be biased due to weak labelisation.
Weakly labeled data can pose challenges for the models because they may not have enough
information to make accurate predictions.

Table 6 summarizes some of the studies that have used RF and LR models for stress
detection as well as the accuracy obtained in the datasets used in this study. Both models
achieve similar results using only HRV features, without combining multiple modalities,
as opposed to some of the studies in the table. It shows that the RF model achieved a
slightly lower accuracy of 67% on the MMSD dataset, however, it had a higher accuracy of
81% on the UWS dataset.

Table 6. Summary of ML models used for stress detection through physiological signals.

Study Markers Accuracy

Can et al., 2020 [4] EDA, HRV, HR 74.6% (RF)
73.8% (LR)

Muaremi et al., 2014 [35]
ECG, HRV, Respiration,

Temperature, skin response,
Posture, Accelerometer, Sleep

71% (RF)
52% (LR)

Hovsepian et al., 2015 [11] ECG, Respiration 72% (Support Vector Machine)

Giannakakis et al., 2019 [9] HRV 84.4% (Support Vector Machine)
75% (RF)

Castaldo et al., 2016 [10] HRV 80% (Decision Tree)

Schmidt et al., 2018 [16]
ECG, EDA, EMG,

accelerometer, respiration,
temperature, HRV

88% (RF)

MMSD [18] HRV 67% (RF)
74% (LR)

UWS HRV 81% (RF)
70% (LR)

This discrepancy in performance can be attributed to various reasons such as the
dataset size and diversity. Models perform best when the data are diverse and contain a
variety of features and samples. Furthermore, the use of different physiological signals in
some studies may also account for the good results. This is because stress can manifest in
differently in various physiological systems, and by considering multiple signals, the model
may be able to better capture these different stress responses.

Even using only HRV features, some studies have achieved slightly better scores using
RF and LR models compared to the results obtained in this study [36–38]. However, the use
of the Leave-One-Subject-Out (LOSO) cross-validation method in this study may account
for the lower performance. An RF model applied the MMSD dataset without using a LOSO
cross-validation, resulted in an f1 score greater than 80% [39]. Studies using the same
procedure also tend to yield similar results [40,41]. The main advantage of LOSO is that it
makes the most efficient use of the available data. It provides an estimate of the model’s
performance on new data, which is important when the goal is to generalize the model to
new subjects. Additionally, LOSO is especially useful when the number of subjects is small
as is the case for the datasets used in the study.

It is also important to keep in mind that accuracy, as presented in Table 6, is not an
effective metric for evaluating imbalanced datasets. In such cases, the majority class can
skew the accuracy metric, leading to a false sense of high model performance even if the
model is not accurately predicting the minority class. Other metrics such as f1-score and
class-specific metrics are more appropriate for evaluating performance on imbalanced
datasets. For instance, even though the LR model on the UWS dataset has a seemingly high
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overall accuracy of 70%, it still has poor performance on the minority class (stress) with an
f1-score of only 45%.

Next, RF and LR models are evaluated using cross-database validation as a semi-
supervised learning framework where models are trained on the MMSD dataset and tested
on UWS dataset. The results of cross-dataset evaluations are presented in Table 7.

Table 7. Classification scores cross dataset analysis.

Model Macro Avg Recall Macro Avg Precision F1 Specificity ROC AUC F1 Stress F1 Non Stress

RF 0.62 0.63 0.63 0.41 0.65 0.41 0.85

LR 0.59 0.61 0.57 0.62 0.64 0.39 0.70

3.2. Cross Dataset Analysis

The same f1 score of 63% is reached in the cross-dataset analysis and the MMSD
independent analysis using the RF model. For the LR model on the other hand, a loss of
about 14% can be noticed on the f1-score in the cross-dataset analysis. The stress class
seems to be less well recognized by both models. Although the LR model gave better
classification results in the independent analysis of the MMSD dataset, the RF model is
more generalizable.

This is because the RF model is less prone to over-fitting issues thanks to parameters
tuning. Moreover, for the final decision, the RF classifier aggregates the decisions of
individual trees; consequently, RF classifier exhibits good generalization capabilities.

In [41] as well, the RF model was found to have good generalizability across datasets.
The results showed that while RF achieved slightly lower F1-score and Accuracy than
other HRV based models on within dataset evaluations for binary stress classification, it
outperformed them in the cross-dataset analysis. Moreover, ref. [42] also demonstrates the
generalization capabilities of RF models across different datasets using HRV features alone
and coupled with electrodermal activity features. The results from both studies confirm
that RF is robust against variations in environmental factors such as recording devices or
types of stressful scenarios.

According to ROC-AUC scores in Table 7, RF and LR models equally identify true
positive cases (stress). The LR model however has a higher specificity which indicates that
the model is able to correctly identify more true negative cases (non stress). Both models
are considered to have an average performance. A higher AUC-ROC and specificity is
desired but a balance between these two metrics needs to be achieved.

One of the main challenges faced in the study is the inter-individual and measurement
variability. Since HRV can vary greatly between individuals and can be affected by various
factors such as measurement equipment, recording conditions, and physiological factors, it
is difficult to develop a model that is applicable to a wide population. In this study, labels
in the UWS dataset may not be as accurate, and the stress response may vary between
the two datasets as the MMSD dataset uses artificial stressors whereas the UWS dataset
uses stressors from daily life events. Additionally, the devices used to collect data in the
two datasets are also different, which could affect the generalization of the models and
contribute to the lower stress class recognition scores.

In the MMSD dataset, the inter-individual variations were taken into consideration in
the experimental protocol by controlling the stressors, the environment and subject-related
variations by establishing a subject profile [18]. By training the models on laboratory data
(MMSD dataset), it is possible to ensure that they are able to accurately identify the relevant
features or patterns associated with stress. On the other hand, testing on ambulatory data
(UWS dataset) allows for an evaluation of its performance in real-world scenarios, and can
help identify any limitations or challenges that need to be addressed in order for the model
to be effectively used in these settings. Overall, training on laboratory data and testing on
ambulatory data is a way to evaluate the model’s performance on different types of data
and ensure that it is robust and generalizable enough to be used in real-world settings.



Sensors 2023, 23, 1807 12 of 15

Furthermore, the lack of studies on the subject of model generalizability for stress
detection makes it difficult to compare results across studies and fully support the claims
of our study. Model generalizability is a crucial aspect of any machine learning study, as it
determines how well the model will perform on new, unseen data. However, in the field
of stress detection through HRV signals, there is only little research on how well models
generalize to new subjects and conditions. This lack of studies makes it challenging to draw
strong conclusions about the generalizability of our own model and its performance on
new data. Furthermore, the lack of a standardized evaluation protocol for stress detection
models also makes it challenging to compare the performance of our model to other models
in the literature.

A standardized protocol together with data analytics can play a significant role in the
understanding of individual’s stress response and management, by providing insights and
predictions about individual’s stress levels. This would pave the way for early intervention,
and evaluation of the effectiveness of different stress management techniques. Furthermore,
it can potentially contribute to medical conditions’ prognosis by using the predictions of
stress levels as a marker for other health conditions related to stress. By developing a more
accurate and generalizable stress diagnostic and monitoring model, it will be possible to
better identify and manage stress in individuals. This can lead to improved health outcomes
and potentially reduced healthcare costs. Additionally, such a model could be used in a
variety of settings, such as workplaces and schools, to help promote mental health and
well-being. It is important to note that these claims need to be further validated through
rigorous testing, and the generalization capability of the model needs to be evaluated on
different population and demographic groups.

Furthermore, it is important to keep in mind that stress is not a binary problem. It is a
continuous variable that can have different levels of intensity and duration. Low levels of
stress can be beneficial as they can improve motivation and performance, but high levels of
stress can have negative effects on physical and mental health. Thus, stress should actually
be considered as a multi-class problem where the model should be able to classify levels
of stress according to a rating scale. It is however a more complex problem and binary
stress detection can be considered as the first step towards multi-class stress classification.
Once the binary stress detection model is developed and validated, it can be used as a
pre-processing step to filter out instances that are not stress. A second model can then be
trained on a dataset that includes labelled instances of different levels of stress according
to a standardized scale such as the DASS21 used in the UWS dataset. The scores can be
interpreted based on the cut off points provided by the creators of the scale, which are:
Normal: 0–7, Mild stress: 8–9 Moderate stress: 10–12 and Severe stress: 13–16. Such models
can be trained to recognize patterns in the HRV data that are specific to different levels
of stress.

4. Conclusions

As the Internet of Things (IoT) becomes more prevalent, there is growing interest in
utilizing HRV as a means of remotely and continuously monitoring stress in a non-invasive
manner. However, a major challenge in this field is the availability of data for stress
recognition. This, combined with the ethical considerations surrounding the collection of
biomedical data, highlights the need for models that are able to accurately predict stress
across various datasets and populations.

This study aims to evaluate the generalizability of two HRV-based models, logis-
tic regression (LR) and random forest (RF), by using two stress datasets (MMSD and
UWS) differing in many aspects including stressors’ type, intensity and acquisition de-
vices. The study first conducts an independent analysis on each dataset using a LOSO
cross-validation, followed by a cross-dataset analysis. The use of laboratory data from
the MMSD dataset in the training set ensures that the models identify only the relevant
features and patterns associated with stress. The models’ performance is then evaluated on
ambulatory data to ensure that they are robust and generalizable enough for real-world
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applications. Fairly good classification scores are obtained in the independent and cross-
dataset analysis with better generalisation capabilities demonstrated by the RF model
(62% F1 score), although it performed slightly less well than the LR model on MMSD
independent evaluation. These results align well with those obtained in a similar study
found in literature using the same standards (LOSO and cross-dataset analysis) [41].

Future work could expand upon this study by testing the models on additional
datasets, as well as using other machine learning models. Specifically, deep learning
models, such as Convolutional Neural Networks (CNNs), with HRV time-series data
could potentially lead to more accurate classification results. Additionally, it would be
valuable to understand the specific factors that impact the generalizability of the models,
such as the type of acquisition device used, the type and intensity of stressors and other
features. This could be achieved by controlling for certain factors and comparing the
models’ generalizability across datasets.

Studies on the generalizability of models using various physiological signals for
ambulatory stress detection could have several potential benefits on Point-of-care testing
(POCT), where stress can be monitored at patient’s location. This can be particularly
beneficial for patients who have mobility issues. It can also improve early detection and
intervention of stress and better management of chronic conditions affected by stress such
as hypertension, diabetes and heart diseases.
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