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Abstract: The development of autonomous vehicles is becoming increasingly popular and gathering
real-world data is considered a valuable task. Many datasets have been published recently in the
autonomous vehicle sector, with synthetic datasets gaining particular interest due to availability and
cost. For a real implementation and correct evaluation of vehicles at higher levels of autonomy, it
is also necessary to consider human interaction, which is precisely something that lacks in existing
datasets. In this article the UPCT dataset is presented, a public dataset containing high quality,
multimodal data obtained using state-of-the-art sensors and equipment installed onboard the UPCT’s
CICar autonomous vehicle. The dataset includes data from a variety of perception sensors including
3D LiDAR, cameras, IMU, GPS, encoders, as well as driver biometric data and driver behaviour
questionnaires. In addition to the dataset, the software developed for data synchronisation and
processing has been made available. The quality of the dataset was validated using an end-to-end
neural network model with multiple inputs to obtain the speed and steering wheel angle and it
obtained very promising results.

Keywords: autonomous vehicles; multimodal driving datasets; LiDAR; driver biometric data

1. Introduction

Rapid advances in artificial intelligence, electronics, information and communications
technology (leading to miniaturisation and improved performance of computers, sensors
and networks) has led to the development of new approaches to Autonomous Vehicle
technologies [1]. This together with new consumption habits and environmental awareness,
where technology is vital and allows us to be more efficient and sustainable, has led to
a considerable increase in the amount of research carried out on autonomous vehicles,
making it the latest trend in the automotive industry [2]. Evidently, there is plenty of
motivation and enthusiasm for speeding up progress, especially with the recent success of
Big Data, Machine Learning and Deep Neural Networks.

Given the growing popularity of the development of autonomous vehicles, the col-
lection of real data is considered a valuable task, with it being necessary for this sector to
provide high-quality, multimodal and real-world datasets which can be used for bench-
marking, simulation development, algorithms testing and diverse computer vision training
exercises, among others.

The vehicle used for the data collection is usually equipped with a variety of sensors,
such as cameras, Light Detection and Ranging (LiDAR) sensors, RADAR, GPS and Inertial
Measurement Units (IMU). The raw data obtained by these sensors is recorded on a disk
while the vehicle is being driven manually. Subsequently, the recorded data can be used
to train and test different algorithms for autonomous driving, e.g., vehicle/pedestrian
detection and tracking, Simultaneous Localization and Mapping (SLAM) and motion
estimation [3].

In this context, many datasets have been published, a summary of the most popular
datasets and their features is presented in Table 1. These datasets vary greatly in terms of
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traffic conditions, sensor configuration, application focus, data format, size, tool support,
as well as other aspects. The most sought-after datasets dedicated to autonomous vehicle
systems (AVS) are the so-called multimodal datasets. These datasets have gained particular
attention recently, as datasets containing data from an individual sensor are insufficient
to provide a complete perception of the environment. Furthermore, the most exploited
sensors in this field, such as cameras, LIDARs, radars, etc., offer complementary data and
their collaboration can guarantee a better understanding of the surroundings [3].

Table 1. Comparison of the main Datasets.

Ref./Year Samples Image Type LIDAR RADAR IMU/GPS Control
Actions Raw Data Driver

Data Real Data Biometrics
Data

Driver
Behaviour

UPCT 78 K RGB, Depth Yes No Yes Steering wheel, Speed Yes Yes Yes Yes Yes
KITTI [4]/2012 15 K RGB Yes No Yes - Yes No Yes No No

Udacity [5]/2016 34 K RGB Yes No Yes Steering wheel Yes No No No No
Lyft L5 [6]/2019 323 K RGB Yes No Yes - Yes No Yes No No

nuScenes [7]/2019 1.4 M RGB Yes Yes Yes - Partial No Yes No No
Pandaset [8]/2019 48 K RGB Yes No Yes - Partial No Yes No No
Waymo [9]/2019 1 M RGB Yes No Yes - Yes No Yes No No
PreSIL [10]/2019 50 K RGB Yes No No - No No No No No
GAC [11]/2019 3.24 M RGB No No No Steering wheel, Speed N/A No Yes No No

A2D2 [12]/2020 392 K RGB Yes No Yes Steering angle, brake,
accelerator Partial No Yes No No

IDDA [13]/2020 1 M RGB, Depth No No No - No No No No No
Appollo Scape [14]/2020 100 K RGB Yes No No - No No Yes No No

Cityscapes [15]/2020 25 K RGB No No Yes - No No Yes No No
OLIMP [16]/2020 47 K RGB No Yes No - Yes No Yes No No
PixSet [17]/2021 29 K RGB Yes Yes Yes - No No Yes No No
ONCE [18]/2021 1 M RGB Yes No No - No No Yes No No

Table 1 provides a comparison of the main existing datasets, at both an academic and
professional level and consists of a brief survey of datasets relevant to the development of
autonomous driving systems. We focus on the most comparable and recent datasets, which
strongly emphasise multimodal sensor data. Although they are not recent, we also include
the KITTI and Udacity datasets as we consider them to be two of the most significant early
driving datasets. We present the datasets in chronological order.

Despite the large number of existing studies, most of these datasets do not provide
raw data, but instead offer labelled data to support training and evaluation, in particular
semantic segmentation techniques. Obtaining real labelled data in large quantities is far
from trivial. To start with, it is arduous and expensive to deploy multiple vehicles to
collect images and data in a wide range of environmental, weather and lighting conditions.
Secondly, the task of manually classifying each image is extremely time-consuming. Lastly,
the accuracy of manually produced labels may be inconsistent across the dataset. These rea-
sons, along with the level of fidelity achieved by 3D graphics engines, have encouraged the
creation of synthetic datasets of artificial data based on scenes recreated by simulators [5].

As stated in the work by [19], this method of offering already labelled and even
segmented data often presents problems in data quality due to the methods or models
used. Another disadvantage of those models trained using only synthetic datasets is that
in real-world scenarios, these tend to perform poorly, suffering from domain shift [20,21].

On the other hand, for a real implementation and correct evolution of autonomous
vehicles at levels 4–5, it is also necessary to consider human interaction. Whether to
infer a pedestrian’s intent to cross the road, identify a driver’s intent to perform a certain
manoeuvre or detect potentially reckless moves, autonomous vehicles must have a high-
level understanding of human behaviour. In most existing datasets, it is precisely this
human data factor which is lacking. As can be seen in Table 1, apart from our proposal, the
UPCT dataset, existing datasets dedicated to autonomous vehicles do not include biometric
data or driver behaviour data.

In this article, we present the UPCT dataset, a public dataset of high-quality, multi-
modal data, obtained using state-of-the-art sensors equipped by the CICar autonomous
vehicle belonging to the UPCT. The CICar includes sensors such as cameras, LiDAR, IMU,
GPS and encoders, as well as biometric data from the drivers and driver behaviour ques-
tionnaires. The UPCT dataset offers the data acquired during 20 manual driving tests
carried out by different drivers on an urban circuit, which consists of a circular route in the
Spanish town of Fuente Alamo. To facilitate the use of the dataset, three large subgroups
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of data have been differentiated: Perception, Positioning and Driver data (biometrics and
Driver Behaviour Questionnaire) and both the pre-processed raw data and the code which
facilitates its use have been made available for download.

2. Materials and Methods
2.1. Experimental Design

To obtain the data, we decided to carry out ad hoc driving tests with a group of
50 healthy subjects of different ages and sex from the Region of Murcia (Spain), following
the distribution shown in Table 2. The subjects were in possession of a valid type B driving
licence (for driving cars, vans and, in general, vehicles with a maximum authorised mass
of 3500 kg) at the time of the test. After performing the tests, the results of some subjects
were excluded due to technical problems during the performance of the test or during the
recording of the results, leaving a total of n = 20 subjects (11 male/9 female) with valid raw
data to make up the final dataset.

Table 2. Demographic distribution of subjects by gender and age.

Categories n Initial % Initial n Final % Final

Gender
Male 26 52 11 55

Female 24 48 9 45

Age

18–24 6 12 3 15
25–44 22 44 10 50
45–64 17 34 5 25
>=65 5 10 2 10

2.1.1. Driver Test Design

Before starting the experiment, in addition to the informed consent, each subject
filled in two questionnaires: (1) the Biographic Questionnaire and (2) the Driver Be-
haviour Questionnaire.

• The Biographic Questionnaire identifies key facts about the subject, such as gender,
age and driving record.

• The Driver Behaviour Questionnaire (DBQ) collects self-reported data from the drivers,
as there are no objective records of driving behaviour and previous traffic violations.
The original DBQ consists of 50 items and is used to score the following three underly-
ing factors: errors, violations, and lapses.

For this experiment, we have chosen to use the Spanish Driver Behaviour Question-
naire (SDBQ) [22], a shorter version adapted to Spanish drivers consisting of 28 items
adapted to the peculiarities of the Spanish population. The version used consists of four
factors, composed as follows: 6 traffic law violation items, 6 violation/aggressive mani-
festation items, 8 error items, and 8 lapse items. Participants were asked to indicate, on a
5-point scale, how often they had been involved in the behaviours or situations mentioned
in the questionnaire.

2.1.2. Driving Test Design

The driving test consists of one of the participating drivers, who has been equipped
with a non-invasive smart band device, manually driving the UPCT-CICar vehicle (the
equipment onboard and its characteristics will be explained in more detail in the following
platform setup subsection) and following a previously established and identical route
which is the same for all tests. Each driver had to complete one lap of the circuit, which
included a parking exercise situated approximately halfway along the circuit.

The selected route is an urban circuit in the town of Fuente Álamo in the Region of Mur-
cia, Spain, with the tests performed by multiple drivers manually driving the UPCT-CICar
in real traffic situations (see Figure 1). This route provides a significant Point of Interest
(POI) of typical urban driving situations: (a) intersections with priority and with “Give
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way”; (b) joining a roundabout, internal circulation and leaving the roundabout; (c) circula-
tion in streets with “green wave” traffic lights; (d) traffic jams; (e) rapid incorporation to a
high-density road through a side lane; and (f) pedestrian traffic on public roads.
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Figure 1. Urban route selected for the driving tests.

In order to contemplate a variety of environmental and driving conditions, the tests
were carried out at different times of the day (morning, afternoon or night). Figure 2
shows some images from the dataset, where different situations captured during the tests
are shown.
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After each driving test, the data acquired from the vehicle’s perception systems (Li-
DARs and cameras), positioning systems (IMU, GPS, rotation angle, acceleration, etc.) and
biometric data from the driver are transferred to the central server.

2.1.3. Platform Setup

For this work, the UPCT autonomous vehicle (UPCT-CICar [23]), was driven by a
human pilot in manual mode. CICar is a real-world prototype, based on a commercial
electric vehicle, the Renault Twizy, which has undergone a series of modifications to provide
it with the required functionality. The CICar has been equipped with multiple sensors,
including LiDAR, cameras, IMU, GPS, encoders, etc., necessary for the vehicle to perform
autonomous driving tasks. This platform setup integrates a perception system, a control
system, and a processing system on board the vehicle.
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Perception System: The purpose of a sensor system is to collect data from the sur-
rounding environment of the AV and send that data to the control system. These sensors
measure different physical quantities, which are typically selected to overlap each other,
providing the redundant information needed to correctly merge and correlate the informa-
tion. In our autonomous vehicle, two types of sensors are used to measure the environment:
short-range sensors (up to 10 m) and long-range sensors. Installed short-range sensors
include a Sick 2D laser ranging scanner and time-of-flight camera. The long-range sensors
are a 3D LIDAR scanner and a camera in the visible spectrum. Table 3 and Figure 3 show
the different devices involved in data acquisition during the tests, as well as the details of
the variables involved in obtaining them.

Driver Biometric System: The drivers’ biometric signal collection system has been
carried out using a non-invasive wearable device, bracelet type, called Empatica E4. The
Empatica E4 is a wrist-worn top-quality sensor device considered a Class IIa Medical
Device according to 93/42/EEC Directive. Empatica E4 device measures the acceleration
data (ACC), as well as other physiological parameters, namely the Blood Volume Pulse
(BVP), from which the Heart Rate Variability (HRV) and the Inter-Beat Interval (IBI) are
derived as well, skin temperature (TEMP) and also changes in certain electrical properties
of the skin such as the Electrodermal Activity (EDA). For the creation of our dataset, among
the several measurements recorded by the Empatica E4, this signal was considered, since
it provides information better suited for activity recognition. A summary of the technical
specifications of the accelerometer sensor is detailed in Table 4.

Table 3. Sensor data in CICar.

Device Variable Details

LiDAR 3D Scene

Long-range sensors
3D High-Definition LIDAR (HDL64SE supplied by Velodyne)
Its 64 laser beams spin at 800 rpm and can detect objects up to 120 m away with
an accuracy of 2 cm
1.3 Million Points per Second
Vertical FOV: 26.9◦

2 × LiDAR 2D Scene

Short-range sensors
Sick laser 2D TIM551
Operating range 0.05 m–10 m
Horizontal FOV 270◦

Frequency 15 Hz
Angular resolution 1◦

Range 10% of reflectance 8 m

2 × ToF Scene

Short-range sensors
ToF Sentis3D-M420Kit cam
Range: Indoor: 7 m, Outdoor: 4 m
Horizontal FOV: 90◦

RGB-D Scene

Short-range sensors
Depth Camera D435 Intel RealSense
range 3 m
Up to 90 fps
Depth FOV: 87◦ × 58◦

RGB FOV: 69◦ × 42◦

IMU Localisation, longitudinal and
transversal Acceleration

NAV440CA-202 Inertial Measurement Unit (IMU)
3-axis accelerometer
Bandwidth: 25 Hz
Pitch and roll accuracy of <0.4◦, Position Accuracy < 0.3 m

GPS Localisation EMLID RTK GNSS Receiver
7 mm positioning precision

Encoder Distance

Biometric sensors Driver Biometric signals
Empatica E4
EDA Sensor (GSR Sensor), PPG Sensor, Infrared Thermopile
3-axis Accelerometer
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Table 4. Biometric variables details.

Variable Sampling Frequency Signal Range [Min, Max] Details

ACC 32 Hz [−2 g, 2 g] Accelerometer 3 axes data (x, y, z).

EDA 4 Hz [0.01 µS, 100 µS] Electrodermal activity by capturing electrical conductance
(inverse of resistance) across the skin.

BVP 64 Hz n/a Blood Volume Pulse.

IBI 64 Hz n/a Inter-beat interval (obtained from the BVP signal)

HR 1 Hz n/a Average Heart Rate (obtained from the BVP signal). Values
are calculated at 10-s intervals.

TEMP 4 Hz [−40 ◦C, 115 ◦C] Skin Temperature.

Control System: The main control systems of the Renault Twizy have been automated
in order to allow the vehicle to be autonomously controlled. The modified systems are the
steering wheel, the brake pedal and the accelerator pedal (see mechanical modification in
Figure 3). Despite the fact that all driving will be manual and not autonomous, the system
will record the data with two controller drives through a CAN bus. The Compact Rio cRIO
9082 controls the accelerator, brake and steering wheel movements with the CAN-Open
communication protocol, as well as I/O signals.

Processing System: Each sensor works with its own sample rate, and in most cases,
this is different between devices. The achieve the synchronisation of the data and accurately
reconstruct the temporal sequence, time stamps have been generated to synchronise the
operating start and finish times. All of this is controlled and synchronised by the on-board
processing system.

3. Results

As a result of the different executions of the experiment with the participating subjects,
a raw data set has been obtained that has been curated and published in a repository. The
data in the repository is organized under three major directories: (1) Driver, (2) Perception
and (3) Position. The distribution of the data in the different directories is detailed below.
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3.1. Driver Directory

This directory contains information regarding the drivers, from the questionnaires
completed before the test and the biometric data obtained during the test. The directory
contains 20 Biometric_XX.csv files (one per driver, where XX is the driver identifier number)
and a DBQ.csv file with the data collected from the Biographic Questionnaire and the
Driver Behaviour Questionnaire forms.

For the composition of the Biometric_XX.csv files, a normalised sampling frequency
of 4 Hz has been used and in the case of sensors with lower frequencies, the table has been
completed with NaN fields, with the HR column being the only one affected as the sample
rate of this field is 1 Hz. The Biometric_XX.csv files have the following table format, where
each column contains the following information:

• (TIME): The first column corresponds to the time stamp expressed as a unix timestamp
in UTC.

• (TEMP): Data from the temperature sensor expressed as degrees in Celsius (◦C).
• (EDA) Measurement of electrodermal activity by capturing electrical conductance

(inverse of resistance) across the skin. The data provided is raw data obtained directly
from the sensor expressed in micro siemens (µS).

• (BVP) The BVP is the blood-volume pulse and the raw output of the PPG sensor. The
PPG/BVP is the input signal to algorithms that calculate Inter beat Interval Times (IBI)
and Heart Rate (HR) as outputs.

• (HR): This file contains the average heart rate values calculated at 10-s intervals. They
are not derived from real-time readings but are processed after the data is loaded into
a session.

• (ACC_X, ACC_Y, ACC_Z) Data from the three-axis accelerometer sensor. The ac-
celerometer is configured to measure acceleration in the range [−2 g, 2 g]. Therefore,
the unit in this file is 1/64 g. Data from x, y and z axis are displayed in the sixth,
seventh and eighth columns, respectively.

The DBQ.csv file is made up of a total of 45 columns, where the first column contains
the subject identifier. The rest of the columns correspond to each of the items from the
Biographic Questionnaire and the Driver Behaviour Questionnaire forms, where the last
25 columns are the questions from the DBQ form.

3.2. Perception Directory

This directory contains:

• Twenty .bin type files, called perceptionXX.bin, where XX corresponds to the identifier
number assigned to each driver at the time of the test.

• Twenty images from the RGB-D camera (front view).

In the .bin file, the data from the 3D LiDAR sensor, 2D LiDAR sensors and TOF
cameras, obtained by the CICar perception system is saved. The data from these sensors
were recorded continuously during the driving test, with data packets being written by the
different sensors one after the other and at the exact moment in which they arrived at the
system, without contemplating an established order of sensor reading and recording.

Each data packet consists of a header made up of two 32-bit integers, which identify
the source of the data followed by the data as it was received from the sensors. The header
format is as follows:

uint32_t head [2];

• head [0]: indicates the size in bytes of the packet received by the sensor.
• head [1]: contains a sensor identifier which shows the source of the data packet

received.

The sensor identifiers are the following:
//Packet identifiers in the data file
static const uint32_t LIDAR_PACKET_ID = 0 × 4C494452; // 3D LiDAR
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static const uint32_t GPS_PACKET_ID = 0 × 475053; // GPS
static const uint32_t NMEA_STRING_ID = 0 × 4E4D4541;//
static const uint32_t M420_FRAME_ID = 0 × 4D343230; // Camera ToF
static const uint32_t T551_FRONT_ID = 0 × 54354652; // Front 2D LiDAR
static const uint32_t T551_BACK_ID = 0 × 5435424B; // Rear 2D LiDAR
The following is a .bin file example:
(uint32_t) 1206 // Data packet size 1206 bytes
(uint32_t) 0 × 4C494452 // Data source: 3D LiDAR
(char [1206]) { ... } // 1206-byte vector with 3D LiDAR data
(uint32_t) 230,524 // Size of data packet 230,524 bytes
(uint32_t) 0 × 4D343230 // Data source: ToF camera
(char [230524]) { .. } // 230524-byte vector with ToF data.
(uint32_t) 1206 // Size of data packet 1206 bytes
(uint32_t) 0 × 4C494452 //Data source: 3D LiDAR
(char [1206]) { .... } //1206-byte vector with 3D LiDAR data.
(uint32_t) 1206 //Size of data packet 1206 bytes
(uint32_t) 0 × 4C494452 //Data source: 3D LiDAR
(char [1206]) { .... } //1206-byte vector with 3D LiDAR data.
(uint32_t) 921 //Size of data packet 921 bytes
(uint32_t) 0 × 54354652 //Data source: Front 2D LiDAR
(char [921]) { ..... } //921-byte vector with Front 2D LiDAR data.
To facilitate the use and processing of the data, a programme has been developed that

allows the data from each sensor to be extracted separately and independently into an
additional .bin file. In this case, by separating the data into different files, the data packet
identifier is not necessary, but synchronisation with the system is lost. Therefore, to avoid
loss of synchronisation between the data packet of each sensor, the time stamp of the exact
moment of capture must be included. The .bin file format for each independent sensor is
as follows:

uint32_t segundos // Capture timestamp seconds
uint32_t microseg // Capture timestamp microseconds
uint32_t numbytes // Number of bytes in the data packet
char datos[numbytes] // ‘raw’ data packet from the sensor
This structure is repeated continuously for each data packet until the end of the file.
Furthermore, the data has been pre-processed and the 3D LiDAR, 2D LIDAR and ToF

camera data from each test carried out They have been merged into a single point cloud and
extracted to a .csv file called POINTCLOUD_XX.csv, where XX is the identifier assigned to
each driver at the start of the test.

3.3. Position Directory

This directory contains information regarding the position system, obtained during
the driving tests. The directory contains 20 Position_XX.csv files, one for each driver where
XX is the driver identifier number. Each of these systems collects information from the GPS,
IMU and Encoder sensors.

The Position_XX.csv files are saved in the following table format, where each column
contains the following information:

• (TIME) This first column contains the timestamp of the session expressed as a unix
UTC timestamp.

• (LATITUDE) latitude values obtained by the GPS.
• (LONGITUD) longitude values obtained by the GPS.
• (ALTITUDE) altitude values obtained by the GPS.
• (STERING_ANGLE): Steering wheel angle.
• (SPEED): Speed/(m/s).
• (DISTANCE_TRAVELLED).
• (LIN_ACEL_X): acceleration obtained around the x-axis, obtained in g.
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• (LIN_ACEL_Y): acceleration obtained around the y-axis, obtained in g.
• (LIN_ACEL_Z): acceleration obtained around the z-axis, obtained in g.
• (ANG_VEL_X): angular velocity obtained around the x-axis, in degrees/second.
• (ANG_VEL_Y): angular velocity obtained around the y-axis, in degrees/second.
• (ANG_VEL_Z): angular velocity obtained around the x-axis, in degrees/second.

The acceleration or angular velocity values are given by four bytes. These bytes
correspond to a real number according to the IEEE-754 standard. The IEEE-754 standard is
the most widely used for the representation of floating-point numbers.

4. Technical Validation
4.1. Driver Test Validation

To validate the data regarding the drivers, the following actions were carried out:

• A first validation is carried out by measuring the reliability of the data obtained
from the DBQS tests carried out on the drivers. The reliability of the questionnaires
was obtained with the entire sample, finding Cronbach’s alpha indices and the two
Guttman halves. The values to interpret the reliability were: <0.50 unacceptable;
0.50 ≥ poor < 0.60; 0.60 ≥ questionable/doubtful < 0.70; 0.70 ≥ acceptable < 0.80;
0.90 ≥ good < 0.90; and ≥0.90 excellent. The Cronbach Alpha coefficient is 0.796,
which shows that the DBQ data set in this experiment has credibility [24].

• Missing data E4 data of seven participants (driver 1, driver 5, driver 17, driver 21,
driver 30, driver 42, driver 45) were excluded due to a device malfunction during data
collection. While physiological signals in the dataset are mostly error-free with most
of the files complete above 95%, a portion of data is missing due to issues inherent to
devices or a human error.

Raw data from the Empatica device was downloaded in csv format and analysed with
the Kubios tool [25]. Kubios offers five artefact correction options based on very low to
very high thresholds. No correction of the artefacts analysed by Kubios was necessary This
is not surprising since the Empatica E4 already uses an algorithm that removes wrong IBIs
or other wrong signals [26].

4.2. Driving Test Validation

Once the driving tests have been completed, a manual verification phase has been
carried out on the data obtained (see Figure 4), where the data from those tests where
reading or writing failures occurred, or failures in the test itself (routes, drivers, etc.) has
been discarded.
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• Checking for abnormalities during the test. The time elapsed for the completion of
each test has been checked, passing a filter, and discarding those tests in which the
time has been either very short or too long. Data of five participants (driver 4, driver
17, driver 23, driver 29, driver 40) were excluded.

• Checking for errors in reading the sensors or writing to the disk. For each of the tests,
the correct sending of information by the sensors during the test is verified. Those
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tests where a total or partial failure has been detected have been discarded. To detect
these failures, the following aspects were checked:

a. All files exist on the disk. At the end of each test, the number of files generated
has been checked. The absence of any of the files implies a failure to read or
write the data occurred, therefore this test was discarded completely. Data of
four participants (driver 1, driver 10, driver 31, driver 34) were excluded.

b. Empty files. It has been verified that the files generated all contain data, discard-
ing those tests where empty files have been detected. Data of two participants
(driver 35, driver 36) were excluded.

c. Exploratory data analysis. Considering the different types of data processed,
different types of descriptive analytics have been chosen: (1) Analysis of data
deviation. A standard deviation analysis has been applied to those data with
discrete values (average speed, time travelled, etc.), discarding those data with
a sharp deviation. Data of two participants (driver 11, driver 38) were excluded
(2) Time series analysis: most of the data correspond to time series of data,
with a certain variation of speed, for this reason, it has been decided to use the
Dynamic Time Warping (DTW) technique.

• Checking for driving route failures. For each of the tests carried out, the route taken by
the driver during the test has been verified, to make sure the driver stuck to the route
initially stipulated. The test where a small deviation from the track occurred has been
discarded. To verify this, the following checks were made: (1) steering wheel rotation
pattern during the test, given that for the same trajectory the steering wheel rotation
pattern must be similar for all the tests. (2) GPS trajectory, the trajectory has been
painted and the tests that do not comply with the marked route have been eliminated.

After this first screening process, a quality validation of the resulting data is performed
to guarantee the quality of the data (see Figure 4). Our validation method comprised
three steps: (1) Quality control of variables. (2) Quality control of support media. (3)
Experimental validation.

4.2.1. Quality Control of Variables

An analysis of the internal structure of the set of circumstances of the DBQ form
(content validity) has been performed. To be able to apply a factorial analysis correctly,
those items with a declaration frequency of less than 5% were eliminated. Subsequently,
and since the items on the form are dichotomous variables, the tetrachoric correlation
coefficient was applied to obtain the correlation matrix between the 28 items.

The reliability of the questionnaires was obtained with the entire sample, finding
Cronbach’s alpha indices and the two Guttman halves. The values to interpret the relia-
bility were: <0.50 unacceptable; 0.50 ≥ poor < 0.60; 0.60 ≥ questionable/doubtful < 0.70;
0.70 ≥ acceptable < 0.80; 0.90 ≥ good < 0.90; and ≥0.90 excellent. The Cronbach Alpha
coefficient is 0.796.

Secondly, outliers in the acquired data, those values notably different compared to the
patterns present in the rest of the data, may be due to errors in reading and writing the
data from the sensors. Certain deviations were detected in the data from the GPS, due to
momentary loss of signal or where the position has been calculated with a fewer number of
satellites. In those cases in which the losses are less than two consecutive time intervals, a
prediction of the vehicle’s position is made. For cases where the loss is greater, the tests
have been discarded. To apply this prediction a constant acceleration Kalman filter has
been used.

4.2.2. Quality Control of Support Media

The clocks of all the sensors and devices were synchronised at the start of each
experimental test session. All devices are controlled by the control unit on board the
vehicle, which provides a perfect temporal and spatial synchronisation of the data obtained
by the sensors (see Figure 5).



Sensors 2023, 23, 2009 11 of 13

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14 

to momentary loss of signal or where the position has been calculated with a fewer 
number of satellites. In those cases in which the losses are less than two consecutive time 
intervals, a prediction of the vehicle’s position is made. For cases where the loss is greater, 
the tests have been discarded. To apply this prediction a constant acceleration Kalman 
filter has been used.

4.2.2. Quality Control of Support Media
The clocks of all the sensors and devices were synchronised at the start of each 

experimental test session. All devices are controlled by the control unit on board the 
vehicle, which provides a perfect temporal and spatial synchronisation of the data
obtained by the sensors (see Figure 5). 

Figure 5. Data synchronisation with timestamp. a) accelerator; b) break; (c) distance; (d) steering 
wheel angle. 

It has been verified that the data obtained by the encoder is synchronised with the 
rest of the sensor data. This was achieved by checking the distance indicated by the 
encoder coincides with the distance calculated between two consecutive GPS timestamps
(GNSS). This was done using the Havershine expression shown in Equation (1), where d 
is the distance in metres between two points on the Earth’s surface; r is the Earth’s radius 
(6378 km); 𝜑1 and 𝜑2 are the latitudes in radians; 𝜓1 and 𝜓2 are the longitudes in radians 
of two consecutive timestamps. 

𝑑 = 2𝑟𝑠𝑖𝑛ିଵ ቌඨ𝑠𝑖𝑛ଶ ቀ𝜑ଶ − 𝜑ଵ2 ቁ + 𝑐𝑜𝑠𝜑ଵ𝑐𝑜𝑠𝜑ଶ𝑠𝑖𝑛ଶ ൬𝛹ଶ − 𝛹ଵ2 ൰ቍ (1)

The indirect data provided by the encoder has also been verified, for example, that 
the speed matches the direct data measurements provided by the GPS. 

Figure 5. Data synchronisation with timestamp. (a) accelerator; (b) break; (c) distance; (d) steering
wheel angle.

It has been verified that the data obtained by the encoder is synchronised with the
rest of the sensor data. This was achieved by checking the distance indicated by the
encoder coincides with the distance calculated between two consecutive GPS timestamps
(GNSS). This was done using the Havershine expression shown in Equation (1), where d
is the distance in metres between two points on the Earth’s surface; r is the Earth’s radius
(6378 km); ϕ1 and ϕ2 are the latitudes in radians; Ψ1 and Ψ2 are the longitudes in radians
of two consecutive timestamps.

d = 2rsin−1

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos ϕ1cos ϕ2sin2

(
Ψ2 − Ψ1

2

))
(1)

The indirect data provided by the encoder has also been verified, for example, that the
speed matches the direct data measurements provided by the GPS.

4.2.3. Experimental Validation

Finally, the most conclusive validation was performed: the usability analysis of the
data contained in the final dataset. The work by Navarro et al. [20] presents the implemen-
tation of six end-to-end deep learning models trained using the UPCT dataset. The different
end-to-end models were tested using different data sources from the vehicle, including
RGB images, linear accelerations and angular velocities. We trained two models using only
RGB image data, two using both the image data and IMU data as input to the models, and
the last two used sequences of images as an input.

The best results were obtained using a mixed data input type end-to-end deep neural
network model which used the front images obtained by the vehicle camera and angular
speeds from the IMU to predict the speed and steering wheel angle, obtaining a mean error
of 1.06%. An exhaustive optimization process of the convolutional blocks has demonstrated
that it is possible to design lightweight end-to-end architectures with a high performance
more suitable for the final implementation in autonomous driving.
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5. Conclusions

In this work, we have presented the UPCT dataset, a real-world public driving dataset
with 20 sets of driving data from 20 drivers which performed a driving test on an urban
circuit in real traffic situations. The dataset contains different types of data which we have
divided into three categories: (1) Driver, (2) Perception and (3) Position.

The dataset has been validated and tested with six end-to-end deep neural network
models, using the RGB image data and IMU data, obtaining very promising results
considering the size of the dataset. The detailed results are published in the work by
Navarro et al. [20]. We plan to continue this research by making use of the depth images
and comparing the results to those obtained when using just RGB images, as well as
performing data augmentation to increase the sample sizes.

The main novelty of this dataset is the collection of biometric driver data which allows
the behaviour of autonomous driving models to be compared to human drivers. In future
research, we plan to use biometric driver data to perform driver behaviour studies. An
interesting approach would be to relate the stress levels of the driver to certain driving
situations, such as entering a roundabout, entering a main road or parking, for example. As
each of the 20 drivers completed the same circuit, it would also be possible to compare the
different driving styles and relate these tendencies to certain age groups or to a particular
sex. In addition, in the driving behaviour questionnaire, each driver was asked about their
driving style, and with the driving test, this can be compared to their real-life performance
to determine if drivers correctly perceive their attitudes whilst driving.
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