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Abstract: The application of MEMS accelerometers used to measure inclination is constrained by
their temperature dependence, and each accelerometer needs to be calibrated individually to increase
stability and accuracy. This paper presents a calibration and thermal compensation method for
triaxial accelerometers that aims to minimize cost and processing time while maintaining high
accuracy. First, the number of positions to perform the calibration procedure is optimized based
on the Levenberg-Marquardt algorithm, and then, based on this optimized calibration number,
thermal compensation is performed based on the least squares method, which is necessary for
environments with large temperature variations, since calibration parameters change at different
temperatures. The calibration procedures and algorithms were experimentally validated on marketed
accelerometers. Based on the optimized calibration method, the calibrated results achieved nearly
100 times improvement. Thermal drift calibration experiments on the triaxial accelerometer show
that the thermal compensation scheme in this paper can effectively reduce drift in the temperature
range of−40 ◦C to 60 ◦C. The temperature drifts of x- and y-axes are reduced from−13.2 and 11.8 mg
to −0.9 and −1.1 mg, respectively. The z-axis temperature drift is reduced from −17.9 to 1.8 mg.
We have conducted various experiments on the proposed calibration method and demonstrated its
capacity to calibrate the sensor frame error model (SFEM) parameters. This research proposes a new
low-cost and efficient strategy for increasing the practical applicability of triaxial accelerometers.

Keywords: MEMS; triaxial accelerometer; error analysis; thermal drift; calibration; temperature compensation;
tilt measurement

1. Introduction

Micro-electromechanical systems (MEMS) have been evolving since MEMS-based
inertial sensors were widely used in commercial and military applications such as human
motion tracking, navigation systems, and posture control systems [1–4]. Features such as
tiny size, cost, and low energy consumption make them very attractive. Such accelerometers
must be calibrated as precisely as possible because even slight biases in accelerometers can
result in inaccurate position measurement when used for inertial navigation system (INS)
applications and inaccurate tilt angle measurements [5–7]. Furthermore, the performance of
these sensors is greatly dependent on external circumstances, such as temperature changes.
As a result, precise, reliable, and effective thermal models are required to decrease the
impact of these errors, which can degrade system performance [8–11]. Factory-based
triaxial accelerometers calibration is a time-consuming and expensive process, usually
performed for specific advanced sensors [12].

There are several different errors and temperature-dependent models for triaxial
MEMS sensors and corresponding calibration methods based on different principles, but
they have restrictions, for instance, the need to provide accurate platforms for precise
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alignment or other temperature compensation devices. It is not sufficient for manufactur-
ers to perform only basic calibration of low-cost sensors, as even small uncompensated
coefficients can lead to inaccurate tilt angle estimation and increased bias in position
measurements [13–16]. These requirements increase manufacturing costs. Therefore, it is
necessary to investigate alternative methods [17].

For example, the common accelerometer calibration method described by Khan and
Ranj [18] uses six specific positions where the sensor axes are precisely aligned along the
axis of the calibration device. The accelerometer is calibrated by a specific position with a
certain reference angle. This calibration method can only estimate offset and scale factor
errors, not non-orthogonality, and the accuracy of the calibration depends heavily on the
accuracy of alignment with the calibration device [19]. The ellipsoidal fitting method
is often used to improve calibration accuracy while reducing device costs, as presented
in [20,21]. This method combines the error parameters by fitting them to the ellipsoid
data through linear regression, and then based on the calculated ellipsoid parameters,
the unknown error model parameters can be estimated. Maximum likelihood estimation
tackles the problem from a probabilistic perspective, but usually uses probability density
functions rather than probabilities [22,23]. The Kalman filter and its extensions attempt to
estimate both the error model and the calibration parameters within a calibration function
based on the system model and observations over a period of time [24].

In terms of temperature calibration, the manufacturer’s technical data are not suffi-
cient for inclination measurement applications. The target of temperature calibration is to
determine sensor errors at various temperature conditions. There are two prevailing meth-
ods regarding temperature calibration: the soak method and the ramp method. The soak
method assumes a stable sensor temperature, while the ramp method assumes the sensor
temperature varies with time [25–27]. Talha, Kivanc and Tayfun described a temperature
compensation method for a condenser MEMS accelerometer by using a MEMS dual-ended
tuning fork to compensate for the temperature dependence of the accelerometer’s out-
put [28]. The purpose of temperature compensation is to determine the error of the triaxial
accelerometers at different temperature points. Xu described an efficient temperature
compensation methodology based on neural networks using the collected accelerometer
responses from −30 ◦C to 50 ◦C as learning data [29]. In [30], Guo proposed a temperature
calibration method based on reservoir computing with a MEMS resonator. The novel
real-time online temperature compensation method can achieve high prediction accuracy.

These methods can be divided into the 3-order polynomial fitting method [31], the
linear interpolation method [32], the AG-based calibration method [33], the RBF calibration
method [34], and other optimization methods. In this research, we apply the soak method
for triaxial accelerometers based on the Levenberg-Marquardt (LM) algorithm and polyno-
mial methods, which can provide more accurate sensor error data at various temperature
points. Furthermore, several solutions to its inherent issues are considered.

This paper is organized as follows. In Section 2, we introduce the error source of the
triaxial accelerometer and describe the error model of the three-axis MEMS accelerometer,
where the biases, scale factors, nonorthogonal error, and misalignments are considered
thermal calibration parameters. We describe the algorithms used for its calibration and
temperature compensation in Section 3. Experiments and analysis are provided in Section 4.

2. Error Source and Error Model

An accelerometer is a device that can detect acceleration in accordance with Newton’s
second law of motion [35]. It is made up of a seismic mass as well as a capacitance to
voltage converting circuit. When the acceleration acts on the accelerometer, the seismic
mass deflects, causing a change in capacitance as well as voltage. As with other sensors,
triaxial accelerometers are subject to measurement errors due to variations in internal
structure and external environment. The errors of triaxial accelerometers can be roughly
divided into deterministic errors and random errors. Deterministic errors include zero
bias errors, scale factor, and non-orthogonality errors. Random errors are caused by drift
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errors, random noise, and turn-on errors, which cannot be predicted or compensated
directly [36–38].

2.1. Sensor Frame Error Model

As shown in Figure 1a, the output signal from the MEMS accelerometers should be
zero when there is no signal input to the sensor, but this is not the case. This phenomenon is
caused by a flaw in the manufacturing of the folded cantilever that holds the accelerometer’s
mass. The asymmetrically folded cantilever fails to bring the mass into equilibrium. As a
result, a false differential capacitance influences the sensor electrode. A faulty suppression
of parasitic capacitance in a capacitive sensor, on the other hand, introduces uncompensated
biases. As shown in Figure 1b, the scale factor is the ratio of an output change to an intended
input variation. An ideal sensor has only one scale factor. The scale factor error can be
introduced by flaws in the manufacturing of the folded cantilever and the process of weak
signal detection and extraction. Each sensitive axis’ scale factor can be expressed as a series
of coefficients. As shown in Figure 1c, ideally, the triaxial accelerometer sensitivity axes
should be orthogonal, but inaccuracies in the internal construction of the chip can cause non-
orthogonal errors between the axes. MEMS sensors output a voltage that is proportional
to the acceleration detected by the sensor. As shown in Figure 1d, when the triaxial
accelerometer is installed in an inclinometer, the three sensitive axes should be aligned with
the three orthogonal axes of the body frame. In practice, however, misalignment errors
occur due to errors in the sensor mounting process [39,40]. To ensure that the orthogonal
output readings are displayed correctly with the sensor frame by the nonorthogonal triaxial
accelerometer, misalignment errors θ, ϕ, and ψ must be estimated.
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Figure 1. Sensor frame error model of triaxial accelerometer. (a) Zero bias error; (b) scale factor error;
(c) nonorthogonality error; (d) misalignment error.

For triaxial accelerometers, we define the SFEM for the calibration of triaxial MEMS
accelerometers. Based on the above analysis of various error characteristics of the triaxial
accelerometers, the SEFM can be defined as:
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USF = MSFCSFSSF (U− bSF)

=

mxx mxy mxz
myx myy myz
mzx myz mzz

 1 0 0
αyx 1 0
αzx αzy 1

Sax 0 0
0 Say 0
0 0 Saz

Ux
Uy
Uz

−
bx

by
bz

 (1)

where USF = [XSF, YSF, ZSF]
T is the vector of accelerations after calibration; MSF is the matrix

describing the misaligned errors; CSF is the matrix providing the conversion from non-
orthogonal to orthogonal frames with non-diagonal angles αyx, αzx, and αzy corresponding

to the triaxial misalignment; SSF is a scale factor parameter matrix; U =
[
Ux, Uy, Uz

]T is the

vector of raw sensor readings; bSF =
[
bx, by, bz

]T is the vector of sensor offsets.

2.2. Temperature Dependence

Thermal drift of MEMS errors are typically considered deterministic errors. The
following two methods are required to decrease the thermal drift of sensor errors:

(1) Temperature calibration: developing accurate and reliable thermal models of the
sensor errors, i.e., establishing a relationship between the sensor errors and the sen-
sor temperature;

(2) Temperature compensation: compensating the thermal drift of the sensor errors based
on their temperature during the accelerometer’s operation process. Both of these
processes are dependent on the temperature generated by the accelerometer’s internal
temperature sensors.

Considering thermal errors, because temperature variations affect the internal struc-
ture of the triaxial accelerometer, the error parameters of the triaxial accelerometer vary non-
linearly with temperature. Considering the temperature factor, we redefine Equation (1) as

USF(T) = MSF(T)CSF(T)SSF(T) (U − bSF(T)) (2)
In the above formula, T represents the temperature measured by the thermal sensor.

MSF(T), SSF(T), CSF(T), and bSF(T) are the coefficients that change with temperature in
Equation (1). USF(T) represents the output data at temperature T, and U is the vector of raw
sensor readings.

3. Calibration Method

This section relies on triaxial accelerometer calibration and temperature compensation
algorithms. The basic principle of calibration and compensation is based on the principle
that triaxial acceleration should be calculated on the same order of magnitude as gravity in
Equation (3):

G =
√

X2
SF+Y2

SF+Z2
SF (3)

where X2
SF, Y2

SF, and Z2
SF are the accelerations present in the sensor frame axes; G is the

gravitational acceleration, ideally equal to 1 g.

3.1. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is one of the most efficient and widely used
algorithms and is often used to solve nonlinear least squares problems. It is more robust
than the Gauss-Newton (GN) algorithm. The Levenberg-Marquardt algorithm combines
two numerical optimization algorithms: the Gradient Descent (GD) method and the Gauss-
Newton (GN) method [41–43]. To obtain the most precise coefficients without using a highly
accurate turntable system, the triaxial accelerometer should be placed continuously and
fixed to cover the entire surface of the sphere, and the accelerometer should be influenced
only by gravity during the experiment. However, this is not possible in practice, because
the measurement sum for this calibration method would be infinite. So, we tried to test
and optimize the number of positions for compensation during the calibration. In [44], the
24-position method was used, as shown in Table 1 for three directions along the x, y, and z
axes, with eight positions in each direction. The calibration method can be described as (4):
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S(β) =
m

∑
i=1

[yi − f(xi,β)]
2 (4)

where S(β) denotes the sum of [yi − f(xi,β)]
2; m is the measurement number; xi is the

measured value; yi are the reference acceleration data, and β is a parameter vector as
defined in Equation (1).

Table 1. Suggested Calibration Positions.

No. X Axis Position Y Axis Position Z Axis Position

1 Px1 ≈ horizontal Py1 ≈ vertical Pz1 ≈ horizontal
2 Px1 + 45◦ Py1 + 45◦ Pz1
3 Px1 + 90◦ Py1 + 90◦ Pz1
4 Px1 + 135◦ Py1 + 135◦ Pz1
5 Px1 + 180◦ Py1 + 180◦ Pz1
6 Px1 + 225◦ Py1 + 225◦ Pz1
7 Px1 + 270◦ Py1 + 270◦ Pz1
8 Px1 + 315◦ Py1 + 315◦ Pz1

9 Px2 ≈ horizontal Py2 ≈ horizontal Pz2 ≈ vertical

10 Px2 + 45◦ Py2 Pz2 + 45◦

11 Px2 + 90◦ Py2 Pz2 + 90◦

12 Px2 + 135◦ Py2 Pz2 + 135◦

13 Px2 + 180◦ Py2 Pz2 + 180◦

14 Px2 + 225◦ Py2 Pz2 + 225◦

15 Px2 + 270◦ Py2 Pz2 + 270◦

16 Px2 + 315◦ Py2 Pz2 + 315◦

17 Px3 ≈ horizontal Py3 ≈ horizontal Pz3 ≈ vertical

18 Px3 Py3 + 45◦ Pz3 + 45◦

19 Px3 Py3 + 90◦ Pz3 + 90◦

20 Px3 Py3 + 135◦ Pz3 + 135◦

21 Px3 Py3 + 180◦ Pz3 + 180◦

22 Px3 Py3 + 225◦ Pz3 + 225◦

23 Px3 Py3 + 270◦ Pz3 + 270◦

24 Px3 Py3 + 315◦ Pz3 + 315◦

Here we use the Levenberg-Marquardt algorithm, which reduces S(β) with respect to
the parameters in vector β.

(1) The Gradient Descent Method: The Gradient Descent (GD) algorithm is a commonly
used minimization method that updates the parameter values in the opposite direction
of the gradient from the objective function. The GD algorithm is highly convergent
and can be used for optimization problems with thousands of parameters. The GD
algorithm update hgd that modifies the S(β) in the direction of the steepest descent
can be defined as shown in Equation (5).

hgd= αJTW(yi − f(xi,β)) (5)

where α is a positive scalar corresponding to the step in the steepest-descent direction;
J is a Jacobian matrix based on the vector β; W can be set as the inverse matrix of the
measurement error covariance matrix.

(2) The Gauss-Newton Method: The Gauss-Newton method is a method for the minimiza-
tion of the sum-of-squares target function. For medium-sized problems, the Gauss-
Newton method usually converges faster than the gradient descent method. The
formula for the GN algorithm to reduce S(β) is given by the following Equation (6).

[JTWJ] hgn = JTW[yi − f(xi,β)] (6)
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where hgn indicates the GN algorithm update of the parameter estimated to lead to
the minimization of S(β).

(3) The Levenberg-Marquardt method: The Levenberg-Marquardt algorithm adaptively
changes the parameter updates between gradient descent parameter iterations and
Gauss-Newton parameter iterations to achieve optimal progress in the minimization
of S(β). The LM algorithm can be described by Equation (7).[

JTWJ + λdiag
(

JTWJ
)]

hlm = JTW[yi − f(xi,β)] (7)

where J is the Jacobian matrix of vectors β; W is the weighting diagonal matrix; hlm is
adaptively weighted to reach optimal progress in S(β) minimization. The damping
factor λ is adjusted at each iteration.

3.2. Least-Squares Fitting of Data by Polynomials

The temperature dependence of MEMS accelerometers can be defined as the non-linear
change of calibration parameters with temperature [45]. For temperature compensation, we
convert the error coefficients into variables that change with temperature, which will vary
according to the environment and other instrumental conditions. Polynomial regression
methods are utilized in this research to model triaxial accelerometer errors based on
temperature [46]. The calibration parameters in Equation (1) can be fitted with a three-
dimensional polynomial as shown in Equation (8).

p(t) = a0 + a1f(t) + a2f
(

t2
)
+ a3f

(
t3
)

(8)

where p(t) is the calibration coefficients in (1); t is the temperature coefficient; a0 , a1 , a2 , a3
are the fitting coefficients. The temperature calibration procedure can be found in Figure 2.
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Figure 2. The procedure of temperature calibration.

4. Experiments and Results
4.1. Calibrated Sensors and Measurement Setup

In this section, we will briefly describe the system (Figure 3) used for calibration and
temperature compensation. The performance parameters of the triaxial accelerometer are
shown in Table 2. A three-axis position turntable equipped with a thermal chamber (see
Figure 4 is used to calibrate the triaxial accelerometer sensor errors over a wide temperature
range. The triaxial accelerometer is fixed in the center of the triaxial turntable by using a
clamp, and the turntable is controlled according to the programmed control commands.
The device specifications for the turntable and the thermal chamber are shown in Table 3.

4.2. Sensor Frame Error Model Analyses

For compensation purposes and sequential testing, we measured the raw data of the
accelerometers at 1296 locations distributed uniformly over the sphere (Figure 5). This
number is based on the number of calibration positions suggested in Section 3 multiplied by
54 for calibration position optimization. Then we analyze the dependence of the calibrated
SFEM on the number of calibration positions.
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Output Data Rate (Hz) 0~4000 Hz

Sensors 2023, 22, x FOR PEER REVIEW 7 of 18 
 

 

Figure 4 is used to calibrate the triaxial accelerometer sensor errors over a wide tempera-
ture range. The triaxial accelerometer is fixed in the center of the triaxial turntable by using 
a clamp, and the turntable is controlled according to the programmed control commands. 
The device specifications for the turntable and the thermal chamber are shown in Table 3. 

  
(a) (b) 

Figure 3. Measurement setup for triaxial accelerometer calibration. (a) ADXL355 sensors; (b) cali-
bration and measurement device for triaxial accelerometer. 

  
(a) (b) 

Figure 4. Temperature-controlled rotational-tilt platform. (a) External view; (b) internal view. 

Table 2. Characteristics of tested ADXL355. 

Specification Value 
Interface Digital 

Noise-Density (μg/√Hz) 25 
0 g Offset (mg) ±25 

Range (g) ±2/±4/±8 
ADC 20-bit 

Output Data Rate (Hz) 0~4000 Hz 

Table 3. Performance of thermal calibration equipment. 

Turntable  
Principal axis rotation range Continuous infinite 

Tilting axis angular position accuracy ±3″ 
Principal axis angular position accuracy ±3″ 

Non-orthogonalities between axes ±5″ 

Figure 4. Temperature-controlled rotational-tilt platform. (a) External view; (b) internal view.

Table 3. Performance of thermal calibration equipment.

Turntable

Principal axis rotation range Continuous infinite
Tilting axis angular position accuracy ±3”

Principal axis angular position accuracy ±3”
Non-orthogonalities between axes ±5”

Tilting axis rotation range ±90◦

Thermal Chamber

Temperature range −55~+100 ◦C
Temperature change rate ±0.1~±5 ◦C/min linear



Sensors 2023, 23, 2105 8 of 16

Sensors 2023, 22, x FOR PEER REVIEW 8 of 18 
 

 

Tilting axis rotation range ±90° 
Thermal Chamber  
Temperature range −55~+100 °C 

Temperature change rate ±0.1~±5 °C/min linear 

4.2. Sensor Frame Error Model Analyses 
For compensation purposes and sequential testing, we measured the raw data of the 

accelerometers at 1296 locations distributed uniformly over the sphere (Figure 5). This 
number is based on the number of calibration positions suggested in Section 3 multiplied 
by 54 for calibration position optimization. Then we analyze the dependence of the cali-
brated SFEM on the number of calibration positions. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Acceleration values during the proposed 1296 positions calibration method. (a) Raw data 
of the x-axis; (b) raw data of the y-axis; (c) raw data of the z-axis. 

The three-axis sensor is oriented in each direction as measurements are taken. The 
calibration device is set to stay at each position for a while and calculate the average of 
200 measurement data samples to minimize sensor noise [47]. The impact of calibration 
on the measured data is shown in Figures 6 and 7, where the deviation of the calibrated 
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of the x-axis; (b) raw data of the y-axis; (c) raw data of the z-axis.

The three-axis sensor is oriented in each directi on as measurements are taken. The
calibration device is set to stay at each position for a while and calculate the average of
200 measurement data samples to minimize sensor noise [47]. The impact of calibration on
the measured data is shown in Figures 6 and 7, where the deviation of the calibrated acceler-
ation reading from 1 g is approximately 100 times smaller than the data before calibration.

Calibration parameters are estimated and used to remove the errors from the raw
data. Figure 7 displays the raw data as well as the final calibrated data, together with the
estimation of the ellipsoid and sphere [48].
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The LM algorithm was used to estimate the SFEM from the measurement values of
the proposed positions. It contributed to reducing the influence of manufacturing defects
on sensor accuracy. To achieve the optimization of the number of positions, the Root Mean
Square Error (RMSE) of the comparison defined in (9) was used:

RMSE =

√
∑n

i=1(xi − g)2

n

xi =
√

g2
xi + g2

yi + g2
zi (9)

where n is the number of positions; g is numerically the same as gravity and is equal to 1 g;
gxi, gyi, and gzi are the components of gravity along each axis.

To demonstrate that 24 positions are adequate for compensation goals, we evaluated
the RMSE of the SFEM from 12 to 1296 for various numbers of positions (NoP). The results
are shown in Figure 8. In Table 4, the NoP can be found, where N indicates the quantitative
relationship between the axis and the NoP used for the analysis [49].

Sensors 2023, 22, x FOR PEER REVIEW 10 of 18 
 

 

  
(c) (d) 

Figure 7. The 3D graphics of measured accelerations before (red ‘o’) and after (blue ‘x’) calibration. 
(a) main view; (b) front view; (c) end view; (d) vertical view. 

The LM algorithm was used to estimate the SFEM from the measurement values of 
the proposed positions. It contributed to reducing the influence of manufacturing defects 
on sensor accuracy. To achieve the optimization of the number of positions, the Root Mean 
Square Error (RMSE) of the comparison defined in (9) was used: 

RMSE = ඨ∑ ሺx௜ − gሻଶ୬௜ୀଵ n  

x௜ = ටg୶௜ଶ + g୷௜ଶ + g୸௜ଶ  (9)

where n is the number of positions; g is numerically the same as gravity and is equal to 
1g; g୶௜, g୷௜, and g୸௜ are the components of gravity along each axis. 

To demonstrate that 24 positions are adequate for compensation goals, we evaluated 
the RMSE of the SFEM from 12 to 1296 for various numbers of positions (NoP). The results 
are shown in Figure 8. In Table 4, the NoP can be found, where N indicates the quantita-
tive relationship between the axis and the NoP used for the analysis [49]. 

 
Figure 8. Relationship of RMSE before calibration (left vertical axis) and after calibration (right ver-
tical axis). 

Figure 8. Relationship of RMSE before calibration (left vertical axis) and after calibration (right
vertical axis).

Table 4. Relationship between the NoP and the axes.

N NoP N NoP N NoP

1 1296 6 64 11 18
2 648 7 48 12 16
3 324 8 36 13 12
4 162 9 24
5 81 10 21

As can be seen in Figure 8, 21 or more positions have the capacity to meet the required
requirements, regardless of how many positions are rotated on the calibration device. This
can also be interpreted as a variation of the compensation results below the controllable
value when 21 or more positions (up to 1296) are used; therefore, we can optimize the
number of calibration positions by using 24 positions to cover all axes, which is the number
we used in Table 1.

After calibrating our triaxial accelerometer sensor, we fused the sensor measurements
for attitude estimation using the method described in [46]. To further verify the effectiveness
of the calibration, another analysis was performed where the tilt angle estimated from
the calibration was compared to the reference angle measured by the Rotating Tilt Device
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(RTD). As shown in Figure 4b, we mounted the accelerometer on the RTD and tilted it by a
specific angle along both axes. Tilt sensing measures the angle of change with respect to
gravity. The output of the accelerometer sensor is read by the microcontroller’s internal
Analog to Digital Converter (ADC) to determine tilt. The tilt of each axis can then be
calculated using the following formula (10). The tilt corresponds to the pitch angle and roll
angle. The specifications are listed in Section 4 for the RTD.

ϕm = arctan
(
−YSF/

√
X2

SF + Z2
SF

)
θm = arctan(XSF/− ZSF) (10)

where ϕm is the pitch angle; θm is the roll angle; XSF, YSF, ZSF are the measurement of the
acceleration. The comparison of the tilt angle measurements before and after calibration can
be seen in Table 5, where the tilt angle is more accurate than the angle without calibration
due to calibration. In the last column, we use the Sensor Error Optimization Quantity
(SEOQ), which is defined as the specific deviation for the difference between the two values
with respect to the maximum angle, i.e., 30 degrees.

Table 5. Comparison of tilt angles before and after calibration.

Reference
Angle

ϕ; θ (deg)

Without
Calibration
ϕ; θ (deg)

After
Calibration
ϕ; θ (deg)

SEOQ
ϕ; θ (%)

0; 0 −0.77; 0.59 −0.70; −0.30 0.2; 3.0
15; 0 14.18; −0.62 14.61; −0.15 1.4; 1.6
30; 0 29.18; −0.63 30.13; 0.01 3.2; 2.1

0; −15 −0.96; −15.83 −0.91; −15.72 0.2; 0.4
0; −30 −0.82; −31.10 −0.76; −31.00 0.2; 0.3

15; −15 14.31; −15.98 14.76; −15.82 1.5; 0.5
30; −30 29.00; −29.62 29.98; −29.76 3.3; 0.5

4.3. Temperature Compensation

Based on the 24-position data measurement method described in Section 3 and demon-
strated in Section 4, we conducted experiments (24 positions in our case) with temperatures
cycling from −40 ◦C to 60 ◦C at 10 ◦C intervals, verifying the calibration coefficients at each
temperature point (Figure 9).
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The triaxial accelerometer is enclosed in a thermal chamber and given enough time
(approximately one hour) to stabilize its temperature at the set temperature point in the
temperature compensation method. The system begins recording data once the accelerome-
ter and thermal chamber temperature have stabilized [50]. Figure 10 shows the relationship
between temperature and calibration. Due to the temperature hysteresis characteristics, we
fit scatter points for temperature compensation. The analyses of the other coefficients were
very similar.
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To verify the calibration results at specific temperatures, we performed the 24-position
method at some temperatures and compared the RMSE before and after calibration, as
shown in Table 6.

Table 6. Comparison of RMSE before and after calibration.

Temperature
(◦C)

Before Calibration
RMSE (mg)

Polynomial
RMSE (mg)

Measurement
RMSE (mg)

−35 45.1 0.19 0.17
−25 46.8 0.24 0.21
−15 47.2 0.22 0.19
−5 45.9 0.24 0.21
5 44.3 0.18 0.17
15 46.3 0.19 0.21
25 48.6 0.25 0.25
35 47.2 0.26 0.29
45 45.3 0.29 0.24
55 48.1 0.31 0.29

To verify the effect of the temperature compensation in a dynamic temperature environ-
ment, we fixed the accelerometer in a temperature-controlled oven, heated it to 60 ◦C, and
then closed the temperature oven to allow the accelerometer to cool down naturally [51].
The compensated and uncompensated accelerometer output data can be examined in
Figure 11. The temperature dependency is reduced from 1346 µg/K to 37 µg/K.
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5. Conclusions

The main motivation of this paper is to analyze the validity of calibration and tem-
perature compensation methods. We evaluated the SFEM for the ADXL355 accelerometer
based on the Levenberg-Marquardt (LM) algorithm and polynomial methods. Ideally,
the value of the triaxial accelerometer should be equal to the gravitational force in the
static case, whether the temperature conditions are considered or not. The LM algorithm
proposed in this paper is robust and efficient for the calibration of triaxial accelerometers.
To compensate for thermal changes, the temperature compensation method was used
combined with real-time temperature monitoring to model and incorporate temperature-
related drift characteristics. Various experiments were performed to demonstrate different
aspects of calibration and temperature compensation, for example, how many positions
must be used to achieve the accuracy we require and how to prove the effectiveness of
temperature compensation. The experimental results show that this calibration method is
effective in reducing positioning calculation errors. In all cases, there is an improvement of
about 100 times after calibration, and the variation of the error parameters is reduced by
almost 80% after temperature compensation. All results demonstrate the applicability of
the proposed calibration and temperature compensation methods.

Some improvements can be made to the model of the triaxial accelerometer. When
using the thermal calibration method to calculate the bias, scale factor, and misalignment
errors at each temperature point, the results may be inaccurate since the sensor takes
a long time to stabilize at the temperature being measured. More circumstances, such
as input accelerations and temperature change rates that fluctuate over time, should be
considered in the future. Therefore, multiple thermal models calibrated in various ambient
temperatures should be developed, and a combined thermal model could be employed for
demanding applications.
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