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Abstract: The goal of the paper is the design of soft sensors for single input single output (SISO)
nonlinear processes. This goal is of essential importance for process monitoring, fault detection
and fault isolation. The observer-based technique, being a fruitful direction in soft sensor design,
is followed to develop soft sensors for nonlinear processes with known dynamics and unknown
physical parameters. A new and general approach, based on the identified I/O linear approximant
system descriptions, around prespecified operating points, and a bank of switching linear observers,
will be developed. The system property of the I/O reconstructability of the state space linear
approximant of a nonlinear model is presented. The design of each observer is based on the I/O
measurements and structural characteristics of the nonlinear process. Observer-oriented target areas
are introduced, and the respective dense web principle is formulated. The design is completed by the
design of a data-driven rule-based system, providing stepwise switching among the observers of
the bank. The number of observers of the bank is equal to the number of the linear approximants of
the nonlinear process model and is equal to the number of the respective target operating areas. The
target operating areas are required to satisfy the dense web principle. The information provided by
the soft sensor is the estimation of the non-measured variables of the process. The information used
by the soft sensor is the identified I/O approximants of the process as well as the real time values
of the measurement variables. The efficiency of the design scheme is illustrated through symbolic
and numerical simulation results for a chemostat. The nonlinear model of the chemostat is initially
approximated by a set of ten linear approximants. After, the I/O approximants are identified, the
respective observers are designed and the target operating areas are determined, where several cases
of the satisfaction of the dense web principle are investigated. The soft sensor is composed in terms
of the designed observers. Simulation results illustrate the satisfactory performance of the designed
soft sensor.

Keywords: data-driven soft sensor design; data-driven observer design; switching observers;
nonlinear processes

1. Introduction

In modern industrial processes, command-and-control systems are purely computer-
ized in a high level aiming towards Industry 4.0 directions and focusing on the satisfaction
of multi target goals, simultaneously. Satisfactory performance of the process, high quality
products, minimization of the energy consumption and fulfilment of environmental stan-
dards are some of these goals. To accomplish these goals, the computerized systems are
based on intelligent control and command algorithms based on real time information of
several variables of the process. Sensors are devices providing real time measurements of
physical variables to the command-and-control system.

In modern industry, soft-sensors are usually installed to indirectly measure difficult-to-
measure variables with physical sensors [1]. In most industrial processes, due to inherent
technical characteristics or cost limitations, the participating variables are not all measurable
in real time. Indicatively, it is mentioned that the concentration of chemical elements
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is usually measured through laboratory tests, providing sampled and delayed values
of the quantity under measurement. Since in most processes the variable sensors are
not all available, control design is greatly benefited by the development of soft sensors.
Alternatively, control design schemes using subsets of the system variables are required to
be developed, indicatively see [2–4].

A soft sensor of a non-measured, or not accurately measured, physical variable is an
algorithm implemented to the computer system and provides real time estimations of the
variable, using real time data of other variables and offline measurement data of the same
and/or other variables, as well as appropriate physical or data-driven models. This way,
installation of soft sensors in modern industry tackles problems of installation of physical
sensors with high calibration and maintenance costs [5] as well as technical problems of
difficult to install physical sensors, large measurement delays, etc. [1]. Since soft sensors are
special designed software, they are implemented on appropriate computer devices or more
preferably, from the industrial control point of view, on industrial embedded systems [5].

There are two main directions in the development of soft sensors. The first one is
based on mathematical models, obtained through physical knowledge of the process. Such
first-principle-based models require sufficient knowledge about the underlying principles
of physics, chemistry and even biology of the system. In some cases, the construction of
such mathematical models is overcomplicated requiring significant effort to develop. In
all cases, the direct use of these models requires the exact knowledge of all parameters
of the developed model. The latter requirement is rarely satisfied in industrial practice.
The second direction is the data-driven techniques based on real-time measurements
and empirical or experimental data of the process. Although data-driven techniques
describe real conditions of the process, they require intensive processing of data ([5,6])
as well as the construction of data-driven models. According to [6], the most popular
data-driven models used in soft sensors applications are linear models [7], support vector
regressions [8], fuzzy and neuro-fuzzy systems [9]. Several data-driven models are derived
through identification (online or offline) using observers (see [10,11]), or machine learning
techniques where the basic assumption is that the outputs are uniquely determined by the
nonlinear projection of the inputs and/or the dynamics of the systems that approximate
some natural behavior (see [12,13]). Many models are integrated using optimization
procedures, such as random forest and generic algorithm [14] as well as Kalman filters and
Extended Kalman filters covering certain stochastic properties of measurements and noisy
environments (see [15,16]).

In the development of soft sensors for process variables, there are two issues of
great importance. The first is the distance between the output of the soft sensors in real
time, namely the estimation error, and the second is the lack of models of the process.
Both issues are treated in the present paper by developing a stepwise switching observer
design approach.

Switching observer design as well as observer design for switching systems have
attracted considerable interest from various points of view and using different approaches
(indicatively, see [17–21] and the references therein). In [17] an observer design for linear su-
perdetectable switched systems has been proposed. In [18,19], observer design techniques
for discrete-time linear systems have been proposed. In [18], a hybrid asymptotic observer
has been proposed. In [19], three Luenberger-type observers using an LMI technique, have
been designed. In [20,21], the stepwise switching observer design has been investigated for
the case of two nonlinear process applications. Safe stepwise switching was introduced
and established in [22] for the pure control problem of SISO systems. It is mentioned that in
the pure control problem, in [22], observers are not participating and neither are used. The
results in [22] have been extended in [23] to cover the multi-input multi-output (MIMO)
case. In [24], the quite interesting case of two inputs and two outputs (TITO) systems with
decoupled linear approximants is studied through a quadrotor application. The stepwise
safe switching design for the pure control problem has been studied in several applications



Sensors 2023, 23, 2114 3 of 31

(indicatively see [22–25]). The problem of stepwise safe switching observer design has not
yet been formulated in its general form and its solution has not yet been derived.

In the present paper, the problem of designing a stepwise safe switching observer is
studied for the case of SISO nonlinear processes where the structure of the nonlinear model
of the process is known while the parameters of the model are not considered to be known.
Additionally, the operating trajectory of the process is considered to be known. Firstly, for
any operating point of the process, a full order linear observer, depending upon a nominal
operating point of the process, is considered, using the respective linear approximant of
the process. A set of system properties and definitions required for the present analysis
are introduced. A bank of observers is designed. Each observer corresponds to a different
operating point. The observer design is based on the respective linear approximants of
the process model at different operating points. An important aspect of the present results
is that the design of the observer is based entirely upon the I/O linear approximant of
the process model, being derived through standard identification approaches (indicatively
see [26,27]) using I/O data. This way, a look up table of I/O relations, derived through
identification, is mapped to a bank of observers. From this point of view, the observers
of the bank are data driven observers, in the online and the offline sense of the term,
the observers are fed with real time measurements. In the offline sense of the term, the
observers are designed using identification data. This type of data-driven observers is the
first contribution of the paper.

A supervisor, orchestrating the switching among the observers of the bank, is de-
signed. The goal of the supervisor is to compose an estimation of the state variables that
approximates as close as possible the state variables of the nonlinear process model. This is
the second contribution of the present paper. The proximity of the estimated variables to
the state variables of the nonlinear process is defined and proved through the introduction
of appropriate cost criteria, depending upon the identified coefficients of the I/O linear
approximants of the process and the operating points of the process.

A new set of target operating areas, oriented to observer design is introduced and the
respective dense web principle for observer design is also introduced. This is the third
contribution of the paper.

The performance of the proposed design scheme is demonstrated in the case of a
chemostat, being a quite applicable system (indicatively see [28–30]). The linear approxi-
mants of the chemostat model and the respective linear full order observer are analytically
determined. The identified I/O linear approximants of the process are derived. The target
operating areas of the chemostat model are also derived. Finally, using a series of com-
putational experiments, the satisfactory performance of the proposed design scheme is
demonstrated. It is important to mention that the present estimated variables are quite
near to the respective estimated variables derived in [28], where a nonlinear observer has
been designed, considering that the parameters of the chemostat nonlinear model are
accurately known.

The proposed, here, stepwise safe switching observer scheme is easily implementable
to the control-and-command computer system providing the real time data of sensors
measuring only some of the variables of the process. The algorithm, realizing the present
design scheme, is simple and elegant, in the sense that includes a bank of linear observer or-
chestrated by a simple supervisor rule. Overall, the proposed algorithm is an adequate soft
sensor for industrial processes. It is important to mention that the present results are offered
for implementation to low-level computer platforms, such as microcontrollers (µCs), Pro-
grammable Automation Controllers (PACs) and other microprocessor embedded systems.

To facilitate reader’s familiarization with the concepts and procedures introduced,
here, the special case of a chemostat model is first investigated. Particularly, in Section 2 the
structure of the nonlinear model of the process is presented. In Section 3, the accuracy of
the linear approximant of the chemostat is investigated. In Section 4, the full order observer
design problem for the linear approximant of the chemostat is investigated. In Section 5,
the general framework for linear observer design through parameter identification of SISO
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I/O linear approximants is developed. In Section 6, the general framework for switching
observer design through parameter identification of SISO I/O linear approximants is
developed and illustrated through extensive computational experiments.

2. The Nonlinear Model of a Chemostat

According to [28–30], the general nonlinear model of a chemostat is expressed by the
following two nonlinear differential equations:

ds(t)
dt

= q(t)(sin − s(t))− 1
δ

f (s(t))x(t),
dx(t)

dt
= f (s(t))x(t)− q(t)x(t) (1)

where s(t) is the substrate’s concentration, x(t) is the microorganisms’ concertation and
q(t) is the dilution rate in the chemostat, being the actuatable input variable of the system.
The parameter sin is the concentration of the input substrate. According to [28–30], this
parameter is constant. The parameter δ is the yield constant. This parameter is considered
to be the known (see [28–30]). The function f : R+ → R+ is the uptake function, being
a monotonically increasing, continuously differential and homogeneous function, i.e.,
f (0) = 0. In accordance with [28], it is considered here that the uptake function follows a
Monod growth rate form, i.e., it holds that f (s(t)) = µms(t)/(s(t) + K), where µm is the
maximum growth rate of the microorganisms and K is the half saturation constant. Using
this consideration, the nonlinear state space model of the chemostat is of the form:

dx1(t)
dt

= u(t)(sin − x1(t))−
µmx1(t)x2(t)
δ(x1(t) + K)

,
dx2(t)

dt
=

µmx1(t)x2(t)
(x1(t) + K)

− u(t)x2(t), (2)

where x1(t) = s(t) and x2(t) = x(t). The state vector is x̃(t) =
[
x1(t) x2(t)

]T . The mea-
surement output variable is y(t) = x1(t) = s(t). The control input variable is u(t) = q(t).
The initial condition of the system is x̃(0−) = x̃0.

Let Y, X̃ and U be the operating values of the measurement output variable, the state
vector, and the control input variable, respectively. The operating values of the state vector
and the performance variable are expressed as functions of the operating value of the input,
as follows:

X̃ =

[
X1
X2

]
=

[
KU/(µm −U)

δ
(

sin − KU
µm−U

)], (3a)

Y = KU/(µm −U). (3b)

Relation (3b) is the operating trajectory of the chemostat model, relating the operating
values of the control input to the operating values of the measurement output.

3. The Linear Approximants of the Chemostat

The linear approximant of the chemostat model, around the operating values of the
input the output and the state variables, is computed to be in the following general state
space form, depending entirely upon the operating value of the input,

ℵ :
∆

.
xL(t) = A∆xL(t) + b∆u(t), ∆yL(t) = c∆xL(t),

∆xL(0−) = ∆xL,0 = x̃0 − X̃
(4)

where the system matrices are

A =

 −KU2+sin(µm−U)2

Kµm
−U

δ
δ(µm−U)[sin(µm−U)−KU]

Kµm
0

, b =

[
sin − KU

µm−U
KUδ

µm−U − sinδ

]
, c =

[
1 0

]
, (5a)

∆xL(t) =
[
∆xL,1(t) ∆xL,2(t)

]T , (5b)
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and where ∆yL(t), ∆x1(t) and ∆x2(t) are the approximants of the deviations ∆y(t) = y(t)−Y,
∆x1(t) = x1(t)− X1 and ∆x2(t) = x2(t)− X2, respectively. The input of the linear approxi-
mant is the deviation ∆u(t) = u(t)−U.

The general form of the I/O description of the linear approximant (4) of the model of
the chemostat, namely the I/O linear approximant of the process, is

S : ∆y(1)L (t) + hD∆yL(t) = hN∆u(t) (6)

In the following relations, the coefficients of (6) are expressed in terms of the system parameters:

hD =
[sin(µm −U)− KU](µm −U)

Kµm
, hN =

µmsin − (K + sin)U
µm −U

. (7)

If the system parameters sin, µm and K are not known, while the operating values
Y and U as well as the coefficients of the I/O model (6), hD and hN are known, then the
system parameters are determined by the analytic expressions

µm =
hNU2

hNU − hDY
, sin = hN + Y, K =

hDY2

hNU − hDY
. (8)

As already mentioned, the yield constant δ is considered to be known. Hence, substi-
tuting (8) to (5a), the system matrices A and b are expressed as functions of the coefficients
of the I/O model and the operating value of the input as follows:

A(hD) =

[
−hD −U −U/δ

hDδ 0

]
, b(hN) =

[
hN
−δhN

]
. (9)

Additionally, the operating state vector in (3a) is expressed by the relation

X̃ =

[
X1
X2

]
=

[
Y

hNδ

]
. (10)

It is important to mention that according to [28–31], the dilution rate has an upper
bound, denoted by Umax and a lower bound denoted by Umin. Both bounds depend upon
technical characteristics of the process. According to [32], the dilution rate’s upper bound
in the normal operation of the chemostat is Umax ≈ µm. On the contrary, if U is very small
then the culture will be washed out (see [32,33]). According to [32], the dilution rate varies
between Umin = 0.005 and Umax = 1. According to [34], the operating variable of the input
variable is constrained to satisfy the inequalities:

U > 0, U < µm, U <
sin

K + sin
µm. (11a)

Considering that K, sin and µm are positive parameters, the previous inequalities
reduce to

0 < U <
sin

K + sin
µm. (11b)

In concluding, for the satisfactory performance of the chemostat, it holds that

U ∈ (Umin, Umax) ; Umin = 0, Umax =
sin

K + sin
µm. (11c)

It can readily be verified that under the upper and lower constraints in (11c), the
nominal values of the state variables satisfy the following inequalities:

X1 ∈ (X1,min, X1,max) ; X1,min = 0, X1,max = sin, (11d)

X2 ∈ (X2,min, X2,max) ; X2,min = 0, X2,max = sinδ. (11e)
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The characteristic polynomial of the linear approximant can be rewritten in the form
p(s) = (s− r1)(s− r2), where

r1 = −U, r2 = − [sin(µm −U)− KU](µm −U)

Kµm
. (12a)

The above roots of the characteristic polynomial are expressed in terms of the I/O
approximant and the operating value of the input variable as follows:

r1 = −U, r2 = −hD (12b)

Considering that µm, sin and K are positive as well as the constraints in (11c), it can
be observed that r1 and r2 are always negative. Hence, the linear approximant (4) is
asymptotically stable. Thus, local asymptotic stability for the original nonlinear model (2)
(see also [35]) is guaranteed.

To quantitatively evaluate the accuracy of the sum of the forced and the free response
of the linear approximant of the process, in comparison to the respective response of the
nonlinear process, the three criteria are required to be small enough simultaneously. Define

J∞ =

max
j=1,2

 sup
t∈[t0,(Tmax)j ]

∣∣xj(t)− ∆xL,j(t)− Xj
∣∣

max
j=1,2

 sup
t∈[t0,(Tmax)j ]

∣∣∆xL,j(t)
∣∣

× 100%, (13a)

J1 =


2
∑

j=1

[
lim

t→+∞

∣∣xj(t)− ∆xL,j(t)− Xj
∣∣]2

2
∑

j=1

[
lim

t→+∞

∣∣∆xL,j(t)
∣∣]2


1
2

× 100%, (13b)

J2 =


2
∑

j=1

(Tmax)j∫
t0−

[
xj(t)− ∆xL,j(t)− Xj

]2dt

2
∑

j=1

(Tmax)j∫
t0−

[
∆xL,j(t)

]2dt



1
2

× 100%. (13c)

The parameter (Tmax)j is selected to be equal to the time required for xj(t) to settle in
an area around 2% of its steady state value.

Given the operating points of the actuatable input and the state variables, the actuat-
able input for the nonlinear and linear approximant will be selected to be in the form

u(t) = U(1 + puus(t− t0)), ∆u(t) = puUus(t− t0), (14)

where us(t) is the unit step signal, pu ∈ ((pu)min, (pu)max), (pu)min, (pu)max ∈ R and

− 1 < (pu)min < (pu)max. (15)

The norms in (13) will be evaluated for various actuatable input signals and various
initial conditions of the nonlinear model and its linear approximant, through a series of com-
putational experiments. The initial values of the nonlinear model and linear approximant
will be selected to be

xj(t0−) =
(
1 + pj

)
Xj , ∆xL,j(t0−) = pjXj; j = 1, 2, (16)
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where pj ∈
((

pj
)

min,
(

pj
)

max

)
,
(

pj
)

min,
(

pj
)

max ∈ R and −1 <
(

pj
)

min <
(

pj
)

max.
Since the nonlinear model (2) is locally asymptotically stable and the linear approxi-

mant (4) is asymptotically stable, it is observed that the cost J1, defined in (13b), does not
depend upon the initial conditions but only upon the steady state value of the actuatable
input. Using (14) and after appropriate algebraic manipulations, the following relation
is derived

J1 =

∣∣∣∣ puU
(1 + pu)U − µm

∣∣∣∣× 100%. (17)

Let ε1 ∈ R+ be an upper bound for J1, set by the designer, i.e., the following inequality
is required to be satisfied

J1 < ε1. (18)

For a given ε1, using the inequalities in (11b), the following scenarios for the selection
of pu are derived:

• If ε1 < 100%, then (µm−U)ε1
(ε1−1)U < pu < (µm−U)ε1

(ε1+1)U .

• If ε1 = 100%, then pu < µm−U
2U .

• If ε1 > 100%, then
(

pu < (µm−U)ε1
(ε1+1)U

)
∨
(

pu > (µm−U)ε1
(ε−1)U

)
.

In a similar manner, the linear approximant (4) is an accurate representation of the
nonlinear model (2), regarding the metrics defined in (3a) and (13c), if

J2 < ε2, (19)

J∞ < ε∞, (20)

where ε2 ∈ R+ and ε∞ ∈ R+ are the desirable upper bounds for J2 and J∞.
To execute the computational experiments, examining the accuracy of the linear

approximant (4) as compared to the nonlinear model (2), the following chemostat data, pre-
sented in [28,36], are used δ= 1/6.6 [kg biomass / kg COD], µm = 1.2 [day−1],
K= 4.95 [kg COD/m 3

]
and sin = 9 [kg/m3]. Using the above data and (11c), we obtain

Umin = 0[day−1], Umax = 0.7742[day−1].
In what follows, a series of computational experiments will be conducted, for different

operating conditions and various values of pu, p1 and p2. In particular, the ten scenarios
of nominal conditions presented in Table S1 of Supplementary Material (Supplementary
Material) of the paper, covering satisfactorily the range of the nominal values of the input
variable, will be studied. In these scenarios, the operating values of the input and the
state variables are presented. The ten scenarios have been computed using (3a) and the
inequality constraints in (11c)–(11e).

For all scenarios presented in Table S1 of Supplementary Material, the actuatable input
and the initial conditions of the state variables are considered to vary in intervals with
the following starting and ending points (pu)min = −1, (pu)max = Umax

U − 1,
(

pj
)

min = −1

and
(

pj
)

max =
Xj,max

Xj
− 1 (j = 1, 2). Note that the minimum and maximum values of pu

correspond to actuatable input signals in the limits given in (11c), while the minimum
and maximum values of pj satisfy the respective limits in (11d,e). Finally, the accuracy
thresholds are chosen to be enough small, i.e., they are chosen to be ε1 = 5%, ε2 = 5%
and ε∞ = 5%. It is plausible to expect that the areas of accuracy will be extended around
the operating trajectory of the process (see Figure 1). Note that, in industrial practice the
operating trajectory of a process is usually considered to be known through appropriate
small scale sampled experimentation and then data interpolation, in cases where the system
parameters are not accurately known to the designer.
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Figure 1. Operating Trajectory of the Chemostat.

Applying series of computations, the accuracy areas for all ten scenarios, namely the
areas satisfying simultaneously the conditions (18)–(20), are presented in Figure 2, as ten
three dimensional volumes with different colors. It can readily be observed that for each
operating point there exists a wide range of inputs and initial condition satisfying the
accuracy conditions (18)–(20). Furthermore, it is observed there is overlapping between
adjacent volumes. In the overlapping, the accuracy conditions are simultaneously satisfied
for the adjacent operating points.
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4. Observer Design Using the Coefficients of the I/O Linear Approximant of the Chemostat
4.1. Observer Design

The observability matrix of the linear approximant ℵ is

O =

[
1 0

−
[
KU2 + sin(U − µm)

2
]
/(Kµm) −U/δ

]
=

[
1 0

−hD −U −U/δ

]
. (21)
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From (22), it can readily be observed that ℵ is observable if and only if U 6= 0, imposed
by (13c). Hence, the observability of the linear approximant is independent from the
coefficients of the I/O linear approximant and the operating value of the input variable.

The full order observer of ℵ is the following linear system

= : ∆
.
x̂L(t) = F∆x̂L(t) + g∆yL(t) + m∆u(t), ∆x̂L(0−) = ∆x̂L,0, (22)

where ∆x̂L(t) ∈ R2×1 is the estimation of the state vector of ℵ, namely the estimation of
∆xL(t). The estimation error of the full order observer (22) is defined to be

eL(t) = ∆xL(t)− ∆x̂L(t). (23)

The estimation of the original state variable vector x̃(t) is proposed to be

x̂(t) = ∆x̂L(t) + X̃ = ∆x̂L(t) +
[
Y hNδ

]
. (24)

The estimation error of the state vector of x̃(t) is

e(t) = x̃(t)− x̂(t) = ∆x̃(t)− ∆x̂L(t); ∆x̃(t) = x̃(t)− X̃. (25)

The general forms of the observer gain matrices, in terms of the physical parameters
of the system, are

g =
[
g1 g2

]T , m = b =

[
sin − KU

µm−U
KUδ

µm−U − sinδ

]
, F = F(g1, g2) = A− gc =

 −KU2+sin(µm−U)2

Kµm
− g1 −U

δ
δ(µm−U)[sin(µm−U)−KU]

Kµm
− g2 0


or alternatively in terms of the coefficients of the I/O linear approximant

F = F(hD, g1, g2) =

[
−hD −U − g1 −U/δ

hDδ− g2 0

]
, m(hn) =

[
hN
−δhN

]
. (26)

The estimation error of the linear approximant is governed by the equation

.
eL(t) = FeL(t). (27)

The characteristic polynomial of F is

det(sI2 − F) = s2 + a f ,1s + a f ,0, (28a)

where

a f ,1 =
KU2 + sin(µm −U)2

Kµm
+ g1 = hD + U + g1, a f ,0 =

U[sin(µm −U)− KU](µm −U)

Kµm
− U

δ
g2 = Uhd −

U
δ

g2 (28b)

To achieve enough small estimation error, the requirement adopted here is regional
stability of F. Consider the a− regional stability, i.e., that the eigenvalues of F must belong to
C−a = {s ∈ C : Re{s} < −a}, where a is a non-negative real number, i.e.,
a ∈ R+

0 = {α ∈ R : α ≥ 0}. This property is satisfied if and only if the following inequalities
are satisfied

g1 > −
sin(µm −U)2 + K

(
U2 − 2aµm

)
Kµm

, g2 <
δ(U − a)

{
sin(µm −U)2 + K

[
U2 − (U + a)µm

]}
KUµm

− aδ

U
g1,

or equivalently if and only if

g1 > 2a− hD −U (29a)
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g2 <
(hD − a)(U − a)δ

U
− aδ

U
g1 (29b)

Additionally, the requirement that the roots of the characteristic polynomial of F are
real and distinct, is adopted here. For this additional requirement to be satisfied, it must
hold that a2

f ,1 − 4a f ,0 > 0, or equivalently that

g2 > − δ

4U

[
(hD −U)2 + 2(hD + U)g1 + g2

1

]
. (30)

Assuming that the inequalities in (29a,b) and (30) hold simultaneously, namely the
observer characteristic polynomial has real and distinct roots, being a− regional stable, the
response of the estimation error dynamics in (27), is of the form

eL(t) = Φ(t)eL,0, (31)

where Φ(t) is the transition matrix of (25), being is the inverse Laplace transform of the
resolvent matrix (sIn − F)−1. Clearly Φ(t) can be expressed in the form Φ(t) = e−ρF,1tΦ1 +
e−ρF,2tΦ2, where Φ1 and Φ2 are two by two real matrices and, −ρF,1 and −ρF,2 are the
eigenvalues of the observer matrix F, where min{ρF,1, ρF,2} > a.

The convergence rate of the error dynamics of the observer depends upon the eigen-
values of F. The following metric is proposed to evaluate the rate of convergence, being an
upper bound of the transition matrix at the critical time instant t = 1,

Je,A(U) = exp(−a)(‖Φ1‖α + ‖Φ2‖α), (32)

where ‖·‖α denotes the α norm of the argument vector or matrix and α ∈ {1, 2, ..., ∞}. For
observer design purposes, it would be desirable for the metric in (32) to be appropriately
bounded, i.e.,

Je,A(U) ≤ ζO,A, (33)

where ζO,A ∈ R+ is an enough small threshold.
To investigate the steady state behavior of the observer, in comparison to the respective

steady state behavior of original nonlinear chemostat model, the following parametric
expressions are derived:

lim
t→∞
|x1(t)− x̂1(t)| =

∣∣∣∣ hNu2
w(hDY− hNU)δ

[hNUuw − hD(U + uw)Y](hDδ− g2)

∣∣∣∣, (34a)

lim
t→∞
|x2(t)− x̂2(t)| =

∣∣∣∣ hNu2
w(hNU − hDY)δ[δ(U + g1) + g2]

U[hNUuw − hD(U + uw)Y](hDδ− g2)

∣∣∣∣. (34b)

where the steady state value of the input variable is considered to be of the form lim
t→∞

u(t) =

U + uw, where uw is the deviation from the nominal operating value of the input. It is
important to mention that for the derivation of (3a) and (34b), the inequalities in (29a,b)
have been used together with the stability of the chemostat model. It is noted that for this
derivation, the condition (30) has not been used. From (34a,b), it is observed that the initial
conditions of the chemostat model and the observer do not affect the steady state values of
either system. Finally, the following dependence relation is derived:

lim
t→∞
|x1(t)− x̂1(t)| =

∣∣∣∣ U
δ(U + g1) + g2

∣∣∣∣ limt→∞
|x2(t)− x̂2(t)|.
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To evaluate the differences between steady state behavior of the observer and steady
state behavior of original nonlinear chemostat model, the following steady state estimation
error metric is proposed:

Je,O(h, U, uw) =

2
∑

j=1

[
lim

t→+∞

∣∣xj(t)− ∆x̂L,j(t)− Xj
∣∣]2

2
∑

j=1

[
lim

t→+∞

∣∣xj(t)− Xj
∣∣]2 . (35)

It can be verified that relation (35) can be rewritten as follows:

Je,O(hD, hN , U, uw) = u2
w J̃e,O(hD, hN , U), (36a)

where

J̃e,O(hD, hN , U) =

(
δ(hNU − hDY)
U2Y(g2 − hDδ)

)2(
U2 +

(δg1 + g2)[(Uδ + g1)δ + g2]

1 + δ2

)
(36b)

For observer design purposes, it is desirable for the metric in (36a) to be appropriately
bounded, i.e., Je,O(hD, hN , U, uw) ≤ ζe,O, where ζe,O ∈ R+ is an enough small threshold.

4.2. The General Solution of the Measurement Output Vector in the Observer Dynamics

Consider the observer characteristic polynomial (26). The general solution of (29a) is
of the form

g1 = 2a− hD −U + γ1. (37)

where γ1 ∈ R+. Substitution of the general solution (37) to the inequality (29b) yields

g2 <
[

hD −
a
U
(a + γ1)

]
δ. (38)

The general solution of the inequality (38) is of the form

g2 = δ
[

hD −
a
U
(a + γ1)− γ2

]
, (39)

where γ2 ∈ R+. Clearly, (37) and (39) are the general solution of a− regional stability.
Substituting (37) and (39) to F and (28b) we obtain

F = F(γ1, γ2) =

[
−2a− γ1 −U

δ
δa
U (a + γ1) + δγ2 0

]
(40)

and that the coefficients of the characteristic polynomial in (28a,b) become

a f ,1 = 2a + γ1, a f ,0 = a(a + γ1) + Uγ2 (41)

Clearly, a f ,1 and a f ,0 are positive reals. Hence, the roots of the characteristic polynomial
have negative real parts. It is important to mention that relations (37) and (39) constitute
the I/O dependent general solution for the measurement output gain vector, while the
resulting matrix F is independent of the transmission pole hD.

The domain of the free parameters γ1 and γ2, for the eigenvalues of F to belong to
C−a = {s ∈ C : Re{s} < −a} and to be real and distinct, is the following set of inequalities

(γ1 > 0) ∧
(

0 < γ2 <
γ2

1
4U

)
. (42)
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Assuming that (42) holds true, then the steady state estimation errors become

lim
t→∞
|x1(t)− x̂1(t)| =

∣∣∣∣ hNUu2
w(hNU − hDY)

[hNUuw + hD(U + uw)Y][a(a + γ1) + Uγ2]

∣∣∣∣, (43a)

lim
t→∞
|x2(t)− x̂2(t)| =

∣∣∣∣hNu2
wδ(hNU − hDY)[U(2a + γ1 − γ2)− a(a + γ1)]

U[hNUuw − hD(U + uw)Y][α(α + γ1) + Uγ2]

∣∣∣∣, (43b)

and relation (36b) becomes

J̃e,O(hD, hN , , U, uw) =

(
hNU − hDY

U2Y[a(a + γ1) + Uγ2]

)2
(

U4 + [a(a + γ1) + U(γ2 − 2a− γ1)]
2δ2

1 + δ2

)
(44)

Additionally, the eigenvalues of F are expressed in the following form

ρF,1 =
1
2

(
2a + γ1 +

√
γ2

1 − 4Uγ2

)
, ρF,2 =

1
2

(
2a + γ1 −

√
γ2

1 − 4Uγ2

)
(45)

Finally, the two constant matrices of the transition matrix take on the form

Φ1 =

 2a+γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

U√
γ2

1−4Uγ2δ

− [a(a+γ1)+Uγ2]δ

U
√

γ2
1−4Uγ2

−2a−γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

, (46a)

Φ2 =

−2a−γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

− U√
γ2

1−4Uγ2δ

[a(a+γ1)+Uγ2]δ

U
√

γ2
1−4Uγ2

2a+γ1+
√

γ2
1−4Uγ2

2
√

γ2
1−4Uγ2

, (46b)

To quantify the convergence rate of the error dynamics, the criterion in (32) will be
used, for α = 2. So, the 2-norms of Φ1 and Φ2 are evaluated through the relations

‖Φk‖2 = σ1(Φk); k = 1, 2. (47)

where σ1(•) denotes the largest singular value of the argument matrix, to be

‖Φk‖2 =
{[

U4 + α2δ4(α + γ1)
2 − 2U3δ2γ2 + 2Uαδ4(α + γ1)γ2+

+U2δ2(2α2 + 2αγ1 + γ2
1 + δ2γ2

2
)]

/
[
U2δ2(γ2

1 − 4Uγ2
)]}1/2 ; k = 1, 2. (48)

From relations (32) and (48), it can readily be verified that

Je,A(U) = 2 exp(−a)
{[

U4 + α2δ4(α + γ1)
2 − 2U3δ2γ2 + 2Uαδ4(α + γ1)γ2+

+U2δ2(2α2 + 2αγ1 + γ2
1 + δ2γ2

2
)]

/
[
U2δ2(γ2

1 − 4Uγ2
)]}1/2 (49)

Using (42), an alternative form of the above expressions can be derived by expressing
γ1 and γ2 with respect to ρF,1 and ρF,2 ∈ R+, being the eigenvalues of F, can be derived

γ1 = ρF,1 + ρF,2 − 2a, γ2 = (a− ρF,1)(a− ρF,2)U−1. (50)

The alternative expressions are

F =

[
−ρF,1 − ρF,2 −U

δ
δρF,1ρF,2

U 0

]
, (51)
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J̃e,O(hD, hN , , U, uw) =

(
hNU − hDY
U2YρF,1ρF,2

)2
(

U4 + δ2ρ2
F,1ρ2

F,2 − 2Uδ2ρF,1ρF,2(ρF,1 + ρF,2) + U2δ2(ρF,1 + ρF,2)
2

1 + δ2

)
(52)

JA(U) = 2e−a

√√√√(
U2 + δ2ρ2

F,1

)(
U2 + δ2ρ2

F,2

)
U2δ2(ρF,1 − ρF,2)

2 . (53)

To illustrate the performance of the above proposed observer design of the chemostat
and demonstrate the derivation of the observer parameters ρF,1 and ρF,2, extensive series of
computations are executed. In particular, the goal is to compute ρF,1 and ρF,2 such that (52)
is minimized, under the constraints (33), while 0 ≤ a < ρF,1 < ρF,1. The stability margin a
is selected such that a > max

i={1,...,10}
{Ui, (hD)i}, where Ui is the nominal value of the input

for the i-th scenario of nominal points, presented in Section 3, and −(hD)i is the respective
transmission pole of the linear approximant. For demonstration purposes, two distinct
values of a will be examined. The first is a = 3.16309 and the second is a = 4.74463, cor-
responding to a = 2 max

i={1,...,10}
{Ui, (hD)i} and a = 3 max

i={1,...,10}
{Ui, (hD)i}, respectively. The

threshold ζO,A is chosen to be ζO,A = 0.5. The optimal observer parameters for both cases
of a and all scenarios of nominal points, given in Table S1 of Supplementary Material, are
presented in Tables S2 and S3 of Supplementary Material, where the results show that, in all
cases, ρF,1 = a+, i.e., ρF,1 tends to a as ρF,1 decreases and Je,A = ζO,A. In Figures S1 and S2
of Supplementary Material, the regions satisfying the inequality constraint used during
minimization, without considering J̃e,O, are presented for all scenarios of nominal points. In
particular, the frontiers of these regions are presented using different color curves for each
scenario in a wide enough range of observer poles. The regions extend to the lower side
of each curve. For both choices of a, mentioned in the previous paragraph, it is observed
that there exists a wide range of valid observer poles. These regions can be used to in the
derivation of a suboptimal solution of the observer parameters, resulting in competitively
small J̃e,O, as compared to the optimal solutions in Tables S2 and S3 of the Supplementary
Material. These suboptimal solutions could be derived through a metaheuristic algorithm,
indicatively see [37,38]. To demonstrate this characteristic, the minimum and maximum
values of J̃e,O and Je,A, for both choices of a, are presented in Table S4 and Table S5 of the
Supplementary Material, where small differences between the maximum and the minimal
values J̃e,O are observed.

5. A Framework for Linear Observer Design through Parameter Identification of SISO
I/O Linear Approximants
5.1. The General Framework

The general linear time inariant state space approximant of a SISO process is in the
form (4). The SISO system is in general nonlinear, i.e., it has the description:

.
x̃(t) = fNL(x̃(t), u(t)), x(0−) = x0, y(t) = cNL(x̃(t)), x̃ ∈ Rn×1, y, u ∈ R, (54)

where x̃(t), u(t) and y(t) denote the vector of the state variables, the input variable, and
the output variable of the nonlinear process model (54). The respective nominal values are
denoted by X̃, U and Y, respectively. The variations of the system variables around the
nominal values are denoted by ∆x̃(t) = x̃(t)− X̃, ∆y(t) = y(t)−Y and ∆u(t) = u(t)−U,
respectively. The system (54) is assumed to be globally stable and consequently the re-
spective state space linear approximant is stable. Additionally, it is assumed that for every
bounded input, with steady state value, the resulting responses of the state variables are
bounded having steady state values. Regarding system (54), it is also assumed that

(a) The structure of the vector functions fNL(·, ·) is known but the physical parameters
evaluating the elements of the vector function are not known except the parameters
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being independent of current characteristics of the process. Indicatively, for the
case of the chemostat presented in Section 2, all parameters are unknown except the
parameter δ.

(b) The output variable and the input variable of the process are measured in real time.
(c) Additionally, the operating trajectory of the nonlinear process, namely the values of

X̃ and Y for every U, in an appropriate operation domain, is considered to be known.
Indicatively see Figure 1 where the operating trajectory of a chemostat is depicted. The
operating trajectory can be determined using small scale experiments around different
operating values of the process and possibly appropriate measurement devices, in
the case where the process is out of production mode. The operation domain of the
operating values of the input is denoted by HU .

Regarding the state space linear approximant of the nonlinear process, the following
assumptions are basic for the development of the present framework.

Assumption 1. The structure of the system matrices of the linear approximant (4) are consid-
ered to have a known structure depending upon a set of physical parameters being independent
among themselves and considered to be unknown to the designer and grouped in vector form as
p =

[
p1 · · · pk

]
∈ R1×r , in other words, the system matrices are known functions of the

unknown vector p, i.e., A = A(p) ∈ Rn×n, b = b(p) ∈ Rn×1, c = c(p) ∈ R1×n.

Remark 1. Except the dependence upon the physical parameters, the system matrices depend also
upon the respective operating point ` = (Y, U) , i.e., A = A(p, `), b = b(p, `) and c = c(p, `).
The operating point belongs to a set of admissible operating points, denoted by HL. This set is
determined by technical characteristics of the process. The set of the admissible unknown system
parameters is denoted by Hp ⊆ R1×r.

Remark 2. In general, the set of the elements of the vecto p is a subset of the complete set of physical
parameters of the nonlinear process.

Assumption 2. The linear approximant of the nonlinear process (54), with system matrices in the
form A = A(p, `), b = b(p, `) and c = c(p, `), is observable ∀` ∈ HL and ∀p ∈ Hp ⊆ R1×r.

The I/O approximant of the state space linear approximant system (4), in the general
form, is

S : ∆y(nc)
L (t) +

[
hD,1 · · · hD,nc

][
∆y(nc−1)

L (t) · · · ∆y(0)L (t)
]T

=
[
hN,1 · · · hN,nc

][
∆u(nc−1)(t) · · · ∆u(0)(t)

]T
. (55)

where hD,j and hN,j are the real coefficients of the I/O approximant. Since the respec-
tive state space linear approximant is observable, the nonnegative integer nc is equal to the
rank of the controllability matrix of the linear approximant, i.e., it is equal to the dimension
of the controllable subsystem of the state space linear approximant. Define

h =
[
hD,1 · · · hD,nc | hN,1 · · · hN,nc

]
∈ R1×2nc . (56)

Considering the formulas A = A(p, `), b = b(p, `), c = c(p, `) and the formula of the
transfer function of a linear time invariant system, the set of all admissible h, being a subset
of R1×2nc and denoted by H, is defined.

Definition 1. The state space linear approximant (4) is I/O reconstructable by the I/O linear
approximant, if for every h ∈ H and every for every ` ∈ HL the system matrices A = A(p, `),
b = b(p, `), c = c(p, `) are uniquely determined.

Assumption 3. The class of nonlinear processes studied, here, is that of systems with I/O recon-
structable state space linear approximants by the respective I/O linear approximants.

From the knowledge of the operating trajectory, it is concluded that for every operating
value of the input, there are unique and known operating values of the state variables and
consequently there is a unique and known operating value of the measurement output.
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Thus, using Assumption 3, the system matrices of the state space linear approximant (4)
can be expressed as follows:

A = A(h, U) ∈ Rn×n, b = b(h, U) ∈ Rn×1, c = c(h, U) ∈ R1×n; h ∈ H, U ∈ HU . (57)

Remark 3. For the state space linear approximant to be reconstructable it is necessary for the
uncontrollable part of the system to be uniquely determined ∀h ∈ H and ∀U ∈ HU .

Assumption 4. The state space linear approximant (4), with system matrices in the form (57), is
observable and stable ∀h ∈ H and ∀U ∈ HU .

Using Assumptions 3 and 4 and the general state space linear approximant with
system matrices in the form (57), the general full order description in (21–23) is used, where
the observer matrices are of the form

F = F(h, U) ∈ Rn×n, m = m(h, U) = b(h, U) ∈ Rn×1, g = g(h, U) ∈ R1×n; h ∈ H, U ∈ HU . (58)

Clearly, using (58), the dynamics of the observer estimation error in (25) are still valid
in the present general case.

In the case, where the coefficients of the I/O approximant (55) are determined using
an identification algorithm, the following I/O linear model is used:

SI : ∆y(nc )(t) +
[
ĥD,1 · · · ĥD,nc

][
∆y(nc−1)(t) · · · ∆y(0)(t)

]T
= ∆y(nc )(t) +

[
ĥD,1 · · · ĥD,nc

][
∆y(nc−1)(t) · · · ∆y(0)(t)

]T (59)

where ĥD,j and ĥN,j are the identified parameters, being grouped into the following vector

ĥ =
[
ĥD,1 · · · ĥD,nc | ĥN,1 · · · ĥN,nc

]
∈ R1×2nc (60)

and where εy(t) is the identification error in (59). In general, the identifications algorithms
are based on the minimization of a norm of the modelling error (indicatively see [39,40]).
For ĥ to belong to H, a slight modification of the identification algorithm is proposed. In
particular, if the computed ĥ is outside H, then it is substituted by the nearest, or an near
enough, vector in H. Hence, in the case of identified coefficients and using (60), the observer
matrices in (58) take on the forms

F = F(ĥ, U) ∈ Rn×n, m = m(ĥ, U) ∈ Rn×1, g = g(ĥ, U) ∈ R1×n; ĥ ∈ H, U ∈ HU . (61)

In the present case, where only ĥ, U and Y are assumed to be known, the observer is
proposed to be of the following full order form

= : ∆
.
z(t) = F(ĥ, U)∆z(t) + g(ĥ, U)∆y(t) + m(ĥ, U)∆u(t), ∆z(0−) = ∆z0. (62)

The goal of the above observer is to provide a response ∆z approximating ∆x̃, i.e., to
obtain a small enough estimation error. The estimation error is defined to be

eO(t) = ∆x̃(t)− ∆z(t). (63)

According to Assumption 2 and using ĥ, the system matrices of the linear approximant
can be computed to be of the form

A = A(ĥ, U) ∈ Rn×n, b = b(ĥ, U) ∈ Rn×1, c = c(ĥ, U) ∈ R1×n; ĥ ∈ H, U ∈ HU . (64)

The first and the second system matrices in (61) are computed in terms of (64)
as follows:

F(ĥ, U) = A(ĥ, U)− g(ĥ, U)c(ĥ, U) ∈ Rn×n, m(ĥ, U) = b(ĥ, U). (65)
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Remark 4. From Assumption 4 and relation (65), it is observed that the eigenvalues of F(ĥ, U)
can arbitrarily be chosen through g(ĥ, U). Moreover, it is important to point out that the initial
condition of the general observer form in (21)–(23) with system matrices in the form (58) is benefited
as follows: c(ĥ, U)∆z(0−) = y(0−) and consequently, c(ĥ, U)eO(0−) = 0.

Using Remark 4, the following design requirement is introduced.
Design requirement 1: Using g(ĥ, U), the eigenvalues of F(ĥ, U) = A(ĥ, U)− g(ĥ, U)c(ĥ, U)

are chosen to be a-regional stable, real and distinct, i.e.,

0 < a < ρF,1(ĥ, U) < · · · < ρF,n(ĥ, U); ρF,k(ĥ, U) ∈ R+ (66)

where −ρF,k(ĥ, U), k ∈ {1, ..., n}, are the eigenvalues of F(ĥ, U) and where the eigenvalues
in (66) are presented in ordered form.

From the Design requirement 1, it is observed that the system matrices in (65) depend
also upon the positive real number a, i.e.,

F = F(ĥ, U, a) = A(ĥ, U)− g(ĥ, U, a)c(ĥ, U), g = g(ĥ, U, a), m(ĥ, U) = b(ĥ, U), ρF,k = ρF,k(ĥ, U, a). (67)

The variations of the system variables, presented just after (54), satisfy the state space
linear approximant with a respective modelling error, denoted by εx(t). This modelling
error satisfies the equation

∆
.
x̃(t) = A(ĥ, U)∆x̃(t) + b(ĥ, U)∆u(t) + εx(t), ∆x̃(0−) = x̃(0−)− X̃. (68)

Clearly, it holds that εx(0−) = 0.
At this point, the present framework is further specialized by the following two assumptions.

Assumption 5. The map of the vector of the state variables, of the nonlinear process, to the output
variable is linear, i.e., cNL(x̃) = cx̃, c ∈ R1×n.

Assumption 6. The output matrix of the linear approximant is independent from the coefficients of
the I/O linear approximant, i.e.,c(h, U) = c.

From Assumptions 5 and 6, it is observed that

c(h, U) = c(ĥ, U) = c. (69)

The following proposition, relating to the estimation error and the modelling error, is
of particular importance.

Proposition 1. The observer estimation error based on the I/O linear approximant identified
parameters is forced by the state space linear approximant modelling error, as follows:

.
eO(t) = F(ĥ, U, a)eO(t) + εx(t), eO(0−) = eO,0. (70)

Proof of Proposition 1. From (62), (63), (67)–(69) and appropriate algebraic manipulations,
the dynamic description (70) is derived.

Clearly, the response of (70) can be analyzed in two terms as follows:

eO(t) = eO,A(t) + eO,B(t), (71)

where
.
eO,A(t) = F(ĥ, U, a)eO,A(t), eO,A(0−) = eO,0, (72a)

.
eO,B(t) = F(ĥ, U, a)eO,B(t) + εx(t), eO,B(0−) = 0n×1. (72b)
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From Design requirement 1, it is observed that the response of (72a) can be expressed
as follows

eO,A(t) =
[
∑n

k=1 exp
(
−ρF,k(ĥ, U, a)t

)
Φk(ĥ, U, a)

]
eO,0; Φk(ĥ, U, a) ∈ Rn×n, (73)

where −ρF,k(ĥ, U, a) are the real, distinct and enough negative eigenvalues of F(ĥ, U, a)

and Φ(t) = ∑n
k=1 exp

(
−ρF,k(ĥ, U, a)t

)
Φk(ĥ, U, a) is the transition matrix of system (72a),

namely the inverse Laplace transform of the resolvent matrix
(

sIn − F(ĥ, U, a)
)−1

. The
coefficient matrices are determined to be

Φk(ĥ, U, a, ρF(ĥ, U, a)) = lim
s→ρF,k(ĥ,U)

[(
s + ρF,k(ĥ, U, a)

)(
sIn − F(ĥ, U, a, ρF(ĥ, U, a))

)−1
]

,

where
ρF(ĥ, U, a) =

[
ρF,1(ĥ, U, a) · · · ρF,n(ĥ, U, a)

]T . (74)

Regarding the eigenvalues of F(ĥ, U), it holds that

ρF,k(ĥ, U, a) > a, ∀k ∈ {1, ..., n}. (75)

From (73)–(75), it is observed that

‖eO,A(t)‖α < exp(−at)
[
∑n

k=1

∥∥∥Φk(ĥ, U, a, ρF(ĥ, U, a))
∥∥∥

α

]
‖eO,0‖a, ∀t ≥ 0, (76)

where ‖·‖α denotes the α norm of the argument vector or matrix and where α ∈ {1, 2, ..., ∞}.
From (76), it is observed that the rate of convergence of eO,A(t) depends upon a.

To guarantee that ‖eO,A(t)‖α is enough small with respect to the initial condition of
the estimation error, the following design requirement is imposed.

Design requirement 2: The design requirement is: find ρF such that the following
inequality is satisfied

J∗e,A(ĥ, U, a, ρF) = exp(−a)
[
∑n

k=1

∥∥∥Φk(ĥ, U, a, ρF)
∥∥∥

α

]
≤ ζO,A, (77)

where ζO,A ∈ R+ is a small enough positive real number set by the designer. Since ρF can
be chosen arbitrarily, subject to the Design requirement 1, they are the degrees of freedom
of the present design requirement.

Remark 5. The inequality (77) denotes an upper bound of the scale of the response at the critical time
instant t = 1. For (77) to be satisfied it is necessary for ∑n

k=1

∥∥∥Φk(ĥ, U, a)
∥∥∥

α
to be exponentially

bounded with respect to a ∈ R+. It is noted that in most processes the quantity ∑n
k=1

∥∥∥Φk(ĥ, U, a)
∥∥∥

α
is of rational form with respect to a. In these processes, for every ζO,A, there exist a sufficiency large
a guarantees (77).

For (72b), the case of stepwise responses, namely the input signal is of the form
u(t) = uwus(t) + U, where us(t) is the unitary step signal. Step wise transitions appear to
be the most common type of transitions in industrial processes. Additionally, as already
mentioned in the beginning of the section, the nonlinear process is assumed to be stable.
From Assumption 4 and the property that ĥ belongs to H, it is concluded that the state space
linear approximant, derived using the identified coefficients of the I/O linear approximant,
is also stable. Finally, as already mentioned in the beginning of the section, the operating
trajectory of the state variables of the process is known. Hence, through the operating
trajectory, for a step wise command, the resulting vector of nominal values of the state
variables is known and is denoted by X̃w. The respective nominal value of the output
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variable is denoted by yw and is equal to cX̃w. Using (68), the steady state value of the
model error is computed to be

εx,SS(ĥ, U, uw) = lim
t→+∞

εx(t) = −A(ĥ, U)(X̃w − X̃)− b(ĥ, U)uw. (78)

It is important to mention that the known vectors X̃w and X̃ are expressed in the form
X̃w = X̃w(U + uw) and X̃ = X̃(U).

As already mentioned, using g(ĥ, U, a), the eigenvalues of F(ĥ, U, a) can be derived to
be a-stable, real, and distinct. The vector ρF(ĥ, U, a) is the degree of freedom for the present
design scheme. So, in what follows, it can be considered as the source for the determination
of g(ĥ, U, a). So, we may write g(ĥ, U, a) = g(ĥ, U, a, ρF) and consequently F(ĥ, U, a, ρF).
Hence, using (71), (72) and (78), the steady state estimation error is computed to be

eO,SS(ĥ, U, uw, a) =
(

A(ĥ, U)− g(ĥ, U, a, ρF)c
)−1

εx,SS(ĥ, U, uw). (79)

The following design requirement is introduced.
Design requirement 3: The design goal is to minimize the ratio of the steady state

estimation error to the steady state of the variation of the state vector, i.e.,

J∗e,O(ĥ, U, a, uw) = min
ρF

{
(eO,SS (ĥ,U,a,uw ))T eO,SS (ĥ,U,a,uw )

(X̃w−X̃)T(X̃w−X̃)

}
=

min
ρF

{[(
X̃w − X̃

)T(
X̃w − X̃

)]−1

εT
x,SS(ĥ, U, uw)

[(
A(ĥ, U)− g(ĥ, U, a, ρF)c

)(
AT(ĥ, U)− cT gT(ĥ, U, ρF)

)]−1
εx,SS(ĥ, U, uw)

}
=

min
ρF

{[(
X̃w − X̃

)T(
X̃w − X̃

)]−1(
(X̃w − X̃)

T
AT(ĥ, U) + uT

wbT(ĥ, U)
)[(

A(ĥ, U)− g(ĥ, U, a, ρF)c
)

=(
AT(ĥ, U)− cT gT(ĥ, U, ρF)

)]−1(
A(ĥ, U)(X̃w − X̃) + b(ĥ, U)uw

)}
(80)

subject to the constraints of Design requirement 1 and 2.

Remark 6. To further investigate (80), we define the following set, based on step responses of the
nonlinear process,

Te,O(ĥ, U, a, χO) =
{

uw ∈ R : J∗e,O(ĥ, U, a, uw) ≤ χO ; u(t) = uwus(t) + U
}

. (81)

Remark 7. The present observer design problem, defined for step responses of the nonlinear
process, consists of determining the larger possible area Te,O(ĥ, U, a, χO,B), for specific F(ĥ, U, a, g),
determined by a specific g(ĥ, U, a, ρF) which in turn is determined by the vector ρF, that minimizes
(80) subject to the constraints (66), as well as a specific χO ∈ R+ set by the designer.

Remark 8. The solution of the cost minimization under constraints, presented above, can be derived
either analytically or using a metaheuristic algorithm (indicatively, see [17–20]).

5.2. Observer Design Using Parameter Identification of the I/O Linear Approximant of the Chemostat

In this subsection, the two coefficients of the I/O linear approximant in (6) are derived,
using a parameter identification algorithm (indicatively see [39,40]). The parameter iden-
tification algorithm is driven by experimental measurement data of the deviations of the
inputs and the outputs (I/O measurements), namely the variables y(t) and u(t), around an
operating point (Y, U). Clearly, U is known and Y can be known through experimentation.
Hence, ∆y(t) and ∆u(t) are directly derived. The I/O linear model used for identification,
around the operating point (Y, U), is the following specification of (59)

SI : ∆y(1)(t) + ĥD∆y(t) = ĥN∆u(t) + εy(t). (82)

where ĥD and ĥN are the estimated (identified) values of the I/O linear approximant
coefficients and εy(t) is the respective identification error. Substituting, the identified
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values of the coefficients of the I/O linear approximant to the observer matrices, it can
readily be verified that

F(ĥD, g1, g2) =

[
−ĥD −U − g1 −U/δ

ĥDδ− g2 0

]
, m(hn) =

[
ĥN
−δĥN

]
. (83a)

Following (37) and (39), the measurement output gains of the observer take on the form

g1 = 2a− ĥD −U + γ1, g2 = δ
[

ĥD −
a
U
(a + γ1)− γ2

]
. (83b)

The matrix F and the coefficients of its characteristic polynomial, being independent
of the identified coefficients, are given by (26) and (28b), respectively, remaining unaffected
as in relation (40) and (41). Using (50), the alternative expressions of F in (51) can be used.
Additionally, the formulas of the cost functions in (77) and (80) are those in (52) and (53)
after substituting hD and hN with ĥD and ĥN , respectively.

In what follows, the least square procedure in [39] will be applied to identify ĥD
and ĥN for each scenario of nominal points of the chemostat presented in Table S1 of the
Supplementary Material. In all scenarios the system excitation is achieved by input signals
in the form

u(t) = Ui + λi fw(t) ; i = 1, . . . , 10, (84)

where Ui is the nominal value of the input for nominal operating point scenario i, λi is a real
scaling factor and fw(t) is a signal, reach enough to highlight the dynamics of the nonlinear
system. The scaling factor λi will be chosen to be equal to 0.5% of the maximum acceptable
deviation of the input from the nominal value Ui. The maximum acceptable deviation is de-
rived by checking the accuracy of the respective linear approximant, presented in Section 3.
The continuous time signal fw(t) is generated using a pseudo-random real number genera-
tor between −1 and +1 and an appropriate low pass filter to derive the smooth continuous
curve. The form of fw(t) is presented in Figure S3 of the Supplementary Material. For the
identification procedure to be more realistic, an additive measurement noise is considered
to be applied. The noise signal is of fast varying continuous time random type of the form
partly presented in Figure S4 of the Supplementary Material. For the implementation of
the identification algorithm, a low pass Butterworth filter will be employed. The filter is
designed setting the passband frequency at 1[rad/s], the stopband frequency at 1.1[rad/s]
and the respective attenuations at 1 and 40, respectively. The Bode plot of the produced
filter is presented in Figure S5 of Supplementary Material.

In all scenarios, the initialization of the identification algorithm will be accomplished
by setting the initial value of the inverse correlation matrix to be equal to 104 I2, where I2
is the two-by-two identity matrix, while the initial estimations of all identified parame-
ters will be selected to be equal to zero. It is important to mention that in all cases, the
estimations of the unknown parameters, after a small period, slightly oscillate around
constant values (indicatively see Figures S6 and S7 of Supplementary Material). The final
estimate of each parameter is computed to be the average of the signal of each parameter
estimation. In all scenarios, the integrals for the determination of the average are evaluated
from t = 200[days] to t = 400[days]. In Table S6 of the Supplementary Material, the
identification results are presented for all scenarios of nominal points. Additionally, in
Table S6 of Supplementary Material, the percentile fluctuation of the estimation signal of
each estimated variable, around its average, and the true value of the unknown parame-
ter, derived from the respective linear approximant are also presented. It can readily be
verified that the identified values of the I/O coefficients are relatively accurate presenting
small fluctuations.

Using the results of the above presented identification and using the observer parameters
presented in Tables S2 and S3 of the Supplementary Material, the metric J∗e,O(ĥ, U, a, uw)/u2

w
is also presented in Table S7 of the Supplementary Material The choice of the metric
J∗e,O(ĥ, U, a, uw)/u2

w is based on the property that is independent from the values of uw.
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Furthermore, it is mentioned that the metric J∗e,A(ĥ, U, a, ρF) for α = 2 is given by (43). It is
observed that this metric does not depend upon ĥD and ĥN . So, its value is equal to 0.5,
presented in Tables S2 and S3 of Supplementary Material.

6. A Framework for Switching Observer Design through Parameter Identification of
SISO I/O Linear Approximants
6.1. A Multi-Model Description of a Nonlinear SISO Process

Consider a SISO nonlinear process of the form (54), where y(t) is the measurement
output variable, x̃(t) ∈ Rn×1 is the state vector and u(t) is the input variable. Let
L =

{
`1, `2, . . . , `µ

}
be a set of nominal operating points of the process, where `i = (Yi, Ui)

with Yi and Ui denoting the corresponding nominal output and input values and i ∈ {1, . . . , µ}.
Around the nominal operating point `i, the nonlinear process is approximated by the re-
spective linear state space approximants ℵi = (Ai, bi, c), being in the general form (4), i.e.,

ℵi : ∆i
.
xL(t) = Ai∆ixL(t) + bi∆iu(t), ∆iyL(t) = ci∆ixL(t), ∆ixL(0−) = ∆ixL,0 = x̃0 − X̃i, (85)

where X̃i is the vector of the operating values of the state variables corresponding to the
operating point `i, and where ∆iyL(t) and ∆ixL(t) are the approximants of the deviations
∆iy(t) = y(t)−Yi and ∆i x̃(t) = x̃(t)− X̃i, respectively. The input of the linear approximant
is the deviations ∆iu(t) = u(t)−Ui.

Assumption 7. The dimensions of the controllable subsystems of all state space linear approximants
ℵi are equal.

Using Assumption 7, the respective I/O linear approximant is

Si : ∆iy
(nc)
L (t) +

[
hD,1 · · · hD,nc

][
∆iy

(nc−1)
L (t) · · · ∆iy

(0)
L (t)

]T
=
[
hi.N,1 · · · hi,N,nc

][
∆iu(nc−1)(t) · · · ∆iu(0)(t)

]T (86)

where hi,D,j and hi,N,j are the real coefficients of the I/O approximant. The nonnegative
integer nc is the same for all ℵi. Define

hi =
[
hi,D,1 · · · hi,D,nc | hi,N,1 · · · hi,N,nc

]
∈ R1×2nc , i ∈ {1, . . . , µ}. (87)

Assumption 3 is considered to hold for all ℵi, i.e., the systems ℵi are reconstructable
by the coefficients of the respective I/O linear approximant Si and the respecting oper-
ating value of the input Ui. Thus, the system matrices of ℵi are expressed following the
form (57), i.e.,

Ai = Ai(hi, Ui) ∈ Rn×n, bi = bi(hi, Ui) ∈ Rn×1, ci = ci(hi, Ui) ∈ R1×n; hi ∈ H, Ui ∈ HU , i ∈ {1, . . . , µ} (88)

where hi ∈ R1×nc , being the vector of the coefficients of Si, describes the process around
the operating point `i. For this vector to be well defined, the following assumption
is introduced.

Assumption 8. All state space linear approximants ℵi are observable and stable for hi ∈ H and
Ui ∈ HU ,i ∈ {1, . . . , µ}.

6.2. Observer Design Using the Coefficients of Each I/O Linear Approximant of the Web of
Operating Points

A bank of observers will be designed. The bank of observers includes the observers
=L,1, ...,=L.µ, where one observer is designed for the linear approximant ℵi. The observer
=L,i, where i ∈ {1, . . . , µ} is in the form

=L.i : ∆i
.
x̂L(t) = iF∆i x̂L(t) + ig∆iyL(t) + im∆iu(t), ∆i x̂L(0−) = ∆i x̂L,0 (89)
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where ∆i x̂L(t) is the estimation of the state vector of the linear approximant ℵi = (Ai, bi, c)
and the estimation error of =L,i is

ieL(t) = ∆ixL(t)− ∆i x̂L(t), i ∈ {1, . . . , µ}. (90)

The estimation of the original state variable vector x̃(t) is proposed to be

i x̂(t) = ∆i x̂L(t) + X̃i, i ∈ {1, . . . , µ}. (91)

The estimation error of the state vector x̃(t) is

ie(t) = x̃(t)− i x̂(t) = ∆i x̃(t)− ∆i x̂L(t); ∆i x̃(t) = x̃(t)− X̃i. (92)

The observer gain matrices, in terms of hi ∈ H and Ui ∈ HU , are expressed as follows:

i F = i F(hi , Ui) ∈ Rn×n, im = im(hi , Ui) =
ib(hi , Ui) ∈ Rn×1, i g = i g(hi , Ui) ∈ R1×n; hi ∈ H, Ui ∈ HU , i ∈ {1, . . . , µ} (93)

The estimation error of the linear approximant is governed by the equation

i .
eL(t) =

iF(hi, Ui)
ieL(t), i ∈ {1, . . . , µ}. (94)

The coefficients of the characteristic polynomial of iF(hi, Ui) can arbitrarily be assigned
using ig(hi, Ui). To achieve enough small estimation error, the requirement adopted here is
regional stability of iF. Consider the a− regional stability, i.e., that the eigenvalues of iF
must belong to C−a = {s ∈ C : Re{s} < −a}, where a is a non-negative real, i.e., a ∈ R+

0 =
{α ∈ R : α ≥ 0}. The class of ig(hi, Ui) satisfying this property can be expressed by a set
of inequalities determined using the classical Routh–Hurwitz criterion. Additionally, it is
required for the roots of iF to be real and distinct.

6.3. Observer Design Using the Identified Coefficients of Each I/O Linear Approximant of the Web
of Operating Points

In the case where the coefficients of the I/O approximant (86) are determined using
an identification algorithm, the following I/O linear model is also used

SI,i : ∆iy(nc )(t) +
[
ĥi,D,1 · · · ĥi,D,nc

][
∆iy(nc−1)(t) · · · ∆iy(0)(t)

]T
=
[
ĥi,N,1 · · · ĥi,N,nc

][
∆iu(nc−1)(t) · · · ∆iu(0)(t)

]T
+ iε y(t) (95)

where ĥi,D,j and ĥi,N,j are the identified parameters, being grouped to the following vector:

ĥi =
[
ĥi,D,1 · · · ĥi,D,nc | ĥi,N,1 · · · ĥi,N,nc

]
∈ R1×2nc , i ∈ {1, . . . , µ}. (96)

For ĥi to belong to H, the already reported in Section 5 modification of the identification
algorithm is used. Hence, in the case of identified coefficients and using (96), the observer
matrices in (94) have the following forms:

i F = i F(ĥi , Ui) ∈ Rn×n, im = im(ĥi , Ui) =
ib(ĥi , Ui) ∈ Rn×1, i g = i g(ĥi , Ui) ∈ R1×n ĥi ∈ H, Ui ∈ HU , i ∈ {1, . . . , µ}. (97)

The dynamic description of the respective observer is in the form

=i : ∆i
.
z(t) = iF(ĥi, Ui)∆iz(t) + ig(ĥi, Ui)∆iy(t) + im(ĥi, Ui)∆iu(t), ∆iz(t0−) = ∆iz0, (98)

where t0 is the time instant when the observer starts to produce state estimation signals.
Recall that ∆iy = y− Yi. The goal for ∆iz is to approximate ∆i x̃ = x̃− X̃i, i.e., to obtain a
small estimation error. The estimation error is defined to be

ieO(t) = ∆i x̃(t)− ∆iz(t), i ∈ {1, . . . , µ}. (99)

Clearly, the estimation error vector ieO(t) is governed by the equations

i .
eO(t) =

iF(ĥi, Ui)
ieO(t) + iε x(t), ieO(0−) = ieO,0, i ∈ {1, . . . , µ}, (100)
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Where iε x(t) is the respective modelling error, determined as follows:

∆i
.
x̃(t) = i A(ĥi, Ui)∆i x̃(t) + ib(ĥi, Ui)∆iu(t) + iεx(t), ∆i x̃(0−) = x̃(0−)− X̃i, i ∈ {1, . . . , µ} (101)

Remark 9. Using appropriate ig(ĥi, Ui), the eigenvalues of iF(ĥi, Ui) are ia−regionally stable,
distinct and real. In many processes, the stability margin ia can be set to be the same for all observers.
However, in other processes it can be selected to depend upon the index of the respective operating
point. The design of the present observers can be accomplished using the results of Section 5, namely
the Design requirements 1, 2 and 3. In the present case, the eigenvalues of iF(ĥi, Ui) are denoted by
−iρF(ĥi, Ui, ai).

Remark 10. According to the above, a bank of observers for the nonlinear process has been designed.
The bank of observers includes the observers =1, ...,=µ. The bank of observers is orchestrated via
an appropriate switching mechanism that will be presented in the following subsection. This bank
of observers, together with the switching mechanism, is the soft sensor of the state variables of the
nonlinear process.

6.4. Stepwise Transitions

In this subsection, the case of step wise transitions will be analyzed. Consider a
transition from an initial operating point to a destination operating point. The initial
operating point is denoted by `I = (YI , UI). The respective nominal value of the state
vector is denoted by X̃I . The destination point is denoted by `D = (YD, UD). The respective
nominal value of the state vector is denoted by X̃D. Additionally, it is considered that
the observer used during this transition is designed using the nominal operating point
`i = (Yi, Ui), where nominal value of the state vector is X̃i, and the respective identified
data ĥi. The observer matrices are in the form (97). In terms of the original input signal of
the nonlinear process, the transition is accomplished using the command

u(t) = UI + (UD −UI)us(t), i ∈ {1, . . . , µ}. (102)

In terms of the variation of the input from the nominal value Ui, the transition is
accomplished using the command

∆iu(t) = (UI −Ui) + (UD −UI)us(t), i ∈ {1, . . . , µ}. (103)

In the present case, the Design requirements 1 and 2 are preserved and expressed
as follows:

Design requirement 4: The eigenvalues of iF(ĥi, Ui) =Ai(ĥi, Ui)− ig(ĥi, Ui)ci are chosen
to be a-regional stable, real and distinct, i.e.,

0 < ai <
iρF,1(ĥi, Ui) < · · · < iρF,n(ĥi, Ui) ; iρF,k(ĥi, Ui) ∈ R+, i ∈ {1, . . . , µ}. (104)

Using the eigenvalues, the following inequality is required to be satisfied

i J∗e,A(ĥi, Ui, ai, iρF) = exp(−ai)
[
∑n

k=1

∥∥∥iΦk(ĥi, Ui, ai, iρF)
∥∥∥

α

]
≤ iζO,A, (105)

where iζO,A ∈ R+ is an enough small positive real number set by the designer, and where

iΦk(ĥi , Ui , ai , iρF) = lim
s→iρF,k

[(
s + iρF,k

)(
sIn − i F(ĥi , Ui , ai , iρF)

)−1
]

, iρF =
[

iρF,1 · · · iρF,n

]T
, i ∈ {1, . . . , µ}. (106)

Here, Design requirement 3, is appropriately modified to express the present multi
observer case. In particular, the steady state value of the modelling error is computed to be

iεx,SS(ĥi, Ui, UD −Ui) = lim
t→+∞

iεx(t) = −Ai(ĥi, Ui)(X̃D − X̃i)− bi(ĥi, Ui)(UD −Ui). (107)
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The steady state estimation error is also computed to be

ieO,SS(ĥi, Ui, UD −Ui, ai) =
(

Ai(ĥi, Ui)− ig(ĥi, Ui, ai, iρF)ci

)−1iεx,SS(ĥi, Ui, UD −Ui). (108)

Thus, Design requirement 3 is now expressed as follows:
Design requirement 5: The design goal is to minimize the ratio of the steady state

estimation error to the steady state of the variation of the state vector, i.e.,

i J∗e,O(ĥi , Ui , ai , UD −Ui) = min
ρF

{
(ieO,SS(ĥi ,Ui ,ai ,UD−Ui))

T ieO,SS(ĥi ,Ui ,ai ,UD−Ui)

(X̃w−X̃i)
T
(X̃w−X̃i)

}
=

min
iρF

{[(
X̃D − X̃i

)T(
X̃D − X̃i

)]−1(
(X̃D − X̃i)

T
AT

i (ĥi , Ui) + (UD −Ui)
T(bT

i (ĥi , Ui))
)

[(
Ai(ĥi , Ui)− i g(ĥi , Ui , ai , iρF)ci

)(
AT

i (ĥi , Ui)− cT
i (

i gT(ĥi , Ui , iρF))
)]−1 (

Ai(ĥi , Ui)(X̃D − X̃) + bi(ĥi , Ui)(UD −Ui)
)}

(109)

subject to the constraints of Design requirement 4.

Remark 11. The following set of input nominal values, called target operating area and being a
generalization of the set defined in Remark 8, is an interval around the operating point Ui, where any
transition command with initial and destination command in this set satisfies Design requirements
4 and 5

T(Ui) = [Ui − ui,max, Ui + ui,max] ⊆ iTO(ĥi , Ui , a, χO,A , χO,B); ui,max = max
{

ui ∈ R+ : [Ui − ui , Ui + ui ] ⊆ iTO(ĥi , Ui , a, χO,A , χO,B)
}

(110)

where

iTO(ĥi, Ui, a, χO,A, χO,B) =
{
(UI , UD) ∈ R×R :

(
i J∗e,A(ĥi, Ui, ai, iρF) ≤ χO,A

)
∧(

i J∗e,O(ĥi, Ui, ai, UD −Ui) ≤ χO,B

)
; u(t) = (UD −Ui)us(t) + UI

} (111)

The above target operating area has several differences as compared to the respec-
tive target operating areas, defined in [22,24], for the pure (without observer) control
design problem.

Without loss of generality, the elements of the set of the operating points are considered
to be ordered in the sense that

Ui < Ui+1, ∀i ∈ {1, . . . , µ− 1}, if µ > 1. (112)

In the present case, the dense web principle, first introduced in [22] is expressed
as follows

T(Ui) ∩T(Ui+1) 6= ∅, ∀i ∈ {1, . . . , µ− 1}, if µ > 1. (113)

Regarding the starting and the ending points of the intervals of two neighbor target
operating areas, the condition (113) can be interpreted, as follows

max{T(Ui)} < min{T(Ui+1)},∀i ∈ {1, . . . , µ− 1}, if µ > 1. (114)

Remark 12. The satisfaction of the dense web principle is a prerequisite for the observer design
scheme to be satisfied. If the dense web principle is satisfied, or at least it is satisfied for a subset of
adjacent operating points, the proposed switching observer scheme is of the stepwise safe switch-
ing type for the range of the operating trajectories covered by the union of the respective target
operating areas.

Remark 13. The respective step wise transitions are safe if the transition from one initial operating
point `I = (YI , UI) to a destination operating point `D = (YD, UD), where UI ≤ UD, is divided
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to appropriate individual transitions. Let UI ∈ T(Ui) and UD ∈ T(Ui+ν), where i ∈ {1, . . . , µ}
and ν ∈ {0, . . . , µ− i}. Let

νσ = max
{

j ∈ {i + σ− 1, . . . , ν} : T(Ui+νσ−1) ∩T(Uj) 6= ∅
}

, σ ∈ {0, ..., ν} (115)

The first individual transition is from `I = (YI , UI) to the intermediate destination
point `D,1 = (YD,1, UD,1), where UD,1 ∈ T(Ui)∩T(Ui+ν1). The second individual transition
is from `D,1 = (YD,1, UD,1), to the next intermediate `D,2 = (YD,2, UD,2), where UD,2 ∈
T(Ui+ν1) ∩ T(Ui+ν2). The individual transitions continue till the final destination point,
namely the operating point `D, f = (YD, f , UD, f ), where UD, f ∈ T(Ui+ν f−1

) ∩T(Ui+ν f ), and
ν f = ν. Clearly, `D, f = `D = (YD, UD), while f is the total number of the intermediate
transitions. It is obvious that the transition from `D = (YD, UD) to `I = (YI , UI) follows
the reverse procedure.

We are now in a position to present the switching algorithm. During the stepwise
multi step transition it is considered that system arrives at `D,σ = (YD,σ, UD,σ) if it is very
near to X̃D,σ. Recall that the transitions are required to extend near the operating trajectory.
The time, where the next transition is triggered, is when the system has approached
`D,σ = (YD,σ, UD,σ), when moving from `D,σ−1 = (YD,σ−1, UD,σ−1). This time is denoted
by τ∗i+νσ−1

and is chosen to be between τi+νσ−1 and 2τi+νσ−1 , where τi+νσ−1 is the settling
time of the linear approximant Xi+νσ−1 . If τi+νσ−1 is not available to the designer, then the
respective settling time of the I/O system behavior is used via small scale experimentation
to the original nonlinear process. In what follows, this case will be considered to hold true.
So, during the transition, the sequence of the observers is Ji, Ji+ν1 , ..., Ji+ν f−1

. The sequence
of time instants, when the different observers are applied, is t0,t0 + 2τ∗i , t0 + 2τ∗i+ν1

, ..., t0 +
2τ∗i+ν f−1

, where t0 is the time instant when the first intermediate transition is triggered.

The reverse procedure, namely the transition from `D = (YD, UD) to `I = (YI , UI)
is not symmetric, i.e., the transition sequence of the observers is Ji+ν f , Ji+ν f−1

, ..., Ji+ν1 .
The sequence of time instants, when the different observers are applied, is t0, t0 + 2τ∗i+ν f

,
t0 + 2τ∗i+ν f−1

, ...t0 + 2τ∗i+ν1
, where t0 is the time instant when the first intermediate transition

of the reverse procedure is triggered, and the respective observer starts to produce state
estimation signals.

Before closing this subsection, it is important to mention that upon switching the
initial condition of the observer are the final conditions of the observer before the switching,
i.e., in the direct procedure it holds that

∆iz(t0−) = X̃I , ∆i+νσ
z(t0 + 2τi+νσ

−) = ∆i+νσ−1 z(t0 + 2τi+νσ−1); σ = 1, ..., f . (116)

while in the reverse procedure it holds that

∆νz(t0−) = X̃D, ∆i+νσ−1 z(t0 + 2τi+νσ−1−) = ∆i+νσ
z(t0 + 2τi+νσ

); σ = 1, ..., f . (117)

Remark 14. In (110), the target areas have been defined to be symmetric intervals around Ui. The
above analysis can also be valid for the case of nonsymmetric target areas. Indicative nonsymmetric
target areas are presented in Section 6.5, including computational experiments for the process of the
chemostat. However, for the unique determinations of nonsymmetric target areas, an algorithm with
side extension priorities is required.

Remark 15. The switching observers designed in this section as well as the respective stepwise tran-
sition depend greatly upon the choice of the set nominal operating values Ui, where i ∈ {1, . . . , µ}.
In Section 6.5, different scenarios of operating points are investigated through computational
experiments for the process of the chemostat.

The soft sensor design, developed above, is analyzed to the following six basic steps:
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Step 1: A set of operating points of the nonlinear process is determined.
Step 2: Using small scale experiments around each operating point, the respective

identified I/O linear approximants are determined.
Step 3: Using the set of identified I/O linear approximants, if the reconstructability of

the respective state space linear approximants is satisfied, then the respective state space
linear approximants are computed.

Step 4: Using the set of the state space linear approximants, the respective full order
observers are computed, and the bank of observers is composed.

Step 5: Using the bank of observers and an estimation of the nonlinear process model,
derived through an estimation of the physical parameters of the nonlinear model deter-
mined by the identified parameters of the I/O linear approximants, the target operating
area of each operating point is determined.

Step 6: If the set of the target operating areas satisfies the dense web principle, then
the transition through the switching algorithm is initialized, else go to Step 1 to determine
a denser version of the set of the operating points.

6.5. Performance of the Switching Observer Scheme for the Chemostat

In order to demonstrate the performance of the proposed switching observer scheme,
consider the model parameters presented in Section 3. Furthermore, let a = 3.5, χO,A = 0.5
and χO,B = 0.001. With respect to the target operating areas, two different cases for the
nominal point sets will be examined. In the first case, the ten scenarios of nominal points
presented in Section 3 will be used and the operating areas satisfying the constraints in (117)
will be evaluated. Additionally, non-symmetric target operating areas will be considered
to cover the entire area of valid nominal operating values of the input. The entire area is
presented in (11b). In the second case, extensive computational experiments will be carried
out to determine consecutive nominal points for the input with symmetric overlapping
target operating areas.

For the first case, note that the identified parameters ĥD and ĥN , presented in Ta-
ble S5 of Supplementary Material, will be used for each nominal value of the input Ui
(i = 1, . . . , 10), namely for each scenario. The parameters iρF,1(ĥi, Ui) and iρF,2(ĥi, Ui) will
be derived by minimizing the metric in (115), under the inequality constraint for i J∗e,A.
After the determination of the observer parameters, the target operating areas will also be
determined. In Table S8 of Supplementary Material, for each nominal point Ui, the observer
parameters ρF,1 and ρF,2, as well as the bounds Ui − ui,max and Ui + ui,max are presented.
Note that the last column in Table S8 of the Supplementary Material is saturated, where
needed, to Umax so that the inequality in (11c) is satisfied. Saturation has been performed
for scenarios 6 to 10. This saturation results in nonsymmetric target operating areas since
Ui is no longer located at the center of the target operating area. The target operating areas
are also graphically presented in Figure 3. From Table S8 of the Supplementary Material
and Figure 3, it can also be observed that in the case of symmetric target operating areas,
the area defined by UD ∈ (0.1603, 0.1868)

[
days−1

]
is not covered by any operating area.

Nevertheless, using any of the nonsymmetric cases 8, 9 or 10, that cover the entire area, this
problem can be handled.

In order to illustrate transitions between target operating areas, two simulation
experiments will be carried out. In the first experiment, starting from an initial op-
erating point `I = (YI , UI) it is desirable for the system to settle to the final operat-
ing point `D = (YD, UD), while passing through the intermediate destination points
`D,1 = (YD,1, UD,1), `D,2 = (YD,2, UD,2) and `D,3 = (YD,3, UD,3). The point `I , will be
considered to correspond to target area 2. The points `D,1 and `D,2 will be considered to
correspond to target areas 3 and 4, respectively. Finally, the points `D,3 and `D will be
considered to correspond to target area 5. The time, where each transition is triggered,
in all cases, is chosen to be 10% greater than the settling time of the respective linear
approximant. Let YI = 1.0709

[
kg/m3

]
, YD,1 = 1.3501

[
kg/m3

]
, YD,2 = 1.5247

[
kg/m3

]
,



Sensors 2023, 23, 2114 26 of 31

YD,3 = 2.9700
[
kg/m3

]
, YD = 4.9500

[
kg/m3

]
, UI = 0.2134

[
days−1

]
, UD,1 = 0.2579

[
days−1

]
,

UD,2 = 0.2826
[
days−1

]
, UD,3 = 0.4500

[
days−1

]
, UD = 0.6000

[
days−1

]
.
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Figure 3. Target operating areas.

In Figure 4a,b, the responses of the nonlinear system and the switching observer
scheme are presented. In Figures S8 and S9 of Supplementary Material the respective
estimation errors are presented. From Figure 4a, it is observed that the estimation of the
substrate concentration is visually identical to the respective nonlinear model response,
presenting minimal estimation error (see Figure S8 of the Supplementary Material). Regard-
ing the estimation of the microorganism concentration (see Figure 4b and Figure S9 of the
Supplementary Material), the estimation is near the respective model response, presenting
acceptable estimation error.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 33 
 

 

  

(a) (b) 
Figure 4. (a) Substrate concentration response/estimation; (b) Microorganism concentration re-

sponse/estimation. 

  

(a) (b) 

Figure 5. (a) Substrate concentration response and estimation for single step transition; (b) Micro-

organism concentration response and estimation for single step transition. 

 

Figure 6. Target operating areas. 

Figure 4. (a) Substrate concentration response/estimation; (b) Microorganism concentration re-
sponse/estimation.



Sensors 2023, 23, 2114 27 of 31

To simulate a transition from target area 1 to another operating point, being far
from area 1, the use of one of the nonsymmetric target areas is necessary. Considering
that scenarios 9 and 10 cover the entire area of nominal values of the input, transition
between operating points can be carried out without any switching between observers,
as the observer is designed upon the linear approximant corresponding either to scenario
9 or scenario 10. Indicatively, designing the observer using scenario 9 and simulating a
single transition between `I = (YI , UI) and `D = (YD, UD), where YI = 0.3050

[
kg/m3

]
,

YD = 4.9500
[
kg/m3

]
, UI = 0.0697

[
days−1

]
and UD = 0.6000

[
days−1

]
, the responses

of the nonlinear model, the observer, and the respective estimation error dynamics are
presented in Figure 5, Figures S10 and S11 of Supplementary Material Similarly, to the
previous computational experiment, the estimation of the substrate concentration (see
Figure 5a) is visually identical to the respective nonlinear model response. The respective
estimation error is minimal (see Figure S10 of Supplementary Material). Regarding the
microorganism concentration, it is observed that although transition between operating
points is faster and the steady state estimation error is small, the single step transition
results in a transient estimation error being significantly larger than that of a multi-step
approach (see Figure 5b and Figure S11 of the Supplementary Material).
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To avoid the presence of nominal points not being covered by a target area, a more
extensive search approach will be implemented. Towards this aim, extensive computational
experiments will be carried out to determine consecutive nominal points for the input with
symmetric overlapping target operating areas. Let a = 3.5, χO,A = 0.5 and χO,B = 0.001.
A set of target operating areas satisfying the design requirements is presented in Table S9
of the Supplementary Material and Figure 6. In Table S9 of the Supplementary Material,
besides the operating areas, the results of the identification procedure and the optimal
observer parameters’ set for each target operating area, are also presented.

In order to illustrate transitions between target operating areas, starting from an initial
operating point `I = (YI , UI), it is desirable for the system to settle to the final operating
point `D = (YD, UD) passing through the intermediate destination points `D,j = (YD,j, UD,j)
(j = 1, . . . , 6). The point `I will be considered to correspond to target area 1. The points
`D,j = (YD,j, UD,j) (j = 1, . . . , 5) will be considered to correspond to target areas 2 to 6,
respectively. Finally, the points `D,6 and `D will be considered to correspond to target area 7.
The time, where each transition is triggered, in all cases, is chosen to be 10% greater than
the settling time of the respective linear approximant. Let
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YI = 0.2642
[
kg/m3

]
, YD,1 = 0.3130

[
kg/m3

]
, YD,2 = 0.4036

[
kg/m3

]
,

YD,3 = 0.5464
[
kg/m3

]
, YD,4 = 0.7589

[
kg/m3

]
, YD,5 = 1.1206

[
kg/m3

]
,

YD,6 = 1.6938
[
kg/m3

]
, YD = 3.7198

[
kg/m3

]
, UI = 0.0608

[
days−1

]
, UD,1 = 0.0714

[
days−1

]
,

UD,2 = 0.0905
[
days−1

]
, UD,3 = 0.1193

[
days−1

]
, UD,4 = 0.1595

[
days−1

]
,

UD,5 = 0.2215
[
days−1

]
, UD,6 = 0.3059

[
days−1

]
, UD = 0.5149

[
days−1

]
.
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In Figure 7a,b, the response of the nonlinear system and the switching observer scheme
are presented. In Figures S12 and S13 of the Supplementary Material, the respective esti-
mation errors are presented. In accordance with the previous computational experiments,
from Figure 7a it can readily be observed that the estimation of the substrate concentration
is visually identical to the respective nonlinear model response, presenting minimal estima-
tion error (see Figure S12 of Supplementary Material). With respect to the estimation of the
microorganism concentration (see Figure 7b and Figure S13 of Supplementary Material),
the estimation is near the respective model response, presenting acceptable estimation error,
during the transient phase between target operating points.
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7. Conclusions

A bank of full order linear switching observers has been designed for the development
of soft sensors for the variables of single input single output (SISO) nonlinear processes.
For the design of the bank of switching observer, a new switching design framework has
been developed through the introduction of new definitions, system properties and results.
A supervisor, orchestrating the switching among the observers, to approximate as close
as possible the state variables of the nonlinear chemostat model, has been designed. A
new set of target operating areas, oriented to observer design, has been introduced and
the respective dense web principle for observer design has been introduced. Finally, the
present design scheme has successfully been applied to the chemostat model.

An important aspect of the present results is that the design of the observer is based
entirely upon the I/O linear approximant of the process model, being derived through
standard I/O linear approximant coefficient identification using I/O data. Another impor-
tant aspect is the derivation of the I/O data for both the identification and the operating
trajectory can be derived using small scale experimentation.

The algorithm for the realization of the soft sensor is simple and elegant, in the sense
that it includes a bank of linear observer orchestrated by a simple supervisor rule. The
proximity of the observed variables to respective real variables of the process is proven.
Hence, the proposed algorithm is an adequate soft sensor for industrial processes. Overall,
it is important to mention that the present results are offered for implementation to low-
level computer platforms, such as µCs, PACs and other microprocessor embedded systems.

Before closing, it is important to mention that the full order form of the proposed
here switching observers allows the detection of sudden increases of the estimation errors,
corresponding to differences between the estimated and the original variables of the process,
thus contributing to fault detection and fault isolation (see [41,42]). This is a first direction
for future research. Another direction for future research is the extension of the present
results to the category of multi-input and multi-output (MIMO) processes. This extension
should take into account the vector form of the inputs and the outputs as well as the matrix
forms of the I/O linear approximants and the observer matrices. Other directions are the
extensions of the present results to other system categories. Particularly, the extension of
the present results to singular systems process descriptions requires alternative observer
design procedure (see [43,44]) and cost criteria handling the nonproper terms of the I/O
linear approximants. The extension of the present results to the category of multi time
delay systems (see [45,46]) requires the design of physically realizable observers as well as
appropriate stability criteria.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23042114/s1, Table S1: Scenarios of nominal conditions;
Table S2: Optimal observer parameter selection for a = 3.16309; Table S3: Optimal observer parameter
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