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Abstract: The safety assessment of cyber-physical systems (CPSs) requires tremendous effort, as the
complexity of cyber-physical systems is increasing. A well-known approach for the safety assessment
of CPSs is fault injection (FI). The goal of fault injection is to find a catastrophic fault that can cause
the system to fail by injecting faults into it. These catastrophic faults are less likely to occur, and
finding them requires tremendous labor and cost. In this study, we propose a reinforcement learning
(RL)-based method to automatically configure faults in the system under test and to find catastrophic
faults in the early stage of system development at the model level. The proposed method provides
a guideline to utilize high-level domain knowledge about a system model for constructing the
reinforcement learning agent and fault injection setup. In this study, we used the system (safety)
specification to shape the reward function in the reinforcement learning agent. The reinforcement
learning agent dynamically interacted with the model under test to identify catastrophic faults.
We compared the proposed method with random-based fault injection in two case studies using
MATLAB/Simulink. Our proposed method outperformed random-based fault injection in terms of
the severity and number of faults found.

Keywords: domain knowledge; fault identification; fault injection; reinforcement learning; safety
assessment; signal temporal logic

1. Introduction

Cyber-physical systems (CPSs) are intelligent systems in which the computational
part of the system controls the physical part in order to perform a predefined task [1].
The safety assessment of CPSs is critical, as any failure in the system can cause harm to
humans or the environment [2] in some applications such as self-driving cars. To avoid
system failure, vendors utilize experimental or simulation-based methods. However, the
increasing complexity of CPSs makes safety assessment a time-consuming and costly
process for vendors [3].

Based on dependability taxonomy [4], a failure happens if a system’s service under
test deviates from delivering the correct service. A service is a sequence of perceivable
states at the system’s interface. The deviation from the correct (sequence of) state is called
an error. The cause of an error is called a fault.

Safety engineers, among others, are interested in finding faults that cause failures
in the system under test. In the rest of this work, we refer to these faults as catastrophic
faults. The probability of finding a fault in a system follows a long-tailed distribution, and
catastrophic faults usually fall into the tail of this distribution, which means that finding
them is complicated and requires a tremendous amount of effort and time [5,6].

One well-known method of safety assessment is fault injection (FI) [7]. With fault
injection, safety engineers disturb a part of the system and observe the effects on the
total system’s behavior. Therefore, engineers create or simulate a harsh environment
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for the system [8] to assess the system under test. Fault injection is recommended in
functional safety (ISO 26262 standard) [9], and is mandatory in the Standard for Safety
for the Evaluation of Autonomous Products (UL 4600) [10] in the automotive industry.
In the ISO 26262 standard, fault injection can be used for testing hardware/software
levels, diagnostic coverage, and checking the correct implementation of the functional
safety requirement and the safety mechanism in different abstraction levels. At the sensor
level, test engineers create hardware faults, software faults, and communication faults
as test cases for the system under test. They model these faults in detail based on real-
world faults in order to accurately assess the safety properties of the system. In the UL
4600 standard, fault injection is introduced as a mandatory step for fault coverage and
mitigation. In another standard, entitled Safety of the Intended Functionality (SOTIF or
ISO/PAS 21448) [11], test engineers try to find corner-case scenarios by introducing external
faults. Identifying potential faults and vulnerabilities in a system improves the safety and
reliability of that system.

Traditional fault injection methods are based on exhaustive injection processes [12],
random-based fault injection [13], model-implemented fault injection, and abstracting the
system under test to eliminate some details [14]. Using previous methods, safety engineers
aim to find catastrophic faults that cause a system failure. However, most faults cause
masked errors. These masked errors do not further propagate to the external state of the
system [4]. This fault-masking decreases the performance and efficiency of fault injection.

(i) Traditional fault injection-based safety assessment methods are not efficient in
finding catastrophic faults (in the tail of distribution) and do not scale up to the complexity
of future systems. As such, engineers need to produce enormous amounts of data, which
is costly and impossible, especially if the system is still under development. There is a
need to find an efficient way to deal with data scarcity. Future systems will consist of
hardware such as sensors, mechanical and hydraulic components, etc., as well as software
for controlling or monitoring hardware via the transferring of data and a high level of
interaction. In the automotive industry, vendors are trying to find these hidden failures
by testing prototypes on the road with millions of driving miles or by running millions of
simulations in simulators and investing a massive amount of time and resources [15,16].

(ii) Traditional fault injection methods are mainly human-driven activities that intro-
duce human errors in fault injection experiments, increasing the time and cost of safety
validation. Additionally, many of these systems are composed of complicated components
(like heterogeneous systems), and the systems’ implementation details are not adequately
understood [17]. The test engineer must choose the injection location, time, and value
based on knowledge of the system, such as system architecture, modes, components, com-
munication links, etc. Without this information, the test engineer cannot inject a fault in the
proper location, and most of the injected faults would not lead to failure. (iii) The literature
has mainly studied simple fault models, for example static faults, meaning that the fault
parameters are fixed during simulation, such as stuck-at faults and bit flips [18,19]. In the
case of dynamic faults, the fault’s parameters change over the simulation-like noise of the
signal. Dynamic faults can cause immense consequences if they are active at a specific
point in time with a critical amplitude. (iv) Finally, the safety criteria of a system are often
defined over the system under test and its environment. The requirement, “the test vehicle
should not collide with pedestrians”, is an example of a requirement that affects both the
system under test (the test vehicle) and the actors in its environment (pedestrians). As a
result, a safety assessment of the combined system (system and operating environment) is
required [20].

This article proposes a method to address the gaps in identifying catastrophic faults.
(i) We utilize a machine-learning method to improve the efficiency of model-implemented
fault injection. Model-implemented fault injection enables us to frontload the safety as-
sessment to the model level. (ii) The proposed method is semi-automated and requires
less user involvement in the safety assessment. (iii) The method applies to dynamic fault
types that can be activated and deactivated at any time. (iv) Finally, the proposed method
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examines the model under test and its environment for fault injection rather than focusing
on either one or the other.

To achieve our main goal, we utilize reinforcement learning (RL). Reinforcement
learning is a subcategory of machine learning in which an agent learns by interacting
with the environment through trial and error [21]. The agent collects data dynamically
through this interaction and does not need a static data set. The agent automatically applies
actions and controls the fault parameters in the fault injection experiment. In the fault
injection experiment, we inject one fault in each experiment based on domain knowledge
about important parts of the model. Then, the RL agent quantifies the consequence of the
injected fault using a reward function. The reward function determines the robustness of
the fault model and whether the injected fault led to a failure, as it dynamically assesses
the safety level of the system. If the reward function becomes smaller than a threshold,
it indicates that the safety requirement is violated. Besides the reward function, an RL
agent has numerous parameters, and its configuration greatly impacts the results of fault
identification. Proper setup for fault injection experiments using an RL agent is challenging
for safety engineers. As such, the safety engineer needs a proper guideline and workflow
to configure the RL agent. We use domain knowledge about the model under test to reach
the proper reinforcement learning configuration.

The reinforcement learning agent injects faults into each simulation step and eventually
learns to fail the model under test. The agent identifies fault patterns or a sequence of faults
that causes a catastrophic failure in the model under test. In essence, the agent learns to fail
the system.

This article details model-implemented fault injection for the safety assessment of
technical systems. Our main contribution is the reinforcement learning-based method
for fault injection that utilizes domain knowledge to set up the different parts of the
reinforcement learning agent to find catastrophic faults in the model under test. We
summarize the contributions as follows:

• Firstly, we introduce a reinforcement learning-based method to identify dynamic
faults. The reinforcement learning guides the fault injection simulation to detect faults
in the system model by injecting faults.

• Secondly, we focus on extracting high-level domain knowledge. This domain knowl-
edge is based on the model under test (e.g., the model’s architecture, input boundaries,
and states), safety requirements, and temporal behavior of the model under test. The
domain knowledge helps us to prune the fault space for the RL agent and focus on the
most important fault parameters, for example, fault location and fault value boundary.
In this way, the RL agent automatically explores the fault space and finds other fault
parameters. The model composition impacts fault location and fault boundary value
that maximizes the efficiency of fault injection.

• Thirdly, we provide guidelines to configure different parts of the reinforcement learn-
ing agent based on the extracted domain knowledge. We define a technique to shape
the reward function using temporal logic and safety requirements.

• Finally, we validate our approach using two experimental case studies and discuss
the limitations and benefits. Our case studies include the Simulink model of adaptive
cruise control systems and autonomous emergency braking systems, two important
systems in modern vehicles.

In the proposed method, we assume that the domain knowledge given to the proposed
method is correct. The proposed method cannot achieve a result with the wrong input
data. In addition, to perform our method, the executable model of the system under test is
required. Our method can be performed with models at different levels of abstraction and
approximation. However, the quality of the results also depends on the quality of the model.
Often, complicated subsystems are used in modern CPSs, such as artificial intelligence and
machine learning-based subsystems. These subsystems are usually considered black boxes,
and the proposed method can help verify them in the interface signals [20]. The proposed
method injects faults in the signals within the model under test and can be applied to
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black-box models as long as signals are observable or externally reachable. Nonetheless, the
proposed method can also be applied to an internal fault if the internal signals or internal
states of the system are observable. The test engineer has to decide on and adopt the model
under test. We also assume that the fault models in the fault library are representative and
are modeled correctly. Any small change in the fault model deviates from the result of
the proposed method. In addition, we assume that the simulation environment accurately
represents the real-world system. Therefore, the simulation result of the faulty model is
similar to that of the faulty system in the real world.

In previous work, we implemented a proof-of-concept reinforcement learning agent
for model-implemented fault injection and tested it on a single-use case [22]. This paper
extends the previous work by (i) using multiple types of reward functions, (ii) applying
multiple complex forms of reinforcement learning algorithms, (iii) presenting an extensive
experimental evaluation, and (iv) providing a guideline for using reinforcement learning in
model-implemented fault injection.

2. Background and Related Works
2.1. Background

In this section, we describe the fault injection (FI) and reinforcement learning (RL)
algorithms, as they are the main concepts of the paper.

2.1.1. Fault Injection

Fault injection is a testing technique in which the test engineer observes the behavior of
a system when the system (real or virtual) is stressed in an unusual way [7]. Fault injection
is performed on all levels of abstraction, such as in a model, in software (e.g., source code or
binary code), or in hardware prototypes. In this paper, we use fault injection at the model
level. The advantage of model-implemented fault injection is that engineers can apply the
technique in the early phases of system development when the product is just a computer
model. Finding errors in the early stages of development reduces the cost tremendously
and saves time and effort for the software [23] and hardware prototypes [24,25].

An essential element of fault injection simulation is the fault parameters. Based on [7],
faults have three main parameters that create the fault space. The fault dimensions are
(i) fault type, which indicates which type of fault should be injected, (ii) fault location,
which indicates where the fault should be injected, and (iii) fault activation time, which
indicates when the fault should disturb the system under test. Faults are classified into
three main categories: (i) transient faults only remain for a short time, (ii) permanent faults
remain for a long time in the experiment, and (iii) intermittent faults occur occasionally
during the experiment [7,26].

2.1.2. Reinforcement Learning

Reinforcement learning (RL) is a problem-solving framework for problems described
as incompletely known Markov decision processes (MDP). The Markov decision process is
a general mathematical problem representing an optimal sequence of sequential decisions
in an uncertain environment. At each sequence step, the agent takes action and advances
to the next state. Negative rewards or positive rewards can be obtained depending on the
current state.

The reinforcement learning algorithm, when implemented in an agent, learns by inter-
acting with a dynamic environment during reward-based learning [21]. The environment
is the model we want to control or from which we want to learn. The agent aims to find
a strategy that generates the maximum reward. This trial-and-error learning process al-
lows the agent to make a series of decisions to perform a task without being explicitly
programmed through human intervention. The reinforcement learning agent needs to
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interact with an environment with the Markov property: given the present, the future must
be independent of the past. We can represent this statement mathematically as:

P[St+1 | St] = P[St+1 | S1, . . . . . . , St] (1)

S[t] represents the agent’s current state and s[t + 1] represents the next state.
Reinforcement Learning Structure. There are five main parts to setting up a reinforcement

learning problem: environment, reinforcement learning agent, reward function, action signal, and
observation signal. Figure 1 shows the architecture of RL. The environment is, in our case,
the model under test with its surroundings. There are three signals between the agent and
environment: (i) the action signal that controls or manipulates some environmental signals;
(ii) the observation signal that reads the state of the system and the most important signals
in the environment; and (iii) the reward function that expresses to the agent how well the
action value performed.

Figure 1. The reinforcement learning algorithm’s block diagram.

In addition to the agent, there are two other components within RL. The first is the
policy that maps observation signals to action signals. The second is the reinforcement
learning algorithm that updates the policy based on the reward signal, the previous action,
and the current observation. This algorithm adjusts the policy at each iteration to collect a
higher reward. The reinforcement learning algorithm uses the Bellman equation to discover
the best policies and value functions. We know that our policy evolves. Thus, different
policies will have different value functions. The optimal value function produces the most
value compared to all other value functions.

v(s) = E[Rt+1 + γv(St+1) | St = s] (2)

The Bellman equation indicates that the value function can be decomposed into an
immediate reward (R[t + 1]) and the discounted value of the successor states (γ).

Reinforcement Learning Algorithms. Multiple reinforcement learning algorithms are
described in the literature. We can divide reinforcement learning algorithms into two
main categories—model-free and model-based—according to the context used. A model-free
algorithm is an algorithm that predicts the optimal policy without using or envisioning
the dynamics (transition and reward functions) of the reinforcement learning environment.
This contrasts with model-based algorithms, which use the transition function (and the
reward function) to estimate the optimal policy. The transition and reward functions are
referred to as the environment model.

Furthermore, we can classify the reinforcement learning algorithm into three main
categories—value-based, policy-based, and actor–critic—according to the implementation
strategy. Value-based agents rely on an indirect policy representation and use only the
critic’s network to select their actions. The critic network aims to estimate reward values
and modifies the policy based on actions taken, collected observations, and reward values.
In each iteration, the critic network tries to reduce errors and accurately predict future
reward values. Policy-based agents rely on a direct policy representation that uses only
actors to select their actions. Agents that use both an actor and a critic are actor–critic
agents. During the training of these agents, the actor learns the best action to take, using
feedback from the critic (instead of using the reward directly). In parallel, the critic learns
the value function from the rewards to appropriately criticize the actor.
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2.1.3. System Requirements and Signal Temporal Logic

System development typically starts with a requirement definition phase. These
requirements are the basis for engineers to build and develop a system. The designed
system must meet the requirements of the final product. The requirements can be defined
by standards, owners, or system users. In this paper, we focus on the safety requirements
of the system. We assume that the system is already virtually designed up to a level of
abstraction usable for evaluation. As such, we have an executable model of the system.

Often, requirements are defined in natural language, resulting in misinterpretations.
However, languages are available to specify the requirements very precisely. Using these
languages also makes a safety requirement amenable to automatic analysis. For example,
X > Y can be a naive system requirement that compares two signals in the system. Signal
X must always be greater than signal Y. This formula is simply about comparing the values
of two signals without any notion of the temporal behaviors of the system. If we want to
add temporal behaviors to our formula, a known formalism is signal temporal logic (STL).

Signal temporal logic is a logic language that provides a systematic way to describe
temporal and spatial signal properties [27]. It is a language that consists of logical operators
(like ¬,∧,∨) together with temporal operators (such as always (G), eventually (F) and until
(U)). For example, the formula always[0, 30](x ≥ 0) indicates that during the first 30 time
units, the value of signal x is greater than or equal to 0.

Safety requirements can be formalized in a temporal logic signal form that is quanti-
tative and machine-interpretable. Robustness can be designed over a trace together with
a formula (how much a signal satisfies a specification or violates it), and can be used to
validate and verify the system requirements [28].

2.2. Related Work

For optimizing fault injection, numerous studies are conducted. In these studies, the
authors mainly use machine learning techniques, statistics, domain knowledge, historical
data, and abstraction techniques to evaluate the system properties to increase the perfor-
mance or efficiency of the fault injection simulation/experiment. In the rest of this section,
we describe each technique in more detail.

2.2.1. Test Automation Methods

Test automation is an important and active research area, especially for industry.
Test automation is mainly used in settings that work on complex and large-scale systems,
in which the use of traditional testing methods is costly [29]. Hence, they try to (semi)
automate testing phases and reach an agile method of system development while keeping
the system safe and reliable. Model-based testing is similarly focused [30]. Software
engineers try to model the behavior of software based on its architecture and use that
model to test the software automatically. For example, they can automatically generate
test suits for testing the software [31] using finite-state machines. Each state represents an
actual application state in high-level abstraction. These state machines allow us to extract
a set of test-case design rules. With these rules, the test engineer can generate a series of
application events to satisfy a given set of coverage requirements.

2.2.2. Historical Data

In fault diagnostics, much research has been performed on utilizing historical
data [32–34]. In [32], the author presented multiple approaches for the design of test
plans in order to more quickly measure reliability. For example, by injecting faults into
the system based on component failure data, they accelerated component wear-out and
measured the reliability of the overall system in normal conditions in an accelerated way.
In [33,34], researchers made predictions about faults and failures using information from
fault tree analysis (FTA) and failure mode and effect analysis (FMEA). A fault tree provides
information on the propagation paths of faults in the system. This information focuses on
the most important parts of the system. Additionally, Markov models in [35] and Petri
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nets in [36,37] were used to reduce testing effort and dependability analysis. The authors
constructed a Petri net or Markov model based on historical knowledge about the system,
which accelerated further failure analysis.

2.2.3. Machine Learning

Machine learning algorithms are effective in decision-making and are used to handle
fault injection experiments. In [38], the authors tried to find failures with a high probability
of occurrence using reinforcement learning-based stress tests. They used a stress test for a
black-box system in a stochastic environment. The authors in [39] presented a framework
that generates and collects more errors in a reasonable time. They used supervised and
unsupervised machine learning algorithms to eliminate parameters that did not directly
relate to the system’s soft errors. In unsupervised learning, engineers utilize unlabeled data,
and they aim to extract patterns from data to group them without any prior knowledge
about the structure of the data. However, in supervised learning, the data are labeled, and
the algorithm aims to extract features from the data and separate the data into different
classes. In [40], the authors proposed a method based on unsupervised machine learning to
analyze traces of fault injection automatically. This unsupervised ML detects anomalies and
classifies failure mode. In [41], researchers developed a framework called AV-Fuzzer, which
uses a search algorithm to inject faults into evolving traffic scenarios to minimize safety.
Moreover, researchers used reinforcement learning agents in [22,42,43] to find catastrophic
faults using system specifications. The reinforcement learning algorithm can deal with
time series data and make sequential decisions about catastrophic faults using dynamic
interactions with the system under test.

2.2.4. Using Domain Knowledge

The authors in [44] exploited sensitivity analysis to find the most sensitive traces
in a black-box model, which was implemented based on a functional mock-up interface
(FMI) [45]. They explored the perturbation’s impact on their use case’s safety requirements
and then used that information to inject fault. In addition, the authors in [41] used vehicle
dynamics in an abstracting system and performed faster fault injection. In [46], the authors
used the fault propagation path for fault diagnostics and identified the root cause of the
abnormal situation. Moreover, in [47], the authors analyzed the resilience of a system using
an error propagation path.

2.2.5. Statistical Methods

Statistical methods are used for fault space exploration. In [48], the authors developed
a domain-specific language called Scenic that generates test sets for autonomous cars and
robots. These test sets are used to verify, debug, and train machine learning-based systems
and increase their reliability. Scenic uses a probabilistic programming language to sample
the input distribution. In [49], the authors randomly injected fault and then estimated
the confidence level of outcomes. In [50], a framework called CriticalFault was proposed.
CriticalFault avoids unrelated faults, focuses on high-impact faults, and prunes the fault
space dramatically. In [51], some statistical tools were proposed that were utilized for
the sensitivity analysis of the system under test and reduced the parameter space for
fault injection.

2.2.6. Abstracting of System

Researchers use a simplified system model under test. This allows us to focus on a
specific system property, such as real-time behavior, and perform evaluation faster. In [52],
the authors aimed to check the fault tolerance mechanism. They used simulations at
multiple levels of abstraction, from the hardware level to the software and model levels.
To validate a very high-speed integrated circuit hardware description language (VHDL)
model, the authors of [53] simulated the register transfer layer to increase fault injection
performance. In [54], the authors also used multi-level simulation, focusing on the timing
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behavior of the system.In addition, in [55], the authors modeled the system as a graph at
multiple levels of abstraction to identify system failure via simulation.

All the different methods mentioned above have limitations. In many cases, no data
are available from the system under test since the system is still under development. There-
fore, supervised learning- and unsupervised learning-based methods are not effective. In
addition, in some cases, there is not a sufficient resource to perform numerous simulations.
Therefore, methods based on statistics and test automation are not applicable for fault
injection. Furthermore, sometimes there is not sufficient information about the system
under test. In these cases, the test engineer cannot properly make an abstract model from
the system under test or distinguish between important and unimportant parts of the
system. Therefore, methods that are based on the simplification of the system and domain
knowledge are not relevant.

The proposed methodology combines reinforcement learning, high-level domain
knowledge, and test automation. It performs a series of injections inside the system under
test and tries to fail the system specification at each step of the simulation. The user can
set up fault injection using a high-level fault model, and the reinforcement learning agent
learns to inject catastrophic faults via iteration.

3. Reinforcement-Based Catastrophic Fault Identification Method

This section introduces a guideline to assist the user in setting up the RL agent for fault
identification. The high-level idea of this method is to employ a reinforcement learning
agent for model-implemented fault injection to find catastrophic faults in the model under
test. Catastrophic faults violate the model’s specifications or safety requirements, and the
proposed method semi-automatically identifies them.

The proposed approach requires less user involvement, and it is scalable to a complex
model consisting of many components. The underlying neural net in the RL agent can
understand the system functionality and control the experimentation. The RL agent injects
faults into each step of the simulation and interacts with both the controller and the
environment around the controller. Therefore, fault identification is achieved in a broader
context that matches real-world case studies. The interaction of the RL agent with the
environment does not influence the running scenario of the case study. The RL agent only
changes the action signal and monitors the observation signal and the reward value.

The proposed method relies on domain knowledge (specifically model specifications)
to set up a fault injection campaign and reinforcement learning agent for fault injection.
In the first step, knowledge about the system under test is retrieved to set up different
parts of the reinforcement learning agent. Figure 2 shows an overview of the proposed
method. Next, the model under test is automatically annotated with the fault model, reward
functions, observation signals, and action signals based on domain knowledge. The action
signals are connected to the fault model to change the fault parameters during execution.

In the middle of Figure 2, a workflow diagram details the steps of the approach.
Each activity in the workflow model shows which artifacts the activity takes as input
and produces as its result. As is shown, the first step is manual, the second and third
steps are semi-automatic, and the rest of the steps are performed automatically. The
workflow’s first step is collecting all the needed information to configure the fault injection
experiment. We use different sources of information: (a) fault models, (b) signal boundaries
and constraints, (c) model architecture, and (d) safety specifications. This information is
used in the subsequent activity to configure the reinforcement learning agent and set up
a fault injection campaign. The next step in the workflow is to create the architecture of
the fault injection experiment. The agent is connected to the faults that must be injected
into the model. Given the observation signals and reward functions, the agent pushes the
model into failure by changing fault parameters over time.
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Figure 2. Overview of the proposed method.

After the experiment composition, we have two options: proceeding directly to the
training phase or performing hyperparameter tuning. Hyperparameter tuning is an op-
tional step and increases the efficiency of the proposed method by selecting the best internal
parameters for the RL agent. The hyperparameter tuning framework searches the param-
eter space of the RL agent using a state-of-the-art algorithm and seeks an optimal value
for each of the internal parameters. This step is timely and can increase the efficiency of
the RL agent for the next step. Accordingly, the user of the proposed method decides to
either perform hyperparameter tuning or neglect it. Afterward, we move to the training
step, where the agent tries to inject faults and fail the system. During training, we log
training data and agent parameters. The RL agent considers the entire model under test
as a single block box (it only interacts with its environment via some signals), and the
internal structure of the model under test, such as internal feedback loops, does not affect
the training model. Finally, we validate and visualize the simulation result with the trained
agent that fails the system. In the following sections, we describe each part in detail.

3.1. Collection of Domain Knowledge

Domain knowledge is used as input for the method. Knowledge must be provided in
tables or formulas to be usable for the RL agent. The user collects this information to set up
the agent. High-level knowledge helps set up the agent and is also used to prune the fault
space and skip irrelevant simulations. To be more precise, we explain each item in more
detail as follows:

• Fault model: A fault is a disturbance in a system that can deviate the system from its
correct service. The fault model is a representation of a real-world fault that we use
to evaluate its impact. For example, stuck-at-zero and stuck-at-high (the voltage of a
power supply) are two common faults in hardware. We can model them in a generic
form in such a way that the outcome is similar to a real-world fault. We specify fault
models that each have two parameters, such as the amplitude of the fault and the
activation time.

• Signal boundaries: This involves knowledge about the ranges of each signal in input,
output, or at an intermediate level. This supports the definition of the input space and
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avoids simulating invalid conditions and out-of-range signals. It also contributes to
having a representative fault. Therefore, the fault value remains within the specified
range. Otherwise, the fault value does not mimic real-world disturbances.

• Model architecture: This defines how the model is built up in terms of high-level func-
tional blocks, how those blocks are connected and transfer data, how the controllers
work, how many states the model has, etc. This helps determine those parts where
faults should be injected. The selection of a fault injection target is determined by
the test engineer. The test engineer can utilize further information about the critical
components, system constraints, complexity, and risk to prioritize the target.

• System specification: This relates to model properties or any metric, such as per-
formance, accuracy, robustness, or dependability (i.e., safety and reliability), that
quantifies the model accurately.

We can include more domain knowledge, such as running scenarios and simulation
configurations. A running scenario relates to environment/test conditions in the model
that is developed. The objective is to better understand what the testing environment is
and what the assumption is to define the model’s limits. The simulation configuration
provides information for the model simulation, such as solver type, step size, etc.

3.2. Reinforcement Learning Configuration

This activity provides configuration tables for the RL agent based on the gathered
information. We define the agent’s learning task, including how the agent interacts with
the environment and any primary or secondary objectives the agent must accomplish. For
this purpose, the engineer has to follow the following steps:

• Create environment: provide tabular information for making an action signal, obser-
vation signal, reward function, and fault model in the model under test to formulate
our problem as a reinforcement learning problem. The extended model (model under
test with all mentioned signals and models) is considered the environment for the
agent.

• Create agent: define a policy representation and configure the agent learning algorithm.
For the agent, one can choose an appropriate agent based on Table 1 and use neural
networks (NN) within it. The neural network enables the agent to handle complex
environments.

In the following sections, we explain each step in detail.

3.2.1. Define Action and Observation Signal

The RL agent needs signals that connect with the environment in order to interact with
it. A (test) engineer is in the best position to gather information and choose the appropriate
signals. This information is in the form of a table.

The action signal is connected to the fault model and controls the fault parameters.
The RL agent performs different actions through the exploration of the fault space and
eventually converges on the desired sequence of actions indicating a catastrophic fault. For
each action the agent can make, we specify the following properties:

• System/subsystem: a subsystem or system of interest in the model for the fault
injection simulation.

• Signal name: the signal name of interest for the fault injection simulation.
• Fault type: the specified fault model for the simulation.
• Fault range: a fault range must be specified, allowing the agent to define the bound-

aries of space exploration. These ranges help us scale the signal to [−1,1], mainly for
performance reasons.

The subsystem name and signal name indicate the location of the fault model. The type
of fault is linked with the desired fault model that needs to be injected. The fault’s range
restricts the RL agent’s action to a valid range. Similarly, we define domain knowledge by
observing the model in the way we did for the action signal.
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3.2.2. Reward Signals

RL agents make decisions based on a reward value. The goal of the RL agent is to
maximize the reward value in each learning step. The reward signal indicates how well the
agent performs the task objectives. In other words, the reward assesses the effectiveness of
adopting a specific action for a given observation (state). Researchers use a positive reward
to encourage specific agent actions and a negative reward (penalty) to discourage others.
To create an adequate incentive function, expert knowledge is required. A well-designed
reward signal directs the agent to optimize the long-term reward expectation. What makes
a well-designed reward is determined by the application and the agent’s goals. Based on
best practices, there are some methods to leverage this.

In general, the reward values should be continuous. Continuous reward signals
aid in training convergence and produce simpler RL agent network architectures. A
discrete reward slows the convergence and may require a more complex network structure.
Moreover, a common strategy is to define the reward based on sub-goals. These tiny,
positive rewards promote the agent to successfully perform the task [56,57].

If a reward function includes multiple signals, e.g., a vehicle’s position, velocity, and
acceleration, we can weigh the signals’ contributions to the reward signal based on their
respective impacts [58]. In addition, we can shape reward functions from the control model
requirements such as cost functions, safety specifications, performance constraints, and
limitations in cases where such specifications are already available. In this way, there is less
need for several iterations to shape the reward function. The reward value represents the
risk of system failure. The RL agent automatically monitors the reward value to verify the
suitability of the action taken during the training phase. In this way, both safety analysis
and risk maximizing are performed together. In this paper, we propose three alternatives
to shape the reward function. The first alternative is to use the simulation model’s already
defined evaluation functions. During testing phases, testing functions might be readily
available to observe the model. Engineers usually utilize unit tests and functional tests
to perform multiple test cases during development. These tests are usually driven by
requirements, and developers validate the system requirements by monitoring signals that
express the correctness of system behavior. However, these signals should be appropriately
adapted. The signals should be inverted if the routine provides a positive value for a
good outcome. Multiplying it by −1 ensures that the agent is rewarded for violating the
model (safety) properties of the model. Note that a positive robustness value will result
in a penalty for the RL agent. At the same time, a negative number rewards the agent for
moving towards negative robustness and violating the equation. Note that these functions
should return a distance function of how well or badly the system is acting. If the function
returns a Boolean, the agent will have difficulty learning.

The second alternative is to transform the model’s robustness and safety requirements
into a logical formula to monitor the observation signals in the model. We use signal
temporal logic (STL) as the language to describe the requirements. STL is needed, as the
signals are continuous-time signals. However, evaluating a logic formula typically results
in a Boolean value (the formula is true or false). Nonetheless, it is possible to calculate
a robustness metric for several temporal logics, including STL. If the robustness metric
is a positive value, we meet the requirement, and the amplitude of the robustness value
indicates how robust the model under test is. However, if the robustness value is a negative
number, we violate the model requirement or safety property of the model. Accordingly,
the amplitude of the STL indicates how harshly we violated the specification. As the STL
also measures the model under the test’s robustness, the robustness information from the
STL monitor should also be multiplied by -1 and used as an additional reward function.

The third element alternative is to specify custom reward-shaping based on domain
knowledge; therefore, the safety engineer identifies intended signals in the model under
test and corresponding weights for each signal (to show the importance) to the RL agent.
Using our method, these signals must be represented as follows:
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• Variable/signal: The first element identifies the signal or variable in the model related
to the specification.

• Relation: The second element determines the expected relationship between the signal
or the variable and the magnitude. There are two types of relations, inverse (I) and
direct (D). A direct relation indicates that increasing the specified signal must increase
the reward value. By decreasing the value of the specified signal, the reward value
must be decreased. On the other hand, an inverse relation means that by increasing the
value of the specified signal, the reward value must be decreased and by decreasing
the value of the specified signal, the reward value must be increased.

• Strength: To specify the magnitude of the relation (sensitivity), three levels have been
defined for I and D: strong strong (SS), strong (S), and normal indicated by no explicit
magnitude relationship. In total, there are six magnitude indicators SSD, SD, D, SSI,
SI, and I. In the proposed method, S indicates multiplication by ten, and SS indicates
multiplication by one hundred.

• Sign: In the last element, the impact of the signal on the reward value is defined. If it
increases the reward value, it has a positive (P) sign (as a motivation for reward). A
negative (N) sign decreases the reward value (as a penalty for reward).

In order to quantify the strength, the test engineer can utilize domain knowledge about
the system and sensitivity information about the system. Domain knowledge provides
information about the importance and impact of the signal on the outcome that can be
used here. Besides domain knowledge, the test engineer can run multiple simulations
and gain system sensitivity information about each signal. Lastly, to build the custom
reward function, we can use the generic formula below that is based on the best practice
in [56,57,59]:

row=end

∑
row=1

Signal × Relation× Strength× Sign (3)

3.2.3. Fault Injection Models

In the proposed method, a domain expert must define the fault models for the existing
model under test. The fault models must be parameterized so that the RL agent can decide
the value, time, and possible place of the injected fault. These faults are often categorized
as data changing faults and are added as disturbances to the connections between different
parts of the model, e.g., sensors and controllers. The selection of a fault injection target
is based on the domain knowledge and priorities defined by the test engineer. If the test
engineer specified multiple fault locations, the proposed method injects them one by one
starting from a high-priority fault location. In each set of training, one fault in a single
location is elaborated. Example fault models are shown in Figure 3. The switch block enables
the RL agent to switch from the normal value to the faulty value. This model is a generic
fault representation of fault nature, enabling the safety engineer to have a permanent,
transient, and intermittent fault. The fault activation section subtracts the fault injection
time from the current time (ramp block) to check whether the activation time has elapsed.
If not, the output of the adder becomes positive, and the switch block conveys fault value to
the output.

The two fault models aim to change (the sensor) data and are very similar in activation;
however, they differ in how they change data. In Figure 3b, we see that a small noise is
added to the signal, while in Figure 3a, the fault value of port 1 is independent of the normal
signal value.
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(a) (b)

Figure 3. Fault models. (a) Fault model of data changing; (b) fault model of noise addition.

3.2.4. Agent Type Selection

Many RL training agents have been developed, such as policy-based, value-based,
actor–critic, model-free/model-based, etc. Model-free techniques are typically superior in
reinforcement learning’s current state-of-the-art if an accurate model is not provided as
part of the problem formulation. However, model-based agents that train their models for
planning face the issue of model inaccuracy, causing instability (the further in the future the
agent examines, the more inaccurate the results become). Choosing the RL agent depends
on the definition of the case study. The first distinction is based on the action space, whether
it is a discrete (e.g., up, down, etc.) or continuous (e.g., traveling at a specific velocity)
action. For this purpose, guidelines are offered in Table 1.

Table 1. State-of-the-art model-free RL agents.

Agent Type Action Space

Q-Learning Agents (Q) [60] Value-Based Discrete
Deep Q-Network Agents (DQN) [61] Value-Based Discrete

Policy Gradient Agents (PG) [62] Policy-Based Discrete or Continuous
Actor–Critic Agents (AC) [63] Actor–Critic Discrete or Continuous

Advantage Actor–Critic Agents (A2C) [64] Actor–Critic Discrete or Continuous
Proximal Policy Optimization Agents (PPO) [65] Actor–Critic Discrete or Continuous

Deep Deterministic Policy Gradient Agents
(DDPG) [66] Actor–Critic Continuous

Twin-Delayed Deep Deterministic Agents (TD3) [67] Actor–Critic Continuous
Soft Actor–Critic Agents (SAC) [68] Actor–Critic Continuous

The most popular agents used in the agent structure are deep neural networks due to
their ability to encode complicated behaviors, allowing reinforcement learning to be used
in situations that are difficult to tackle with standard agents. This aids fault injection in the
exploration stage of finding a sequence of faults. We only focus on using neural nets as the
structure of the agent.

As in research, we recommend starting with a simple agent. Researchers should utilize
more complicated algorithms if they cannot reach the desired outcomes. For example, an
appropriate agent to start within a continuous action space is the DDPG. Then we have TD3,
an improved and more complex version of DDPG. Next, SAC is a more complex version
of DDPG that generates stochastic policies. In addition, PPO has more stable updates but
requires more training. We described the DDPG algorithm in Appendix A as an example.
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Each RL agent has multiple parameters to configure the agent and neural network
in the agent [69], as well as training parameters. These hyperparameters have an enor-
mous impact on the training result. In research, it is recommended to start with default
hyperparameters or to find an appropriate RL agent in a similar application and utilize its
hyperparameter. However, this method is not likely to find a pre-trained agent. Hyperpa-
rameter optimization is a solution to tackle this problem. Hyperparameter optimization
techniques are mainly based on random and grid searches to explore the parameter space,
and then they provide a set of values that increase the RL agent’s efficiency.

3.3. Experiment Composition

During the composition of the model, the different components of the experiment
are combined. This includes the agent–environment interface and the environment model
that consists of the model under test in the running scenario. For reasons of run-time
performance and generality of the approach, we convert the agents’ environment model
(which is the Simulink model of our use case with a fault model, reward signal, action, and
observation signal) to a functional mock-up unit (FMU). An FMU is a black-box unit in
the functional mock-up interface (FMI) standard [45]. The FMI is a standardized interface
for developing complicated cyber-physical systems in computer simulations. The FMI
standard allows for the exchange of models between different platforms and enables us
to be independent of Simulink software and any other tool. This makes the proposed
approach generic, and the proposed method can be applied to a wider range of tools
and applications.

The architecture of the model, together with the reinforcement learning architecture
and configuration, need to be combined into a single executable model. In our experiment
in Section 4, we perform model composition manually; however, it can be automated via
model transformation techniques. More information on composting models using model
transformation techniques can be found in [70].

Finally, we connect the exported FMU model to the RL agent via a wrapper. This
wrapper allows the RL agent to interface with the FMU in a standardized structure. If
multiple fault locations or fault types are specified, the RL agent performs space exploration
serially. It starts with the first location and injects the predefined fault type, considering its
boundary. Then, it moves to the second one and performs all simulations one by one.

3.4. Hyperparameter Tuning, Training, Data Processing, and Visualization

Once the reinforcement learning setup is ready, the training phase commences. Algorithm 1
details implementation of the proposed method. First, the user chooses to perform hy-
perparameter tuning or to use the default parameters of the RL agent. In the case of
performing hyperparameter tuning, the proposed method loads all possible parameters
and then returns the best parameters. Next, it starts training using gained parameters in
the previous step. In training, the proposed method advances step by step in both the RL
agent and the environment FMU until a predefined timestep. During training, the RL agent
explores the fault space to find an optimal sequence of faults that fail the model under test.
Training data are recorded for each trained agent so that performance can be evaluated.
The trained agent is then selected for deployment through the fault-injection method [71].
Finally, we can see the results in tabular format and in rendered graphs.



Sensors 2023, 23, 2166 15 of 32

Algorithm 1 Algorithm of the proposed approach.

Rewards = [“Specification”, “Custom”, “STL”]
2: RLAlgorithms = [PPO, SAC, A2C, DDPG, TD3]

Set the TimeSteps
4: for Reward in Rewards do

for RLAlgorithm in RLAlgorithms do
6: Env← FMU of the RL environment with Reward

if HPT==True then
8: param←HPT(RLAlgorithm, Reward, Env)

else
10: param← default RLAlgorithm parameters

end if
12: Reset Env

TRAIN(RLAlgorithm, Env, param)
14: Save the RL agent and execution time

Inject the critical fault
16: Save the outcome

Render the RL agent
18: end for

end for
20: function TRAIN(RLAlgorithm, Env, param)

RLAgent← RLAlgorithm with the param
22: while end of TimeSteps do

Advance one step in RLAgent
24: Normalize action signals

Advance one step in Env . DoStep in its FMU
26: Normalize observation signals

Assign the observation sig. and reward to RLAgent
28: Save reward, observation and action signals

end while
30: end function

function HPT(RLAlgorithm, Reward, Env)
32: params← parameters of RLAlgorithm

for param in params do
34: Reset Env

Train RLAlgorithm with param, Reward, Env
36: Save the reward value

end for
38: return param with the maximum reward value

end function

4. Experimental Study

This section briefly explains our case studies. We use our case studies to validate
our approach. Then, we elaborate on our setup to validate and test the proposed method.
Finally, we illustrate the result of the proposed method.

4.1. Case Studies

We used two case studies to evaluate our method: an adaptive cruise control (ACC)
system and an autonomous emergency brake (AEB) system. ACC will be used as a
motivating example for domain knowledge extraction and application of the method in
Section 4.2.
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4.1.1. Adaptive Cruise Control

ACC is a driving assistant system that controls vehicle speed in response to conditions
on the road [72]. We used MATLAB/Simulink ACC in [73] as an initial case study. This
case study contains an ACC model of an ego vehicle that follows a lead vehicle as shown in
Figure 4.

Figure 4. Adaptive cruise control-model operational modes.

In this control algorithm, there are two vehicles, named the leading vehicle and the ego
vehicle, as shown in Figure 4. ACC is implemented in the ego vehicle that follows the lead
vehicle. The lead vehicle follows a predefined speed profile in different scenarios. ACC has
two basic modes: speed-control mode and spacing-control mode. In speed-control mode, the
ACC tries to reach the predefined speed specified by the driver. Therefore, the controller
increases the speed while maintaining a safe distance. When the relative distance between
the lead vehicle and the ego vehicle is smaller than the safe distance, the ACC switches to
spacing-control mode. The controller decreases the velocity of the ego vehicle to increase
the relative distance and avoid a crash. The ACC calculates the relative distance from and
velocity of the lead vehicle using sensor data from the ego vehicle, as shown in Figure 5.
Then, the ACC calculates an acceleration signal that changes the speed of the vehicle.

Figure 5. Adaptive cruise control model.

The ACC system is safety critical, as any failure in this system can lead to an accident
and could endanger human life. The ego vehicle must maintain a safe distance to avoid
accidents by slowing or stopping when the leading vehicle performs a slowing or stopping
maneuver. An example safety specification is given as follows:

Sa f ety Spec. : sa f e_distance ≥ relative_distance; (4)

In Equation (4), the minimum safety spacing for the longitudinal vehicle is the essence
of the safety requirement. This article uses a simplified safe distance that is a constant value
during the simulation. If the relative distance is equal to or greater than the safe distance,
we are in a safe driving situation.

4.1.2. Autonomous Emergency Braking

Autonomous emergency braking (AEB) is an active safety system that helps drivers
avoid or minimize collisions with vulnerable road users or other vehicles. Autonomous
emergency braking systems increase safety by (i) avoiding accidents by recognizing danger-
ous situations early and alerting the driver and (ii) reducing the collision speed to decrease
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the severity of unavoidable collisions. In this article, we use the AEB model with sensor
fusion taken from MathWorks in [74].

The AEB model contains a vision sensor and radar sensors to identify the potential
of a collision with the lead vehicle (the vehicle in front of the ego vehicle). This model
represents the functionality of a real-world AEB.

The controller has a forward collision warning (FCW) subsystem that warns the driver
of an imminent collision with a leading vehicle. In addition, the controller calculates the
time to collision (TTC) with the lead vehicle. If the time for TTC is less than the calculated
FCW, the FCW warning is activated. In this situation, if the diver does not break in time,
the AEB model prevents or mitigates the accident independently of the driver. The AEB
model applies cascaded braking, as shown in Figure 6. This figure shows that multi-stage
partial braking followed by full braking occurs to reduce the vehicle’s speed.

Figure 6. Autonomous emergency braking model modes.

Autonomous emergency braking is also a safety-critical system and must be reliable.
The safety specification of this system is to not collide with the lead vehicle. In case of
an accident, the AEB must decrease the vehicle’s velocity. Therefore, the severity of the
accident is minimized. Further information about the AEB model can be found in [75].

4.2. Domain Knowledge for ACC

This section guides the user on how to extract domain knowledge in detail. This
knowledge will be used to set up the RL experiment in Section 4.4. In this section, we use
ACC as a motivating example to show how to apply the proposed technique in a case study.

4.2.1. Define Action and Observation Signal

For the ACC case study, the following domain knowledge is collected:

• Signal boundaries: the relative distance (relative distance = position of ego car −
position of lead car) is between 0 and 200 m; the velocity is between 0 and 30 m per
second; and the acceleration is between −3 and 2 m per square second;

• Model architecture: two models define the control algorithm: a spacing control model
and a speed control model; there are two sensors such as acceleration and radar; and
there are two important signals such as velocity and relative distance;

• System specification: Sa f ety distance ≥ Relative distance and
robustness = Relative_distance− Sa f e_distance.

• Running scenario: at the beginning of the simulation, the acceleration of the vehicle is
increased and then decreased;

• Simulation configuration: a fixed-step solver is used with a step-size solver of 0.1 s.

According to the above information, we form Table 2. This table shows our case
study’s domain knowledge for action signals. Action signals control fault parameters,
which are the link between the RL agent and the fault model (as shown in Figure 7). The
first two columns of Table 2, indicate the fault location. These signals are part of the model
under test and are those signals to which fault injection actions must be applied. In this
paper, for simplicity, we only simulate fault in a single location in the model under test in
the velocity signal (first row of the table). This signal is the output of the ego vehicle stated in
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the first column. Therefore, the RL agent tries to change the velocity signal data in all time
steps. The fault type in Table 2 refers to a fault model that must be defined and added to
the model under test.

Table 2. Domain knowledge for action signal.

System/Subsystem Signal Name Fault Type Fault Range

Ego Vehicle Velocity Data change [−3, 2]
Sensor Radar Noise [−1, 1]
Sensor Acceleration Noise [−2, 2]

Controller Relative Distance Data change [0, 200]

Table 3 shows our case studies’ domain knowledge for choosing observation signals
according to the information in the model architecture. Based on this table, we have chosen
all four signals (shown in Figure 7) as observation signals.

Table 3. Domain knowledge for observation signals.

System/Subsystem Signal Name Range

Controller Safe Distance [0, 50]
Controller Relative Velocity [0, 200]

Sensor Longitudinal Velocity [0, 60]
Sensor Lateral Velocity [0, 10]

4.2.2. Reward Shaping

We use domain knowledge to shape three different reward functions in this section.
Specification-Based Reward. According to the safety specifications, we can define a

simple reward function as follows: Reward_Value = Sa f ety distance− Relative distance
STL-Based Reward Function for the ACC. The robustness of the case study is modeled

using STL as follows:

Robustness = G[0, 30](Relative_dist.− Sa f e_dist.) (5)

The robustness formula defines the difference between relative and safe distance
during simulation monitoring (between 0 and 30 s). If this difference becomes greater,
the ACC becomes more robust. To convert robustness into a reward function, we use the
Reward_Value = −Robustness formula. In this way, the RL agent is motivated to lower the
robustness and fail the ACC.

Custom Reward Knowledge for the ACC. Table 4 represents the domain knowledge for
reward shaping of the ACC case study. A safety specification is defined as shown in
Equation (4), which depends on the relative distance. Hence, the user defines the relative
distance as a variable/signal. Another variable is velocity, as the engineer aims to motivate
the vehicle to move faster. In addition, engineers specify time as a penalty in the table so that
the RL agent is motivated to fail the model faster. As it is known that the relative distance
has a profound impact on the reward value, the (test) engineers specify S in the second
column. This S indicator will be translated into multiplication of the signal by a factor of
10. We reached this number based on practical experience. In addition, the safety engineer
defines D here to show the direct relation. It indicates that a higher reward value accrues
if the relative distance increases. In the last column, the P sign indicates that the reward
value will increase for the given relation, and the N sign does the opposite. Therefore, the
custom reward is as follows: Custom Reward = −10× (Rel. Dist.) + Velocity− Time.

4.2.3. Fault Injection Models

We use the fault model and velocity signal shown in Figure 3a. In this model, the
agent controls the fault’s activation time and amplitude in each simulation step.
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Table 4. Domain knowledge for reward shaping.

Variable/Signal Relation and Strength Sign

Relative Distance SD N
Time D N

Velocity D P

4.2.4. Agent Type Selection

As the reward signal is continuous, the agent’s configuration is performed accordingly.
In the section on the experimental study, we use different configurations.

4.2.5. Experiment Composition

Figure 7 illustrates the composed experiment model. The original model is marked
in brown. Faults injected into the model are marked in red, whereas green parts are
added to connect the model under test to the RL agent at the bottom. The proposed
method automatically uses the given information (based on domain knowledge) to build
the experimentation model.

Figure 7. Fault injection setup for ACC using RL.

4.2.6. Training, Data Processing, and Visualization

In the training phase, the agent injects faults into the velocity signal, and during
iteration, it tries to fail the ACC model. Training data and trained agents are recorded and
analyzed for the list of successful agents. Finally, we connect successful agents to the ACC
and validate and visualize the ACC behavior. All results are represented in Section 4.4.

The next section will demonstrate the experimental setup to execute fault space exploration.

4.3. Experimental Questions and Experimental Setup

In this experimental study, we try to answer two questions: (1) How does the con-
figuration of the experiment (such as agent type and reward type) impact the results of
finding faults? and (2) How does the reinforcement learning-based method compare to a
random-based fault injection method?

We answer the first research question by setting up several experiments. For each use
case, we vary (a) three reward functions based on safety specifications, signal temporal logic,
and a custom reward; (b) five different reinforcement learning agents (SAC, DDPG, A2C,
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PPO, and TD3)—since they are state-of-the-art agents for continuous decision making, they
are categorized as actor–critic and deep RL; and we (c) allow or disable hyperparameter
tuning. As such, we have 3× 5× 2 = 30 experiments. Additionally, we used different fault
models in our case studies to test their impact on our proposed method. We utilized the
change in data as a fault model for ACC and the noise as a fault model for AEB.

We used random-based fault injection (RBFI) as the baseline to answer the second
research question. Random-based fault injection uses a uniform distribution and selects
a value for each simulation step. In random-based fault injection, fault parameters are
randomly selected within a defined range in the action table. To compare our method
with random-based fault injection, we use the following metrics in our study: (a) the total
number of catastrophic faults, (b) the severity of found faults, and (c) execution time. The
severity of the found fault is based on safety violation amplitude. For both the ACC and
AEB use cases, we consider −1× robustness as the severity of the faults.

Hardware configuration has an enormous impact on the method execution time. The
results of the experiments are obtained using a personal computer with 24 cores (AMD
Ryzen 3970x CPU), 32GB RAM, and a 4GB GPU. For the reinforcement learning agent,
we use Python v3.8, OpenAI Gym v0.21.0 [76], Optuna v2.10.0 [77], and Stable-baseline3
v1.3.0 [78]. All experimental results, including the models of both case studies, Python
code, and recorded data, are publicly available in [75]. The default hyperparameters for
each algorithm are shown in Appendix B.

4.4. Results

In this section, we demonstrate the result of our method in both the ACC and AEB
case studies. Table 5 shows the training time for the proposed method in both case studies.
In each reinforcement learning experiment, we iterated 100 times (episodes). The proposed
method performs time-consuming training. It needs more time in the case of hyperparame-
ter tuning (HPT), since it needs to try numerous parameters in the RL agent. One iteration
in random-based fault injection (RBFI) is fast, but we tremendously increased the number
of simulations to ensure that the RBFI method takes the same execution time. Accordingly,
we had two modes for RBFI. The first mode was small mode. We repeated the simulation
almost 70,000 times (almost six hours of execution time) to make its results comparable to
reinforcement learning experiments without hyperparameter tuning. The second mode
was the large mode. We increased the number of iterations to almost 450,000 times to reach
almost equal hours to reinforcement learning with hyperparameter tuning.

Table 6 illustrates that the proposed method in the ACC case study found ten critical
faults both in cases using hyperparameter tuning and without HPT. However, the RBFI
in small mode was unable to find any catastrophic faults, and in large mode it found one
fault. In the AEB case study, the RBFI in small mode could not find any fault but found
three faults in large mode. The proposed method in the AEB discovered one fault when it
did not use HPT, and it found six faults in the case using HPT. Furthermore, in the ACC
case study, hyperparameter tuning did not increase the total number of catastrophic faults,
while in the AEB, it was effective and could increase the total number of found faults.

Table 5. Execution time of the experiment.

Use Case RL without HPT RL with HPT

ACC 5.8 h 114.8 h
AEB 5.9 h 155.7 h

Table 6. Number of found fault.

Use Case RL without HPT RL with HPT Small RBFI Large RBFI

ACC 10 10 0 1
AEB 1 6 0 3
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In both case studies, the execution time of reinforcement learning without HPT and
RBFI in small mode was equal; however, reinforcement learning outperformed RBFI. In
addition, the execution time of reinforcement learning with HPT was equal to RBFI in large
mode, and Table 6 shows that the proposed method again outperformed RBFI.

An example of the found fault is shown in Figure 8, which shows a catastrophic
dynamic fault that failed the model specification. We can see that the fault value and
activation reached a maximum value at two points during the simulation. This fault pattern
increased the reward value, meaning that the RL agent converged on its goal. In Section 4.5,
we will observe the result of injecting such a catastrophic dynamic fault on the vehicle in
the ACC.

Table 7 represents the maximum severity of the faults in RBFI and the proposed
method. The severity value indicates the severity of missing specifications in both ACC
and AEB between the two cars. In the ACC case study, the severity level of found faults
using the proposed method was more prominent than the severity of found faults in RBFI;
however, in the AEB case study, RBFI found faults with higher severity than the proposed
method, but the difference is negligible.

Figure 8. Fault value and activation time of trained agent.

Table 8 shows the total number of faults found per each RL agent’s algorithm in two
cases using the default hyperparameter (HP) and tuned hyperparameter (HPT). In the ACC
case study, when we utilized the default hyperparameter, A2C was more effective than oth-
ers, while if we used a tuned hyperparameter, the TD3 algorithm worked better. TD3 is an
advanced form of DDPG, and it can handle a more complex environment. Except for DDPG
with the default hyperparameter, we can see that all algorithms could find catastrophic
faults in ACC cases, either with the tuned hyperparameter or default hyperparameter. In
the AEB case study, A2C is also the best performing algorithm, and hyperparameter tuning
increased its effectiveness. We can see the effectiveness of hyperparameter tuning on TD3
and DDPG; without hyperparameter tuning, they could not find any fault.

Table 7. Maximum severity of the found fault.

Use Case RL without HPT RL with HPT Small RBFI Large RBFI

ACC 118.5 136.1 - 8.28
AEB 1.34 1.34 - 1.92
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Table 8. Comparison of RL agents in finding faults in ACC.

Use
Case

SAC-
Default

HP

SAC-
with
HPT

DDPG-
Default

HP

DDPG-
with
HPT

PPO-
Default

HP

PPO-
with
HPT

TD3-
Default

HP

TD3-
with
HPT

A2C-
Default

HP

A2C-
with
HPT

ACC 2 3 2 0 1 2 1 4 4 1
AEB 0 0 0 1 0 0 0 1 1 4

More information about the effect of hyperparameters on reward types in ACC, and
the effect of reward types on the RL algorithms in ACC, can be found in Appendix C.

4.5. Validation

We attached the trained agent to the environment on the ACC use case to validate
its result. Figure 8 represents the action signal, such as the fault’s value and activation
time, and the reward value to a trained agent that found a catastrophic fault. Discovered
catastrophic fault creates a failure for the ego vehicle in ACC. Vehicle behavior is presented
in Figure 9. We can see that the vehicle’s acceleration is above zero, so its velocity eventually
increases until 30 s, when safe distance equals relative distance. Then, the acceleration value
becomes −2.5, meaning that the vehicle wants to slow down, while the safety specification
becomes a negative number. Meanwhile, the reward value increases and becomes a positive
number at the end of the simulation time.

Figure 9. Result of the FI with the trained agent on ACC.

4.6. Threads to Validity

Following the criteria given in [79], we discuss the challenges to validity in this
section. Construct Validity. In this experiment, we simplified the severity level of fault
by considering the magnitude of violating the safety requirement; on the contrary, in the
real world, severity has a broader meaning. In addition, we limited the experiment to one
model requirement, which is a safety requirement. By extending the simulations, some
injected faults may not influence the defined safety requirement, but they can influence the
accuracy of the intended function. For simplicity, we ignored those faults and focused on
one model requirement.
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Internal Validity. The experimental result depends on the underlying hardware or
software, such as a toolkit, CPU, GPU, predefined domain knowledge, and a number of
iterations of the experiments. All experiments are run on the same configuration, and each
is run three times. In addition, we used both the safety specifications and extra information
about the model under test for shaping the custom rewards. Different developers may
select different types of information based on their perceptions. This selection affects the
result, as the reward function is vital to exploring the RL agent. It can impact the accuracy
and efficiency of the agent. Furthermore, the fault model is vital, and selecting a different
model generates different results. Therefore, fault models and their parameters must be
selected on the basis of real-world phenomena.

External Validity. In order to check the generalizability of the proposed method, we
applied the method to two case studies. The proposed method has adequate results
compared to random-based fault injection. In each case study, we used different fault
models with different settings and observed that the proposed method achieved valid
results. Note that the proposed method needs to be configured differently for different
case studies, and safety engineers cannot apply the trained agent from one case study to a
different case study. To mitigate this threat, performing hyperparameter tuning is essential
to the workflow. Additionally, the complexity of both case studies is almost equal, and our
results might not hold for highly complex case studies within a few hours of simulation.
However, the RL agent, with extra time and iteration, can reduce this thread.

5. Discussion

Our experimental study shows that (a) the configuration of the experiment impacts the
results of the proposed method and (b) the proposed method can find catastrophic fault in a
semi-automatic setup and outperform random-based fault injection. The proposed method
combines fault injection, reinforcement learning, and high-level domain knowledge. The
RL agent utilizes domain knowledge to quickly and effectively find catastrophic faults in
the system model. Domain knowledge helps in configuring the reinforcement learning
and fault injection campaign. The proposed method discovered catastrophic faults in
multiple case studies and outperformed the random-based method. However, the proposed
method is time-consuming compared to random-based fault injection in a single-point fault
injection simulation.

In the proposed method, each reinforcement learning agent focuses on finding high–
severe catastrophic faults rather than the number of catastrophic faults. It aims to increase
the severity of the fault in each iteration. The user needs to repeat the training, adjust the
method’s setting, or add known faults as a penalty to reward function for finding more
faults. The proposed method has the following benefits: No need for static data. The agent
can learn with dynamic interaction with the environment and does not need any data
set. This enables the proposed method to work in a system model with no experimental
data available, while machine learning-based methods need a considerable static data set
for training.

Suitability for the complex environment. The agent has a high controller ability and can
handle many parameters in uncertain and nonlinear environments. It allows the proposed
method to explore a broad space and converge on an outcome. In contrast, statistical
methods cannot handle such complicated problems, as a system operates in a complex
stochastic environment, and a catastrophic fault follows a concrete pattern [38].

Generalizability and flexibility. The agent needs a reward function, action signals, and ob-
servation signals to interact with the environment. Therefore, if the case study is observable
(accessible) for the agent, one can use the proposed method. This method can be applied
to multiple levels of abstraction, from the system’s model to software and hardware. It
can also be applied to the black-box system if the essential signals are provided. On the
contrary, flexibility is low in methods based on historical data, domain knowledge, machine
learning, and system abstraction. They cannot be extended to black-box systems or can
only be applied to the system under test at a specific abstraction level.
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Extendability. The proposed method can be extended to other applications, such as
scenario-based testing, fault diagnosis, robustness analysis, and dependability analysis.
Finding unknown faults is a fundamental problem in many mission-critical and dependable
applications. Nonetheless, except for statistical methods, all the described methods in
Section 2 are designed for a narrower scope, and extending them to a broader scope
requires more effort.

No need for detailed domain knowledge. The proposed method benefits high-level domain
knowledge to configure the agent. The detailed nature of the system is not necessary,
and having insight into the functionalities of a system under test is sufficient. All of the
state-of-the-art methods are discussed in Section 2, except that statistical methods need
detailed knowledge about the system under test and labor that increases the cost and makes
fault identification error-prone.

The proposed method has the below limitations despite its benefits and effective results:

• High computation cost in training and tuning: The agent requires simulation trials
to reach the appropriate hyperparameter and iteration in training to converge on the
desired result.

• Appropriateness of the domain knowledge: The test engineer needs accurate and
sufficient information to set up the agent and framework. The agent will face an
enormous or wrong fault space if the data are incorrect or abstract.

• Dependency of result to toolkits, hardware, and the number of iterations: The pro-
posed framework’s result varies if one uses a different CPU, GPU, or software, espe-
cially in terms of execution time.

• No performance guarantee, and training may not converge: Discovering dynamic
faults depends on the proper agent and experiment configuration. Therefore, if the
agent could not find any fault, it does not mean there is no possible fault. Some
adjustment and iteration of the agent leads to outcomes.

Some of the above limitations originate from the nature of machine learning. For
example, most machine learning algorithms are computationally intensive, and there is no
guarantee of reaching the desired result. Hyperparameter tuning can help achieve desired
outcomes but adds a computational cost. The experimental results in Section 4 illustrate that
hyperparameter tuning increases the total number of faults and execution time. Moreover,
hyperparameter tuning decreases the framework’s dependency on different use cases. By
switching to a different case study, hyperparameters need to be adopted that overcome
this obstacle.

In the scope of testing and system debugging, there is always a trade-off between the
level of domain knowledge and the performance of methods. Detailed domain knowledge
improves efficiency and execution time, but it requires the involvement of experts and a
lot of labor before running the experiment. The proposed method is more focused toward
involving less labor; therefore, the agent needs to explore a broader space, leading to a long
execution time.

Another point is that debugging the system is subjective. There is no answer to how
many faults remain. Testing all data values is impractical, and 100% coverage is not fully
tested in the best case. Moreover, positively passing tests are not perfectly safe and bug-free.
This method can discover faults one after another, and repeating them makes the final
system more reliable.

The proposed method is based on deterministic safety requirements; however, the
safety requirements can be probabilistic. For example, the likelihood of a certain type of
crash occurring must be below a certain percentage. In this case, the test engineer can still
define the safety requirement in a deterministic manner to encourage the RL agent to find
catastrophic faults that violate the safety requirement. In this manner, the catastrophic
faults found fail both the deterministic and probabilistic safety requirements.
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System hierarchy and composition of the system can impact the fault injection method.
When designing a system (e.g. following the V-model or other model-based system engi-
neering workflows), in the early stages, engineers can use the models to discover different
catastrophic faults in advance. This information flow can be used as domain knowledge
throughout the workflow (and further detailing) of the design to better conduct fault in-
jection experiments. When transferring to a more silo’ed design phase of the subsystems
and components, the system under test changes to the subsystem or component. Similarly,
information about this specific domain can be employed as domain knowledge in subse-
quent experiments. When integrating, the opposite should be done. Information about
faults can propagate upwards to the system level and be utilized to identify catastrophic
faults at that level. This introduces some interesting challenges as to how to automatically
propagate this information between the different levels of abstraction.

Furthermore, multiple-point fault injection can be studied using the proposed method.
In this paper, single-point fault injection has been studied in case studies, but in the real
world, multiple-point faults can accrue. In this case, the agent can control various faults at
different locations in the system under test using multiple action signals. Therefore, the
agent needs to explore the larger fault space to find a combination set of dynamic faults.

Extra information such as sensitivity information on signals, historical test data, results
of fault tree analysis (FTA), and failure mode effect and critically analysis (FMECA) is
extremely beneficiary as is used for pruning the fault space and achieving a more accurate
configuration of the reinforcement learning agent in a later stage.

6. Conclusions

We proposed a semi-automatic method to find dynamic catastrophic faults in a model
under study. In this method, we used a reinforcement learning agent to control a fault
injection experiment and high-level domain knowledge to configure different parts of the
reinforcement learning agent and the fault injection campaign. We provided a guideline
for users to use the method and correctly set up fault injection experiments. We compared
the result of the proposed method to random-based fault injection in two case studies,
and the proposed method outperformed random-based fault injection in terms of severity
and the number of found faults. In addition, our experiments showed that the result
of the proposed method depends on the selected reinforcement learning agent and the
reward function.
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Abbreviations
The following abbreviations are used in this manuscript:

A2C Advantage Actor Critic
AC Actor–Critic
ACC Adaptive Cruise Control
AEB Autonomous Emergency Braking
CPS Cyber-Physical System
CPU Central Process Unit
DDPG Deep Deterministic Policy Gradient
DQN Deep Q-Network Agent
FCW Forward Collision Warning
FI Fault Injection
FMEA Failure Mode and Effect Analysis
FMECA Failure Mode Effect and Critically Analysis
FMI Functional Mock-up Interface
FMU Functional Mockup Unit
FTA Fault Tree Analysis
GB Giga Byte
GPU Graphics Processing Unit
HP Hyperparameter
HPT Hyperparameter tuning
MDP Markov Decision Process
ML Machine Learning
MUT Model Under Test
NN Neural Network
PG Policy Gradien
PPO Proximal Policy Optimization
RAM Random Access Memory
RBFI Random-Based Fault Injection
RL Reinforcement Learning
SAC Soft Actor–Critic Agent
STL Signal Temporal Logic
SUT System Under Test
TD3 Twin-Delayed Deep Deterministic
TTC Time-To-Collision
VHDL Very High-Speed Integrated Circuit Hardware Description Language

Appendix A. DDPG Algorithm’s Pseudo-Code

The DDPG algorithm’s pseudocode [66] is implemented in Algorithm A1. The pseu-
docode shows the most critical steps in the RL algorithm as (i) initialization, (ii) iteration
in episodes, and (iii) exploration loop. The underlying neural network and buffers are set
up in the initialization phase. Next, the RL algorithms need iteration training (the first
for-loop), and within each iteration, the RL agent explores the space. The exploration
chooses an action, observes the reward value and observation signal, and finally updates
the underlying neural network. These steps are similar in all RL agents, but they differ in
implementation detail.
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Algorithm A1 DDPG algorithm.

Initialize critic network randomly Q
(
s, a | θQ) and actor µ(s | θµ) with weights θQ and

θµ.
Initialize both target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

Initialize replay buffer R
for episode = 1, M do

Initializing a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Choosing action at = µ(st | θµ) +Nt according to the current policy and explo-
ration noise

Performing action at and examine reward rt and observe new state st+1
Record transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′

(
si+1, µ′

(
si+1 | θµ′

)
| θQ′

)
Update critic by minimizing the loss: L = 1

N ∑i
(
yi −Q

(
si, ai | θQ))2

Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a | θQ

)∣∣∣∣∣
s=si ,a=µ(si)

∇θµ µ(s | θµ)

∣∣∣∣∣∣
si

Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

Appendix B. Default Hyperparameters

In our experiment, we use default hyperparameters of the RL algorithms as shown in
Table A1. The RL algorithms used have more parameters for tuning. However, Table A1
lists the most important ones.

Table A1. Default RL agent’s hyperparameters.

Algo Policy Lambda/Tau Gamma Learning Rate Batch Size

A2C MlpPolicy 1.0 0.99 0.0007 5
SAC MlpPolicy 0.005 0.99 0.0003 256

DDPG MlpPolicy 0.005 0.99 0.001 100
TD3 MlpPolicy 0.005 0.99 0.001 100
PPO MlpPolicy 0.95 0.99 0.0003 64

Appendix C. Results

Appendix C.1. Severity of Found Faults

Figure A1 shows that in all RL algorithms except DDPG, hyperparameter tuning helps
to find more severe faults. The severity level with hyperparameter tuning is between 100
and 150, while with default hyperparameters, it is mostly less than 100, except for the A2C
algorithm. In the AEB case study, all found faults were equal in severity level. Hence,
hyperparameter tuning has no impact on severity in this use case.
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Figure A1. Severity level of found faults on the RL algorithms when we use default hyperparameters
and when we use tuned hyperparameters on ACC.

Appendix C.2. Effect of Hyperparameters and Reward Type on Number of Found Faults

Table A2 presents the impact of hyperparameters on the reward function for the case
studies. The custom reward with default hyperparameters has the best outcome in the ACC
use case. Hyperparameter tuning has an equal or better result for the specification and STL
rewards. In the AEB use case, hyperparameter tuning positively impacts results, especially
on the STL and custom-based rewards.

Table A3 indicates the impact of reward type on each reinforcement learning algorithm
for each case study. SAC with a custom reward has the best result in the ACC use case. In
addition, except PPO, in all algorithms, the custom reward leads to the best result, and the
STL-based reward has a better result than the specification reward. However, in most cases,
the specification reward function can find catastrophic faults. In the AEB, the STL-based
reward is largely the best reward type.

Table A2. Result of hyperparameters on reward type on ACC.

Use Case Specification-
No HPT

Specification-
with HPT

Custom-
No HPT

Custom-
with HPT STL- No HPT STL- with HPT

ACC 1 2 6 5 3 3
AEB 1 1 0 2 0 3

Table A3. Result of reward types on the RL algorithms on ACC.

Use
Case

A2C
Spec.

A2C
Cus.

A2C
STL

DDPG
Spec.

DDPG
Cus.

DDPG
STL

PPO
Spec.

PPO
Cus.

PPO
STL

SAC
Spec.

SAC
Cus.

SAC
STL

TD3
Spec.

TD3
Cus.

TD3
STL

ACC 1 2 2 0 2 0 1 0 2 0 5 0 1 2 2
AEB 1 1 2 0 0 1 0 0 0 0 0 0 0 1 0

Appendix C.3. Additional Example of Faults

In Figure A2, we illustrated the agent’s signal during training. The action0 corresponds
to fault value, and the action1 corresponds to fault activation time. We can see both signals
have high values, and this leads to a critical fault, since the reward value increases at the
end of the simulation.
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Figure A2. Example of other faults.
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