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Abstract: With the development of mobile communications and the Internet of Things (IoT), IoT
devices have increased, allowing their application in numerous areas of Industry 4.0. Applications
on IoT devices are time sensitive and require a low response time, making reducing latency in
IoT networks an essential task. However, it needs to be emphasized that data production and
consumption are interdependent, so when designing the implementation of a fog network, it is crucial
to consider criteria other than latency. Defining the strategy to deploy these nodes based on different
criteria and sub-criteria is a challenging optimization problem, as the amount of possibilities is
immense. This work aims to simulate a hybrid network of sensors related to public transport in the city
of São Carlos - SP using Contiki-NG to select the most suitable place to deploy an IoT sensor network.
Performance tests were carried out on five analyzed scenarios, and we collected the transmitted data
based on criteria corresponding to devices, applications, and network communication on which we
applied Multiple Attribute Decision Making (MADM) algorithms to generate a multicriteria decision
ranking. The results show that based on the TOPSIS and VIKOR decision-making algorithms, scenario
four is the most viable among those analyzed. This approach makes it feasible to optimally select the
best option among different possibilities.

Keywords: fog computing; hybrid sensor network; multi-criteria decision making

1. Introduction

A Wireless Sensor Network (WSN) is composed of devices connected to the Internet
of Things (IoT) with different constraints, such as memory, energy consumption, scalability,
and network robustness. All these devices have specific communication roles and functions
that define the network, also known as Low-Power and Lossy Network (LLN). They can be
introduced in different layers of connectivity: cloud, fog, edge, or IoT devices [1].

Figure 1 shows responsive, ubiquitous, and mobile devices at the edge of the network
(Edge Computing) that respond as events occur, from simple sensors and actuators to
others provided with more robust computational capabilities. The connectivity between
the IoT layer and the fog layer requires less computational power than the connectivity
between the fog layer and the cloud.

The infrastructure, platform, and applications in fog are interrelated, and their respec-
tive computational characteristics are distinct between the layers. Together they represent
a stacked architecture in which the data is pre-processed locally and then diffused to the
adjacent upper layers.
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Figure 1. Conceptual Model of Communication Architecture. Adapted: [2].

Cloud computing is essential for IoT to be globally available and to increase its process-
ing capacity. However, it is possible to use fog computing architecture to provide services
while keeping latency low, reducing network load, and improving energy efficiency [3].

Fog computing has evolved as a promising solution that can bring cloud applications
closer to IoT devices near the edge of the network, which is a characteristic that contributes
to low latency and lower response time [4]. However, fog computing also introduces
constraints in this service layer, such as ensuring that its services are efficiently available to
different IoT devices since they have limitations and present new challenges regarding the
computational and energy resources used.

This increase in the number of built IoT devices has boosted research about appli-
cations for areas such as traffic surveillance [5,6], environmental monitoring [7,8], smart
cities [9–11], intelligent transport systems [12], and agriculture [13,14]. These applications
require a reconfigurable architecture and environments that require different computing
resources that can be used more efficiently at the edge of the network. Furthermore, ac-
cording to the authors [15], “the location selected to install sensors significantly affects the
amount of information extracted from the measured data”.

Several gateway architectures have been proposed over the years to manage multiple
sensors. However, performance concerns are related to high communication latency or vari-
ations in traffic load demands on networks generated through device mobility. Therefore,
some studies introduce IoT concepts with fog computing to deploy applications targeting
placement, distribution, scalability, device density, or mobility support [16].

Urban mobility services have as their essence the use of IoT technologies. Some
research focuses on proposing a model to select the correct subset of buses that maximizes
the coverage of a city [17]. Others solve linear optimization problems related to vehicles that
follow predetermined routes and, as a solution, propose strategies that use heuristics [18].
Finally, we can mention research that has the purpose of collecting data from sensors
coupled to buses [19].

Multi-attribute decision-making methods are widely used to solve problems of fog
node selection and fog gateway selection. Different Multiple Attribute Decision Making
(MADM) algorithms, including SAW, TOPSIS, and VIKOR, are used to compose a rank
among the existing alternatives.

In this work, we describe and analyze the application of the Simple Additive Weighting
(SAW), Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS)
and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) algorithms in metrics
related to network, application and IoT device. Thus, selecting the most viable place to
deploy a set of IoT sensors belonging to an LLN in fog for the public transport service of
São Carlos in São Paulo, Brazil, is possible.
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The selection of IoT devices often does not consider characteristics related to infras-
tructure, implantation strategies, or optimization metrics. As a result, our contribution
focuses on the following:

• Define the best location among the evaluated scenarios to install a set of IoT devices to
a network based on MADM methods.

• Maximize the supported data load of the proposed fog network for the urban mobility
scenario with low communication latency.

2. Related Work

Determining the most suitable location to install a set of IoT devices from a fog network
based on multiple criteria is both important and challenging. Because this particularity
directly impacts the efficiency of the fog network, making it possible to reduce costs
associated with its implementation and maintenance [20]. Considering aspects related to
processing power, energy consumption, and network communication are also essential.
Due to this context, research has been aimed at optimizing a single-objective value [21],
studies dealing with bi-objective values [22,23], and research dealing with problems that
include deciding on multiple objectives.

However, single-objective optimization proposes to optimize only one objective, while
several critical metrics can be underestimated. Therefore, we should consider multiobjective
optimizations for the real world to be applied in environments involving NP-hard problems.
In [24], a study is proposed for approaches based on services, resources, and fog applications
to be applied in smart cities. The authors list the most relevant metrics based on a revised
literary study.

Multicriteria decision-making algorithms (MCDM) solve problems involving a finite
number of alternatives according to the characteristics of each method. In the IoT context,
different MCDM techniques have been used. MADM approaches are applied in various
application domains; for example, in the article [25], the authors propose a strategy that
uses the Pareto Optimal technique to compare the selection quality of the SAW, TOPSIS,
and VIKOR algorithms related to specific criteria of IoT devices.

They are also commonly used to select cloud services; for example, in the article [26],
the authors apply MCDM methods to the problem of choosing geographic regions for the
Amazon Web Service cloud. In addition, a comparative analysis of the obtained ranking is
carried out and verified both the time complexity of the different MCDM methods applied
and the robustness of the classification methods. In the article [27], the AHP method is
used in conjunction with fuzzy logic to classify cloud services. A hybrid multi-attribute
decision-making (MADM) model is assigned to decrease the execution time of the ranking
of cloud services.

In the article [28], the authors propose an integrated MCDM approach based on TOP-
SIS and Best Worst Method (BWM) that uses evaluation criteria to classify the Cloud Service
Provider according to the fulfillment of the customer’s requirements. The article [29] fo-
cuses on problems that evaluate and rank IoT applications using AHP and SAW algorithms.
In the paper [30], the authors propose a more effective recommendation system to present
IoT applications. Initially, they apply the AHP algorithm to evaluate and classify IoT appli-
cations. Then they assign a sequential quadratic programming algorithm to automatically
find the optimal weight of the criteria and sub-criteria.

Other studies apply heterogeneous network selection mechanisms for the Internet
of Vehicles (IoV) [31], and others expose a comparative study between fuzzy AHP and
fuzzy TOPSIS techniques for the reliable and connected selection of cluster leaders in a
mobile wireless sensor network [32]. In the article [33], a hybrid decision-making algorithm
is implemented by merging the Fuzzy Analytic Hierarchy Process (FAHP) and Dynamic
Analytic Hierarchy Process (DAHP) algorithms to be applied to Intelligent Transport
Systems. Finally, we mention the article [34], which uses optimization methods for network
selection based on various criteria covering quality of service, mobility, cost, energy, battery
life, etc.
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When analyzing Table 1, we observed that MADM methods are applied in different
optimization problems over the available alternatives characterized by multiple, often
conflicting, attributes. This list is not comprehensive but only representative. We mainly
considered reviews or research articles in the context of our study.

Table 1. Summary of studies taken under consideration.

Reference Technique/Method Algorithms Main Criterion Metric/Parameters
of Evaluation Application Areas Year

Accountability -
Capacity
ElasticityAgility
Transparency
Availability
Interoperability
Service Stability
Serviceability

Assurance

Reliability
Cost Service Cost

Service Response Time
ThroughputPerformance
Accuracy

[27] Software based approach AHP
Fuzzy AHP

Security -

Cloud Service 2022

Services
Availability zone
Distance[26] Software based approach

AHP
PROMETHEE II

TOPSIS
VIKOR

Quality of Service (QoS)

Cost

Cloud Service 2021

Cost
Energy Consumption
InstallationSmart Objects

Interoperability
Availability
Ease of Use
Interface
Privacy

Application

Reliability
Customer Care
Reputation

[30] Software based approach
SQL Programming

SAW
ANP

Provider
Number of Customers

IoT Applications 2021

Energest CPUDevice Energest radio listen
Packets sent
Packets received
LatencyNetwork

Lost packets
Response time
Transfer rate

Proposed work Hardware and Software
based approach

SAW
TOPSIS
VIKOR

Software
Total transferred

Fog Service 2023

Sustainability
InteroperabilityPerformance
Service response time
MaintainabilityAssurance Reliability

Financial Cost
Security & Privacy Security Management

Agility Scalability

[28] Software based approach
AHP

Hybrid (TOPSIS &
Best-Worst Method)

Usuability Usuability

Cloud Service 2020

Battery
Price
Drift
Frequency
Energy Consumption

[25] Software based approach

SAW
VIKOR
TOPSIS

Pareto Optimal

Smart Objects

Response Time

IoT Devices 2016
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Table 1. Cont.

Reference Technique/Method Algorithms Main Criterion Metric/Parameters
of Evaluation Application Areas Year

Cost
Energy Consumption
InstallationSmart Objects

Interoperability
Availability
Ease of Use
Interface
Privacy

Application

Reliability
Customer Care
Reputation

[29] Software based approach AHP
SAW

Provider
Number of Customers

IoT Applications 2020

Delay
Packet loss rate
BandwithQoS

Jitter
Available load

[31] Software based approach AHP

Cost

Heterogenous Network 2021

Link Reliabililty
Connectivity
Remaining Energy
Distance to BS

[32] Software based approach Fuzzy TOPSIS
Fuzzy AHP Cluster leader

Speed

Cluster Leader
Selection 2019

Throughput
Delay
Jitter
PLR

Application

Energy consumption
Network load
Network coverage
Network connection timeNetwork

Available bandwidth
Battery levelDevice Mobility
Budget

[34] Survey

SAW
TOPSIS

Weighted Product Model
AHP
GRA

User preferences Cost

Network Selection 2019

Traffic flow
Average speed[33] Software based approach Fuzzy AHP

Dynamic AHP Congestion control
Occupancy rate

Intelligent Transportation
Systems 2016

3. Multiple Criteria Decision Making

Multi-criteria decision-making (MCDM) refers to choosing the best alternative among
a finite set of decision alternatives that are affected by different, often conflicting, multiple
criteria [35]. Based on the number of alternatives under consideration, the MCDM can be
classified into:

• Multi-Attribute Decision Making (MADM): It is suitable for evaluating discrete deci-
sion spaces with predetermined decision alternatives. The MADM approach requires
selecting a predetermined and limited number of decision alternatives. In addition
to sorting and ranking, MADM approaches can be seen as alternative methods for
combining information in a problem’s decision matrix with additional information
from the decision maker to determine a final ranking or selection from among the
alternatives [36].

• Multi-Objective Decision Making (MODM): It is preferably used for continuous deci-
sion problems where the alternatives are not predetermined. Instead of optimizing a
goal function, it is focused on optimizing several goal functions.

An example of the classification of the MCDM is shown in Figure 2.
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Multiple Criteria Decision-Making 
(MCDM)

Discrete problems

MADM

Pairwise comparison methods

AHP

ANP

MACBETH

Distance-based methods

CP

CODAS

DEA

GP

GRA

TOPSIS

VIKOR

Scoring methods

SAW

COPRAS

Utility-based

SWARA

WASPAS

Outranking methods

ELECTRE

PROMETHEE

Continuous problems

MODM

No-preference

Global CriterionMathematical models

LP

LIP

NILP

MILP

GP

CP

D models

Meta-heuristic

SA

TS

GA

GRASP

HPSO

NSGA
A posteriori

Epsilon Constraint

MADM - Multiple Attribute Decision Making 

AHP - Analytical Hierarchy Process
ANP - Analytic Network Process 
CODAS - Combinative Distance-based Assessment
COPRAS - Complex Proportional Assessment 
CP - Compromise Programming
DEA - Data Envelopment Analysis 
ELECTRE - Elimination and Choice Expressing Reality 
GP - Goal Programming
GRA - Grey Relational Analysis 
MACBETH - Measuring Attractiveness by a Categorical Based Evaluation Technique 
PROMETHEE - Preference Ranking Organization Method for Enrichment Evaluations
SWARA - Stepwise Weight Assessment Ratio Analysis
TOPSIS - Technique for order of preference by similarity to ideal solution
VIKOR - VlseKriterijumska Optimizacijia I Kompromisno Resenje 
WASPAS - Weighted Aggregated Sum Product Assessment 

MODM - Multiple Objective Decision Making 

CP -  Constraint Programming 
D models - Dynamic Models
GA - Genetic Algorithm
GP - Goal Programming
GRASP - Greedy Randomized Adaptive Search Procedure
HPSO - Hybrid Particle Swarm Optimization
LIP - Linear Program Solver
LP - Linear Programming
MILP - Mixed Integer Linear Programming
NILP - Non Integer Linear Programming
NSGA - Non-Dominated Sorting Genetic Algorithm
SA - Simulated Annealing
TS - Tabu Search

Figure 2. The classification of MCDM methods.

Multi-attribute decision-making algorithms are used in optimization problems that
can be classified into scheduling, allocation, placement, offloading, load balancing, resource
provisioning, selection, and others [37].

This article focuses on how to efficiently deploy devices in a fog network to efficiently
service requests related to devices integrated into a public transport network based on
multiple criteria and sub-criteria. The criteria may be dynamic or static and require
maximization or minimization. For example, the latency criteria are related to network
conditions and load. It is a dynamic criterion that must be minimized.

Many MADM techniques are presented in the literature, but the SAW, VIKOR, and TOP-
SIS methods are well-known and involve a simple computational process. The proposed
methodology makes it possible to determine the location to deploy IoT sensors that best
suit your circumstances and needs. However, it does not provide a universal and definitive
solution. A brief description of each method is presented in the following subsections.

3.1. Simple Additive Weighting (SAW)

According to authors [38,39], the central concept of this method is to find the weighted
sum of the performance evaluations of each alternative in all attributes, which requires the
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normalization process of the decision matrix (X) to a scale comparable to all alternatives to
existing assessments.

This method is also referred to as the simplest and easiest to use among MADM
methods. Mathematical formulation [40,41] is described to the following:

1. The criteria used as a reference in the decision are specified and named in (Ci);
2. It is necessary to determine the adjustment value of each alternative in each attribute;
3. Make decisions based on the criteria in the array (Ci). The matrix is normalized

according to the fitted equations for the attribute type (attribute or attribute benefit
costs) to obtain the normalized matrix;

4. The final result is obtained from the multiplication process of the classification matrix,
which is the sum of the normalized R with the weight vector. This way, the highest
value is obtained and selected as the best alternative (Ai) for the solution.

If j is an attribute benefit, we have Equation (1).

rij =

{
Xij

Max(Xij)

}
(1)

If the attribute j is the cost, then use the formula (2).

rij =

{
Min(Xij)

Xij

}
(2)

Observation:

rij = Normalized value of the performance evaluation;
Xij = obtained value attribute.

Criterion:

Max Xij = highest value obtained from each criterion;
Min Xij = lowest value obtained from each criterion;
Benefit = If the highest value is the best value;
Cost = If the lowest value is the best value.

In the equation presented in (3), we have that, rij is the value to be classified of the
alternative Ai in the attribute Cj; i = 1, 2 . . . , m and j = 1, 2 . . . , n. The value preferences for
each alternative (Vi) are given as:

Vi =
n

∑
j−1

Wjrij (3)

Observation:

Vi = Ranking of each alternative;
Wj = Weight value of each criterion;
rij = The ranked value Vi shows that the highest value is the preferred alternative Ai.

3.2. Technique for the Order of Prioritisation by Similarity to Ideal Solution (TOPSIS)

The authors Hwang and Yoon [42] proposed the method of demand performance
based on the correlation to the optimal solution (TOPSIS). It is a method that weighs several
alternatives and criteria in a generalized situation. TOPSIS describes a solution with the
shortest distance to the ideal solution, defined as Positive Ideal Solution (PIS), and the most
significant distance from the negative ideal solution, defined as Negative-Ideal Solution
(NIS). However, it does not consider the relative importance of these distances [43].

The TOPSIS algorithm can be successfully applied for decision-making in different
study areas, including complex network analysis [44,45], Internet of Things [46–48], neural
networks [49–51], reverse logistics [52,53], and sensor selection [54–56]. According to [57],
the mathematical formulation of the TOPSIS algorithm is composed of the steps:
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1. The decision matrix D is represented as

D =


X11 X12 X1N
X21 X22 X2N

XM1 XM2 XMN


2. The elements rij of the ordered decision matrix are calculated according to Equation (4).

rij =
xij√

∑m
i=1 xij

2
(4)

3. To generate the weighted ordered decision matrix, the corresponding weights wn of
the different criteria are multiplied with the obtained values rij.

V =


r11W1 r12W2 r1NWN
r21W1 r22W2 r2NWN

rM1W1 rM2W2 rMNWN


4. The PIS and the NIS are formulated according to Equations (5) and (6).

PIS; A∗ = {(max vij|jεJ), (min vij|jεj
′
)} (5)

NIS; A− = {(min vij|jεJ), (max vij|jεj
′
)} (6)

where i = 1, 2, 3 . . . . M e j = 1, 2, 3, . . . , N
J ∈ {Benefit Criteria Set}
J
′ ∈ {Cost Criteria}

5. The distance of each alternative is calculated from the PIS and NIS according to
Equations (7) and (8).

Pi∗ = (∑(vij − vj∗)
2)1/2, i = 1, 2, 3, 4 . . . . . . .M (7)

Pi− = (∑(vij − vj−)
2)1/2, i = 1, 2, 3, 4 . . . . . . .M (8)

6. The relative proximity of each alternative is calculated according to Equation (9).

Ci∗ = Pi−/(Pi∗ + Pi−), 0 ≤ Ci∗ ≤ 1, i = 1, 2, 3, 4, . . . M (9)

Finally, the values of the proximity coefficient obtained with Equation (9) make it
possible to calculate the ranking order.

3.3. VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

According to [58], VIKOR “is a classification method for a finite set of alternative
actions to be classified and selected among the criteria and solves a discrete multi-criteria
problem with non-quantifiable and conflicting criteria”.

In the work of [59], the authors show that the VIKOR method is applied in several
fields, such as construction administration, material selection, performance evaluation,
health, supply chain, management of tourism, quality of service, sustainability, and others.

The multi-criteria evaluation to adjust the ranking was developed from Lp-metric
(Equation (10)), and is used as an aggregation function in a programming adjustment
method. The various alternatives of k (k = 1, . . . , n) are represented as a1, a2, . . . , an. For al-
ternative ak, the classification of criterion j is denoted by fkj, that is, fkj is the value of j and
criterion of the function for alternative ak; m is the number of criteria (j = 1, 2, . . . , m).
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Lp,k =
{

∑n
j=1

[
wj

(
f ∗j − fkj

)
/
(

f ∗j − f−j
)]p}1/p

, 1 ≤ p ≤ ∞; k = 1, 2, . . . , n. (10)

Regarding the VIKOR method, L1,k and L∞,k are used to formulate sorting criteria.
The solution obtained by minkSk has a maximum group function (“majority” rule, shown
with an average difference when p = 1), and the solution obtained by minkRk, with a
minimum individual analysis of the “concurrent”.

The adjustment solution Fc is a feasible solution closer to the ideal of F∗, and the
term adjustment means an agreement established by mutual concessions, as illustrated in
Figure 3. Where, ∆ f 1 = f ∗1 − f c

1 and ∆ f 2 = f ∗2 − f c
2 .

Figure 3. Optimal and Adjustment Solutions [58].

The VIKOR algorithm has the following steps:

1. Determines the best f ∗j and worst f−j values of all functions and criteria, j = 1, 2, . . . , m.
If function j represents a benefit, then f ∗j = maxk fkj or adjust f ∗j is the desired/desired

level, f−j = mink f j
k being the worst-level configuration f−j .

2. Calculate the values Sk and Rk, k = 1, 2, . . . , n, by the relations:
Sk = ∑m

j=1 wj | f ∗j − fkj| / | f ∗j − f−j |, displayed as the average distance;

Rk = maxj{| f ∗j − fkj| / | f ∗j − f−j | j = 1, 2, . . . , m}, shows how the maximum distance
to priority improves, where wj are the criteria weights.

3. Calculates the value Qj, k = 1, 2, . . . , n, by the relation
Qk = v(Sk − S∗)/(S− − S∗) + (1− v)(Rk − R∗)/(R− − R∗), k = 1, 2, . . . , m (alterna-
tives).
where:
S∗ = minkSk or leave S∗ = 0, desired level;
S− = maxkSk or leave S− = 1, worst level;
R∗ = min Rj or leave R∗ = 0, desired level;
R− = max Rj or leave R− = 1, worst level.
Therefore, it is possible to rewrite Qk = vSk + (1− v)Rk, when S∗ = 0, S− = 1, R∗ = 0
and R− = 1. It is worth mentioning that v is introduced because it is the weight of the
“majority of criteria” approach (or “the maximum utility of the group”), here v = 0.5.

4. Rank the alternatives, sorted by the values S, R, and Q, in descending order. The result
is three ordered lists.

4. Case Study

In this section, we present the method for selecting the most suitable place to install IoT
devices for a public transport network, which is simulated using Contiki-NG considering
three groups of main criteria. Three MADM methods rank the different scenarios proposed
for installing the devices. Some relevant points that differentiate our work from those
shown in Table 1 are

• All data is collected at runtime during the simulation of the analyzed scenarios;
• All sensors are emulated, so it is possible to carry out simulations with different types

of sensors and obtain results closer to the real world;
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• The performance analysis of the fog network infrastructure is carried out before its
implantation.

• MADM methods are applied to multiple criteria involving different layers of the
conceptual communication architecture model.

4.1. Problem Presentation

There are open questions in research related to optimization problems in fog com-
puting. Some studies address the issue of placing nodes in fog [60–62], and the literature
explores the benefits of using MCDM methods [37,63]. It is important to emphasize that
this type of procedure is not an easy task, as many architectures, protocols, devices, criteria,
and approaches are involved in its selection.

We apply MADM methods to select the most suitable location for deploying IoT
devices among 5 (five) possible scenarios presented for the city of São Carlos—SP. This
choice is due to the existence of a main objective for the decision maker (DM), which is to
reach the most favorable solution among a set of criteria. The deployment of IoT devices,
both at the interstate bus terminal and the bus stops close to it, makes it possible to collect
data from many buses with lower communication latency to receive data from sensors
installed on the buses.

The selection of the most viable points for the installation of IoT devices also results in
the reduction of future costs related to a new installation, configuration, and maintenance
of the sensor network, in addition to directly impacting the total data load supported by
the network in fog.

4.2. Experiment Execution

Different programs and tools were used to conduct extensive experiments and analyze
the results. Said experiments were out using a virtual machine on the VMWare virtualiza-
tion software, with a microprocessor that includes 6 CPU(s), 64 GB RAM, and a disk with
a storage capacity of 200 GB. The software used contains the Ubuntu 18.04.6 LTS 64-bit
operating system (Kernel 5.4.0-91-generic), Contiki-NG-release/v4.6-58-gaa6e26f43-dirty,
MySQL Server 5.7, PHP 7.2.24, RStudio Build 461 and Minitab 19.2 (64-bit).

All sensors applied during the experiments were emulated in Cooja, network com-
munication is simulated in Contiki-NG, and access to the sensors occurs through the
HTTP protocol. The criteria influence the choice of the most suitable place for installing
the IoT sensors and refer to the IoT (sensors), fog (network), and cloud (software) layers.
The sub-criteria applied to the optimization problem are shown in Figure 4.

The selection hierarchy process

Device

Energest CPU

Energest Radio Listen

Network

Packages Sent (bytes)

Latency (ms)

Received Packages (bytes)

Dropped Packets

Software

Transfer Rate (Kbytes/sec)

Total Transferred (bytes)

Response Time (ms)

Figure 4. Metrics categorized into groups.

The maximum number of mobile sensors supported in the analyzed scenarios is 30.
Above this value, there is a communication overhead. The scenarios presented in Figure 5
were divided into 2 (two) groups, one with 22 sensors and the other with 37 sensors. In both
groups, seven static nodes are responsible for receiving and sending all data traffic from
the fog network. Node 1 (Sink Node/Middleware) is also responsible for communication
between fog and cloud networks.
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Six (6) simulations were performed per scenario, with a time interval of 1 hour per
simulation and a total of 30 hours of simulation for each group. The data collected via
Hypertext Transfer Protocol (HTTP) communication at runtime during the simulation
was performed using a script developed in PHP Hypertext Preprocessor, with data being
inserted into a MySQL database. Then, the arithmetic mean of each sub-criterion was
obtained to populate the data table to which the decision-making algorithms were applied.

1 2 3

4 5

4

7

6

66

6

5

55

5

5

1

1
1

6

1 1

2

2

2

2

3

3

3

3 3

4

4

4

2

47

7

7

7

Figure 5. Experiment Scenarios on Google Maps.

All nodes were distributed within 100 m, all interconnected through a hierarchical
architecture and allocated according to the geographic coordinates obtained through google
maps. For each mobile node, the time of getting on and off was considered, in addition to
the vehicle’s movement according to the direction of the traffic of the existing streets and
other routes.

Another essential point relates to the configuration parameters used in Contiki-NG to
simulate the already presented scenarios. The parameters used to run the tests are shown
in Table 2.

Table 2. Parameter settings.

Parameters Value

Simulation Tool Contiki-NG
MAC CSMA/CA
Transport UDP/IPv6
Deployment type Mobile and static position
Emulated nodes Cooja
Simulation coverage area 1000 m × 1000 m
Total number of sensors 22–37
Fog Nodes 7
Sink Node 1
RX/TX ratio 100%
TX range 50 m
Interference range 100 m
Packet size 64 byte
Routing protocols RPL Lite
Network protocol IP based
Link failure model UDGM with distance
Simulation time 60 min
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In a scenario composed of a set of sensors, applying MADM algorithms to assist in
decision-making regarding the location of these sensors is essential. The decision matrix (m
× n) with the values of the m alternatives for the n criteria are present in Table 3, and the
foundations of this approach are divided into three groups:

• Alternatives: A set of alternatives will be classified: the five different scenarios pre-
sented in Figure 5.

• Attribute set: Represents criteria used in the decision-making process. For each
scenario, the sub-criteria are present in Figure 4.

• Weights: The weights for the sub-criteria used in the decision process are shown in
Table 3.

The algorithms SAW, TOPSIS, and VIKOR were implemented in the R programming
language and generated the results via RStudio software.

Table 3. Decision Matrix.

Alternatives
Packets

Send
(bytes)

Latency
(ms)

Packets
Received

(bytes)

Energest
CPU

Packages
Dropped

Energest
Radio Listen

(seconds)

Total
Transferred

(bytes)

Transfer
Rate

(Kbytes/sec)

Total
Time
(ms)

1

1 1151.6974 2294.9027 720.2119 1181.3946 0 74.9270 1823.4126 2.37 973.6
2 375.7328 837.1118 473.1630 1187.8366 154 94.0973 237.5 0.11 4077.0727
3 453.7193 1420.8156 552.4587 1187.1963 102 62.3146 238.0350 0.12 3936.5087
4 215.5718 2003.5093 338.4059 1187.8366 345 145.7097 238.9423 0.03 14,211.7115
5 432.9369 1515.3815 672.5302 1187.1963 6 56.2967 238.5535 0.13 4568.7321
6 143.1311 1703.5139 218.7788 1187.8366 465 286.1891 239.4893 0.03 13,469.2340
7 192.7308 2417.8158 296.8264 1187.8366 492 234.4047 239.6458 0.04 9813.0833

2

1 784.8094 2700.8251 487.9957 1082.0630 0 80.0212 1745.05454 1.78 1303.6
2 226.2675 775.2763 264.6136 881.9036 18 53.9772 237.3 0.09 6020.2040
3 510.7335 1357.9500 738.5428 882.33 106 79.3064 237.3695 0.11 4836.6739
4 425.4716 2358.2422 698.2689 881.4670 76 118.6232 238.3953 0.02 17,349.5116
5 253.7624 1049.4834 365.2913 881.1107 11 39.5167 237.6382 0.10 5232.2553
6 154.1110 1578.6963 256.8010 879.3961 213 163.6175 238.8780 0.34 12,609.1463
7 193.4476 2770.4797 318.7458 880.6006 256 152.5918 239.4102 0.03 19,391.6153

3

1 815.7785 2027.7524 500.8345 1246.3380 0 81.2630 1507.1166 2.55 658.2
2 242.4766 1057.9882 289.9858 983.6701 0 51.5223 237.36 0.13 4646.4166
3 347.3028 573.6886 400.6295 980.2740 0 36.6937 237.3333 0.15 2377.55
4 117.8570 1957.6918 175.8373 953.0230 150 204.4628 239.4629 0.03 13,678.4444
5 207.0744 667.3410 250.5757 1205.8702 0 37.2002 238.0344 0.14 2314.1896
6 69.2964 1281.9875 104.0158 825.0438 139 182.1667 239.4905 0.03 10,657.5471
7 140.7515 1718.0373 194.8677 790.0630 59 144.9888 239.2307 0.04 8596.9038

4

1 1465.2343 1410.2481 950.0392 1036.1140 0 90.3310 1810.45 2.52 717.5
2 656.2387 764.3295 760.3923 1500.5576 6 92.3922 238.6800 0.14 2905.3684
3 115.0719 650.2629 235.8162 1498.0567 0 62.8411 238.3448 0.15 2387.9827
4 169.2818 740.2151 309.2612 1500.2273 2 87.0167 238.8596 0.11 4459.3684
5 442.1057 1374.8193 534.3376 1545.5106 50 191.2584 239.8571 0.04 10,562
6 175.0576 2292.8258 243.5753 1470.1182 298 368.7203 240.3962 0.02 20,272.9245
7 167.1240 682.0284 298.2276 1520.906 2 93.6152 239.1250 0.15 2397.1964

5

1 785.4181 2270.7470 516.2583 1011.5442 0 89.6200 1832.4705 2.78 649.0
2 63.7844 574.7394 112.5267 1052.1204 35 106.4600 238.25 0.15 3529.8958
3 312.0038 2171.7712 381.2423 1040.6720 43 105.2626 238.7021 0.04 11,305.9787
4 509.1450 3989.6861 932.4428 948.5080 83 168.8371 239.3709 0.02 23,748.3953
5 550.9463 778.4576 619.0974 1302.0674 0 35.7709 238.0851 0.12 5945.7446
6 67.2146 2202.9649 102.6245 1107.3020 583 314.5345 239.5 0.03 13,444.9166
7 142.4695 741.2840 200.3583 920.2502 15 71.0000 239.0697 0.13 3168.8604

Weights 0.1 0.18 0.1 0.08 0.12 0.07 0.06 0.14 0.15

5. Results

The SAW method provides a simple approach to obtain the normalized and weighted
decision matrix. Figure 6 presents scenario two as the best rated for the group of 22 nodes
and scenario 1 for the group with 37 nodes.
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In decision-making, the TOPSIS method is applied to order alternatives and select
the scenario that denotes the best option among the five alternatives. The decision matrix
present in Table 3 is normalized using Equation (4), and the final ranking result for the
analyzed scenarios is present in Figure 7, with scenario four as the best option for a group
of 22 nodes. The VIKOR method considers the alternative closest to the ideal solution.
Therefore, the ranking in Figure 8 presents scenario four as the best option for a group of
22 nodes.

There are limitations regarding the number of requests supported when increasing the
number of nodes to 37. Specific nodes have “bad” values, that is, very low values, which
directly impacts applying the SAW method to these values. Said values are considered
when ranking the results, making decision-making prone to error.

The results presented in Figures 7 and 8 do not show the rank of these nodes because
some have values that negatively influence the final result. This situation occurred because
the data collected by these nodes suffered traffic overload, high packet loss, and increased
latency in the communication between the sensors and the application layer over the
HTTP protocol.

The results in Table 4 show that the SAW method tends to induce errors in decision-
making, so it will not be considered. The most robust alternative after applying the TOPSIS
and VIKOR methods for the group with 22 nodes because of the evaluated criteria and
assigned weights is scenario 4.

Figure 6. Rank applied SAW algorithm for the network with 22 and 37 nodes.

Figure 7. Rank applied TOPSIS algorithm for the network with 22 and 37 nodes.
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Figure 8. Rank applied VIKOR algorithm for the network with 22 and 37 nodes.

Table 4. Ranking results.

Alternatives SAW VIKOR TOPSIS

1

1 1276.73 0.57079 0.460932
2 989.37 1.00000 0.380069
3 1200.24 0.70704 0.553937
4 2679.43 0.00000 0.351706
5 1171.98 0.67591 0.580214
6 2529.96 0.37609 0.371579
7 2098.98 1.00000 0.392042

2

1 1299.99 0.93492 0.048142
2 1187.52 0.00000 0.499016
3 802.67 0.08834 0.570139
4 3200.01 0.25635 0.507123
5 1121.16 0.18316 0.523249
6 2319.02 0.03509 0.764470
7 3528.51 0.20060 0.283881

3

1 1019.96 1.00000 0.406849
2 1027.81 0.50000 0.544202
3 699.24 0.23128 0.736800
4 2524.19 0.08939 0.444361
5 610.53 0.00000 0.619824
6 1954.33 0.60163 0.437688
7 1715.13 0.70929 0.580576

4

1 1124.54 0.34526 0.943643
2 875.89 0.11585 0.826560
3 1957.23 1.00000 0.665273
4 1010.65 0.00000 0.673957
5 2086.34 0.23784 0.361465
6 3667.49 0.03955 0.375321
7 691.96 0.22109 0.773653

5

1 1108.90 0.82969 0.379600
2 761.31 0.87720 0.506544
3 897.05 0.48848 0.326897
4 4443.99 0.96344 0.435437
5 1243.03 0.50000 0.611787
6 2567.87 0.00000 0.279571
7 743.32 0.19365 0.744092
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6. Conclusions

The connectivity between the IoT layer and the fog layer has less computational power
than the cloud, and a way to get better performance in a sensor network that encompasses
IoT devices, wireless communication, and applications is through the use of algorithms of
optimization. MCDM methods are successfully used in optimization problems the several
areas. Because of this, we apply the SAW, VIKOR, and TOPSIS algorithms to a device
positioning problem to define the most viable location for deploying an IoT sensor network.

After defining the normalized decision matrix and assigning weights to the different
sub-criteria, the results show that scenario 4 is the best classified by the TOPSIS and VIKOR
methods. Being the best-classified alternative by the TOPSIS method indicates that this
scenario is the best in terms of classification index and for being the closest alternative
to the ideal solution among the analyzed scenarios. In addition, being the best-ranked
alternative by the VIKOR method indicates that it is closer to the ideal solution of the
methods evaluated. Both methods have the same scenario selection reference for fog
computing sensor network deployment.

It is essential to point out that MADM algorithms have relatively high complexity due
to the multiple criteria considered. Therefore, it is essential to evaluate the criteria and
sub-criteria more objectively. Selecting the best location using MADM techniques among
the alternatives allows you to increase the accuracy of service communication and reduce
costs related to future problems with the deployed infrastructure.

In the future, we propose expanding the research scope and applying MODM methods
to solve device placement optimization problems on different types of sensors integrated
into the network. Thus, it will be possible to deploy fog devices efficiently and offer services
to massive IoT devices without violating end user Quality of Service (QoS) requirements.
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