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Abstract: Over the last few years, several studies have appeared that employ Artificial Intelligence
(AI) techniques to improve sustainable development in the agricultural sector. Specifically, these
intelligent techniques provide mechanisms and procedures to facilitate decision-making in the agri-
food industry. One of the application areas has been the automatic detection of plant diseases. These
techniques, mainly based on deep learning models, allow for analysing and classifying plants to
determine possible diseases facilitating early detection and thus preventing the propagation of the
disease. In this way, this paper proposes an Edge-AI device that incorporates the necessary hardware
and software components for automatically detecting plant diseases from a set of images of a plant
leaf. In this way, the main goal of this work is to design an autonomous device that allows the
detection of possible diseases that can detect potential diseases in plants. This will be achieved by
capturing multiple images of the leaves and implementing data fusion techniques to enhance the
classification process and improve its robustness. Several tests have been carried out to determine
that the use of this device significantly increases the robustness of the classification responses to
possible plant diseases.

Keywords: smart agriculture; machine learning; EDGE-AI; sensors

1. Introduction

The agri-food sector has always played a fundamental role in our society. It is essential
because it supplies us with enough food to satisfy the nutritional needs of a constantly
growing population. It is strategic because its activity has a significant impact in terms
of economic production, employment generation, environmental management, and the
maintenance of a living and balanced territory.

The availability of data on a farm is essential so that it can be analysed to generate in-
formation and knowledge to support producers in their decision-making and management
of their operations. This includes using agricultural inputs more precisely, the ability to
foresee the appearance of diseases, pests, or meteorological phenomena and thus adopt
adaptive measures to reduce risks, the automation of tasks, and, therefore, a more effi-
cient administration.

In this sense, techniques based on Artificial Intelligence (AI) have emerged as a
valuable tool by providing mechanisms and procedures to facilitate the decision-making of
specific tasks in the agri-food sector. Over the last few years, different approaches have
tried to provide AI techniques for sustainable development in the farming sector, especially
machine learning techniques. A deeper analysis and further reviews are presented in [1–3].
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Another of the factors that most influence crop yields is the possible incidence of pests
and diseases. To reduce their impact, farmers make regular use of phytosanitary products.
In this way, the development of potentially dangerous populations can be controlled, thus
ensuring production. This group also includes herbicides, which prevent competition for
nutrients, water and the establishment of the main crops with other unwanted plants.

In many cases, given the uncertainty of when the pest will appear and how aggressive
it will be, farmers often carry out preventive treatments. Over the last few years, the cost
of these treatments has shown a clear upward trend; for example, in the EU, sales of
active substances qualified as pesticides used in plant protection products exceed 350,000 t
per year. Reducing the use of chemical pesticides by half by 2030 and the use of the
most hazardous pesticides by 50% is one of the main objectives of the European Green
Deal (https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
accessed on 5 February 2023).

Early detection of plant diseases through manual and visual inspections by experts or
farmers has its limitations, including the dependency on a limited group of individuals
and the potential for error due to the variety of plants and multiple diseases that can
affect them. The automation of disease detection through the use of Artificial Intelligence
techniques, specifically deep learning, offers numerous benefits [4]. Early treatment, as a
result of early detection, reduces the need for chemical products and results in cost savings,
preventing production losses, and contributing to environmental sustainability by avoiding
the use of harmful phytosanitary products in the long term. The manual approach is also
time-consuming and prone to human error, whereas AI automation offers a more efficient
and reliable solution.

According to this, the use of Artificial Intelligence, particularly deep learning tech-
niques, in plant disease detection has gained widespread popularity in recent years [5,6].
These approaches analyse and categorise plants to identify potential problems. Satel-
lite and hyperspectral imaging is commonly utilised in agricultural analysis and plant
disease detection. Satellite images provide a comprehensive view of the land and crop
performance, whereas hyperspectral images offer a view beyond the visible spectrum,
allowing for the use of tools such as the NDVI index to measure greenness and detect crop
issues [7]. The main drawback of these approaches is the high cost of equipment (cameras
and satellites) and processing of large images.

Another possible approach is to use closer images, such as leaves or sections of plants,
to be analysed and classified to determine possible diseases [8,9]. Most of the analysed
proposals in this line offer cloud services to perform detection. One of the problems we may
encounter is the lack of connectivity in some rural regions and the need to transfer large
amounts of data to perform the classification process in these services offered in the cloud.
In this sense, the use of devices based on edge computing that detect diseases without the
need for connections to cloud services and avoids continuous transfers of images over the
network may be of greater interest.

Therefore, this paper presents an EDGE device that incorporates the necessary hard-
ware and software components to automatically detect plant diseases from a set of images
of the plant leaf. The device can be easily incorporated into an agricultural robot, a drone,
or a tractor to facilitate automatic image acquisition in a crop field. Furthermore, the use of
a set of images simultaneously, instead of just one, increases the robustness of the classi-
fications, as demonstrated in the tests performed. This paper is an extended version of a
previous paper published in the conference proceedings “Practical Applications of Agents
and Multi-Agent Systems” [10] where a new device was developed and new designs and
evaluations of the proposed solution were carried out.

The rest of the paper is structured as follows. Section 2 analyses previous related
works, Section 3 presents the description of the proposed system, Section 4 describes the
experiments carried out, and, finally, some conclusions are presented in Section 5.

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
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2. Related Work

One of the main approaches to automatically detect plant diseases is through image
analysis. This analysis may focus on different features such as geometry or colour. In some
specific kinds of images, other indexes are also commonly used. So, for hyperspectral
images, the NDVI index, which measures the level of green on images, is used. On the
other hand, for visible range images, there are other alternative indexes such as the VARI
index or the vNDVI index [11].

Identifying plant diseases automatically poses several challenges, as outlined by the
review proposed in [12]. These challenges range from issues during the capture process,
such as noise or fog over the camera, to the presence of unwanted information in the
images, such as background, soil, or other plants. One way to deal with some of these
problems is the pre-processing of images to not only eliminate spurious information,
e.g., background segmentation or texture removal (smoothing [13,14]) or even image
improvement (e.g., contrast enhancement [15]).

Apart from material-specific issues that may arise during image capture, another
critical challenge is the potential existence of multiple diseases in a single plant. After image
processing, automatic detection of plant diseases involves a classification task that can
be approached using two main methods. The first involves classical Machine Learning
(ML) techniques, where a set of features is extracted and chosen from the images, and then
classified using techniques such as Support Vector Machines (SVM) [16,17], K-Means
algorithm [18], or Random Forest [19], among others. These techniques need a very precise
human-made solution (ground truth) and assistance to be performant. Furthermore, they
must work well when there is a limited amount of data. Second, and currently used, one
of the most popular approaches is the use of Deep Learning (DL) [20] and particularly
Convolutional Neural Networks (CNN) [21,22] to train a model to identify the dataset
classes. As is well known, even if there are increasingly more available images to work with,
the quantity/quality is limited to learning from in a specific task. In those cases, Transfer
Learning is used to build a network based on pre-trained information and adapted to the
concerned task. These networks are pre-trained on large datasets, e.g., ImageNet [23]. This
process takes the first layer of the trained network and removes the last layers adapting
them to the specific task and training only these last steps. In this way, the specific task
is not trained from scratch, and the computing time is shortened. The most common and
efficient networks in the literature are Alexnet [24], ResNet50 [25], VGG16 [26], and Inception
V3 [27]. EfficientNet [28] can also be considered a group of networks, as there are eight types
of subnets.

An alternative approach to mostly used network architecture is that of Capsule Net-
works [29] which fixes one of the significant drawbacks of standard CNN. CNNs do not
consider the possible feature hierarchy in an image considering similar images as equal
even when they are not. In the work presented by Samin et al. [30] the Capsule Network
approach is used without using Transfer Learning, obtaining an accuracy of 93.07%.

More recently, a lightweight CNN approach based on Inception and Residual connec-
tion [31]. The proposed approach extracts better features from the input images. This is
performed by replacing the standard convolution by a depth-wise separable convolution
combined with a point-wise convolution, which results in fewer parameters as well as a
speed-up in the processing. The resulting performance with the approach presented is
99.39% accuracy.

After studying the state-of-the-art, it can be seen that there is currently a multitude of
proposals, most of them based on deep learning techniques that offer promising results
from the existing datasets. However, there are specific gaps that we think should be
analysed. On the one hand, some works suggest the need for image pre-processing before
classification; in our opinion, this aspect should be studied in greater detail as it may allow
for an improvement in the classification process. On the other hand, most of the works are
evaluated against a so-called ideal dataset. Using more realistic datasets to validate existing
models would allow for analysis of their possible robustness. Nevertheless, Ref. [32] is an



Sensors 2023, 23, 2382 4 of 14

interesting approach, but as they are working with infrared images, they would need to
use infrared cameras when applied to the real world, which is expensive to deploy.

Apart from dealing with the above-mentioned gaps, our objective is to build a robust
model capable of being deployed on an edge platform. In fact, our system, to be presented
in the next section, focuses not only on the development of the software but also on the
hardware infrastructure to give support to it.

3. System Description

In this section, the operation of the plant disease classification system using an EDGE
device is explained in detail. The different software and hardware tools employed are also
described. The proposed approach is shown in Figure 1.

Figure 1. Description of the system.

The main components integrated into this prototype are the machine vision mod-
ule,which is composed of four webcams (see Figure 2). We have the data processing
module, which receives the four images from the cameras and reconstructs them to create
an image composed of four images. The next element integrates the classification models
to determine the plant’s disease. The system utilizes a WiFi communication system to send
the classified data to the cloud, as well as a visualization system through an LCD screen.
Further details regarding the hardware components and classification models are outlined
in the subsequent sections. At a high level, the EDGE system employs cameras to capture
four images from distinct angles, thus acquiring additional information and mitigating
potential blind spots. The classification models are designed to identify whether the plant
exhibits any of the 38 diseases present in the training database.
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Figure 2. Hardware configuration.

3.1. Hardware Description

This section describes the hardware used for plant disease recognition using a Rasp-
berry 4. The Raspberry Pi 4 development system is a Broadcom BCM2711, Quad-core
Cortex-A72 (ARM v8) 64-bit 1.5GHz SoC. We used an RPI-4 with 8GB SDRAM, IEEE
802.11ac wireless protocol, and Bluetooth 5.0, BLE for our experiments. It integrates four
USB ports: two USB 3.0 and two USB 2.0.

With this hardware configuration, it is possible to run trained TensorFlow lite models.
To capture the images, we have used four 3-megapixel Logitech cameras with a resolution
of 720p and a field of view (FOV) of 60 degrees. These cameras are spaced so that the FOVs
of each bed overlap at a minimum (Figure 3).

Figure 3. Array of cameras pointing at different views of the scene.

Each of these images is resized to a size of 224 × 224. The models then analyse each of
these images to determine what type of disease the plant has. The disease classification
process will be described below.

The advantages of the proposed system are its low construction and maintenance
costs. At the same time, it is a portable system of low weight, ideal for being integrated into
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either an unmanned aerial vehicle (UAV) or an unmanned ground vehicle (UGV). These
can autonomously roam the field and report via GPS where the plants with the diseases
are located. This would save time and money for the farmer; because they are completely
autonomous, these systems can be programmed to start at any time of the day.

3.2. Software Description

In the following section, we will describe the different software tools used. The system
proposed in this work uses deep learning techniques using a MobileNet v2 network for
plant disease classification. This system is embedded in a Raspberry Pi 4, which integrates
the trained ML model.

The MobileNet v2 [33] architecture, one of the most widely used neural networks
in mobile applications, is based on an inverted residual structure in which the input and
output of the residual block are thin bottleneck layers. Unlike other models with these
features, MobileNet v2 employs lightweight convolutions in depth to filter features in
the intermediate expansion layer. Additionally, to preserve its representational power,
the network has eliminated nonlinearities in the narrow layers. Research presented by
Kristiani et al. [34] showed from the experiments that Mobilenet outperforms Inception in
terms of speed, accuracy and file size. The speed in Inception V3 is 9 frames per second,
while that value in Mobilenet is 24 frames per second.

The structure of the compiled model is depicted in Table 1, and it remains consistent
across all the configurations (Table 2) utilised in this study. Once the training process is
complete, the model is stored as a *.tflite file and embedded in the Raspberry Pi 4. In the
event of a classification improvement or the addition of a new disease class, this model can
be effortlessly updated.

Table 1. Main characteristics of the employed model.

Layer (Type) Param Output Shape#

keras_layer (KerasLayer) 2,257,984 (None, 1280)
flatten (Flatten) 0 (None, 1280)
dense (Dense) 655,872 (None, 512)

dropout (Dropout) 0 (None, 512)
dense_1 (Dense) 19,494 (None, 38)

The four cameras of the prototype capture four different images of the plant to be
analysed. These four images are preprocessed to make them compatible with the trained
model. This preprocessing consists of resizing the images from 1280 × 720 to 224 ×
224. Each newly resized image is used as input for the classification model. In this way,
the system can analyse the plant from four different points of view. These four images
are used by the model one at a time. This result in 38 probabilities that are added to a 38
× 4 matrix (38 classes and four cameras). This matrix is then used as input for the data
fusion algorithm to obtain the final probabilities, which is explained in the next section.
We used two datasets to train and validate the model: the PlantVillage and the extended
PlantVillage. The PlantVillage contains leaf images with a homogeneous background.
However, the extended PlantVillage is formed by the original images but with a synthetic
background that simulates a field to add noise to the image and make it more realistic. This
test aims to check the model’s robustness and to see if the model performs well against this
more realistic dataset.

4. Experimental Setup

In this Section, we analyse the performance of the different configurations used. First,
in Section 4.1, we present the data set used for our experiments and the measures used to
quantify the results obtained. Second, in Section 4.2, we present the quantitative results of
our experiments.
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In the first round of experiments, we test two well-known mobile-oriented device
networks. Then we select the best performer network and tested it with our consensus
classification approach. The experiment employed the Mobilenet V2 and NasnetMobile
networks, and several hyperparameters were established to train both networks, while
some hyperparameters remained constant across all experiments, others were altered to
determine the optimal settings for the best results. To avoid overfitting, a maximum of
seven epochs was selected. The learning rate for all models remained identical, and data
augmentation and fine-tuning were activated or deactivated, depending on the specific
experiment. Table 2 illustrates the hyperparameter configurations.

To be able to treat the four-grid system, we propose using an aggregation procedure to
summarise the data captured by the setup. Every set of images captured by the cameras is
considered a batch where the corresponding trained network is applied to each one. Then
the output of each image is aggregated to produce one result that better represents all of
the initial data. To proceed with the data fusion, we need some definitions:

Definition 1 ([35]). A mapping M : [0, 1]n → [0, 1] is an aggregation function if it is mono-
tone non-decreasing in each of its components and satisfies the boundary conditions, M(0) =
M(0, 0, . . . , 0) = 0 and M(1) = M(1, 1, . . . , 1) = 1.

Definition 2. A function m : 2N → [0, 1] is a fuzzy measure if, for all X, Y ⊆ N, it satisfies the
following properties:

1. Increasingness: if X ⊆ Y, then m(X) ≤ m(Y);
2. Boundary conditions: m(∅) = 0 and m(N) = 1.

An example of a commonly used fuzzy measure is the power measure, which we use
in this work:

mq(X) =

( |X|
n

)q
, with q > 0, (1)

where |X| is the number of elements to be aggregated, n the total number of elements and
q > 0. We have selected this measure due to the performance obtained in terms of accuracy
in classification problems [36,37].

Definition 3 ([35]). Let m : 2N → [0, 1] be a fuzzy measure. The discrete Choquet integral of
x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is defined as the function Cm : [0, 1]n → [0, 1],
given by

Cm(x) =
n

∑
i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
,

where
(

x(1), . . . , x(n)
)

is an increasing permutation on the input x, that is, x(1) ≤ . . . ≤ x(n),
with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of the n− i + 1
largest components of x.

The Choquet integral is idempotent and presents an averaging behaviour. Observe
that the Choquet integral is defined using a fuzzy measure, permitting to consider the
relation between the elements considered to be aggregated (i.e., the components of an
input x).

In our experiments, after applying each trained model to the images, the output shows
the membership of each image to the 38 classes of the dataset. Then, we aggregate ordering
increasingly for each class probability output and apply the Choquet integral to obtain the
final membership probability for each class. Finally, we take the maximum response to
select the class of the image batch.
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Table 2. Hyperparameters used to configure the neural net used in the experiments.

# Net Type N-Epochs Learning Rate Transfer Learning Data Augmentation Data Set

S1 Mobilenet V2 7 0.001 % % Raw Image

S2 Mobilenet V2 7 0.001 " % Raw Image

S3 Mobilenet V2 7 0.001 % " Raw Image

S4 Mobilenet V2 7 0.001 " " Raw Image

S5 NasNetMobile 7 0.001 % % Raw Image

S6 NasNetMobile 7 0.001 " % Raw Image

S7 NasNetMobile 7 0.001 % " Raw Image

S8 NasNetMobile 7 0.001 " " Raw Image

4.1. Dataset and Quantification of the Results

In this work, we use two datasets, one to train and validate our model and a derived
one where some modifications are added to the first one to simulate the real-environment
process of the proposed approach. This study is in an early stage, so all the processes have
been performed in a controlled environment with already captured images. In a future
second stage, the objective is to test our proposed system in a real environment.

The primary dataset used in this study is known as PlantVillage (PV) [38], comprising
roughly 87,000 RGB images of healthy and diseased crop leaves, which are categorized
into 38 distinct classes. The images are captured from individual leaves of each plant and
disease against a consistent background. To facilitate training, the dataset was split into
three subsets, with an 80/20 ratio: 80% for training, 10% for testing, and the remaining
10% for validation. Raw images (Figure 4) were utilized for model training and validation
without undergoing any image pre-processing.

(a) (b) (c) (d)

Figure 4. Example of images included in the PlantVillage dataset [38] from different plant diseases
along with their equivalent in the Synthetic PlantVillage dataset. (a) Tomato—blight; (b) grape—esca;
(c) strawberry—scorch; (d) apple—rust.

The second dataset is called SyntheticPlantVillage (SynPV). It is a modified version
where the background of the images has been removed and filled with a grass background
simulating a real scenario for the leaves. This second dataset is used to put our proposal
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to the test analysing its robustness in a real-like scenario. We simulate the camera grid
capture taking batches of the same class images and aggregate its classification to obtain a
consensus decision about the final disease class.

To interpret the results obtained in the confusion matrix, we use the following Preci-
sion/Recall measures:

Prec =
TP

TP + FP
, Rec =

TP
TP + FN

, Fβ = (1 + β2)
Prec · Rec

β2 · Prec + Rec
.

We select the values of β = 0.5 and β = 1 as it is the most commonly used in
the literature.

4.2. Experimental Results

In this section, we present the outcomes obtained with various configurations listed
in Table 2. Quantitative results are shown in Table 3. Furthermore, we carried out real-
world simulations in a controlled environment of our models using a Raspberry Pi 4 and a
four-camera setup, as outlined in the proposed solution.

The behaviour of each configuration used can be seen in Figure 5, which depicts how
they perform similarly across various epochs. During the validation phase, on the one
hand, S2 and S4 exhibit an unpredictable pattern, starting with low accuracy, then suddenly
increasing, fluctuating until the end of the training. On the other hand, the performance of
S1 and S3 is more consistent, reaching stability by the end of the epochs. These trends are
further reflected in the quantitative results obtained from the testing phase.
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1 2 3 4 5 6 7

0.7

0.8

0.9

1

Epochs

Tr
ai

ni
ng

A
cc

ur
ac

y

1 2 3 4 5 6 7
0

0.5

1

1.5

2

Epochs

Tr
ai

ni
ng

Lo
ss

S1
S2
S3
S4

1 2 3 4 5 6 7

0.7

0.8

0.9

1

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y

1 2 3 4 5 6 7
0

0.5

1

1.5

2

Epochs

V
al

id
at

io
n

Lo
ss

Figure 5. Training and validation accuracy and loss obtained with the different configurations from
Table 2

Table 3. Resulting test performance of the model trained with the parameters in Table 2 over
the original dataset PlantVillage (PV) and the synthetic one (SynPV), simulating grass on the
background.Results are shown with the original proposal (Prec, Rec, F0.5 and F1) and the new one
using the array of cameras (Prec′, Rec′, F′

0.5 and F′
1).

# Dataset Prec Prec′ Rec Rec′ F0.5 F′
0.5 F1 F′

1

S1
PV .881 .986 .904 .980 .882 .985 .886 .982

SynPV .744 .872 .665 .819 .669 .811 .644 .796

S2
PV .829 .927 .852 .945 .813 .923 .807 .923

SynPV .616 .676 .465 .553 .456 .546 .423 .510

S3
PV .881 .986 .897 .978 .881 .983 .883 .980

SynPV .719 .840 .650 .790 .643 .769 .623 .758

S4
PV .852 .947 .862 .940 .836 .932 .831 .927

SynPV .658 .487 .375 .383 .419 .368 .358 .337

Figure 5. Training and validation accuracy and loss obtained with the different configurations from
Table 2.

As shown in Table 3, the best results (validated on the training machine) are achieved
with configuration S1, without the use of transfer learning or data augmentation. The second-
best outcome is produced by S3, which only employs data augmentation. This observation
suggests that the use of MobileNet v2 with transfer learning for the specific task of iden-
tifying plant disease does not enhance performance and, in fact, results in a decrease in
all measures. The use of transfer learning has a negative impact on the results, as the
weights learned from the ImageNet dataset, which has a large number of classes, affect the
outcomes in S2 and S4.

As we can observe, using our new proposal, with a four-grid camera to capture plant
images, increases the system’s scores. In general, all the configurations benefit from the
new setup, and in the case of S1, which remains the best performer, the result of F1 obtains
a 98.2% performance. To prove the presented approach’s benefits, we tested it over a
SynPv dataset, measuring the approach’s robustness. This second experiment shows that
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comparing the results with SynPV using the initial approach with one camera, the best
performer, S1, decays to 64.4% but using the new setup increases considerably almost to an
80% performance in terms of F1. These results indicate that our new approach increases the
robustness of the system, even when artefacts and unwanted information are present in
the image.

The model training and validation were performed on a machine equipped with an
Intel i5-9500 processor running at 4.4 GHz, 16 GB of RAM, and operating on Ubuntu 20.04.4
LTS. For the actual validation of the model, a Broadcomm BCM2835 ARM11 1 GHz with a
VideoCore IV GPU and 512 MB of RAM was utilised.

Table 3. Resulting test performance of the model trained with the parameters in Table 2 over the
original dataset PlantVillage (PV) and the synthetic one (SynPV), simulating grass on the back-
ground. Results are shown with the original proposal (Prec, Rec, F0.5, and F1) and the new one using
the array of cameras (Prec′, Rec′, F′0.5, and F′1).

# Dataset Prec Prec′ Rec Rec′ F0.5 F′
0.5 F1 F′

1

S1
PV 0.881 0.986 0.904 0.980 0.882 0.985 0.886 0.982

SynPV 0.744 0.872 0.665 0.819 0.669 0.811 0.644 0.796

S2
PV 0.829 0.927 0.852 0.945 0.813 0.923 0.807 0.923

SynPV 0.616 0.676 0.465 0.553 0.456 0.546 0.423 0.510

S3
PV 0.881 0.986 0.897 0.978 0.881 0.983 0.883 0.980

SynPV 0.719 0.840 0.650 0.790 0.643 0.769 0.623 0.758

S4
PV 0.852 0.947 0.862 0.940 0.836 0.932 0.831 0.927

SynPV 0.658 0.487 0.375 0.383 0.419 0.368 0.358 0.337

Table 4 presents the top-performing outcomes of the experiments conducted using
the NasNetMobile neural network, which was validated with the plant village dataset
(PV) and Synthetic PlantVillage (SynPV). Like the MobileNet, the NasNetMobile [39] is
a convolutional neural network (CNN) model created to carry out image classification
tasks on mobile devices. The NasNetMobile’s architecture relies on a search algorithm that
utilizes reinforcement learning techniques to identify the optimal network structure for
a given task, thereby eliminating the need for manual tuning by developers. Similar to
the MobileNet V2, transfer learning with the NasNetMobile network for identifying plant
diseases does not enhance its performance; instead, it leads to a decrease in results. The use
of transfer learning has an impact on the classification process, which may be attributed to
the training of the ImageNet dataset and the types of images utilized to obtain the weights.
As a result, the classification values are influenced in the experiments that leverage transfer
learning (S2 and S8).
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Table 4. Resulting test performance of the model trained with the parameters in Table 2 over the
original dataset PlantVillage (PV) and the synthetic one (SynPV), simulating grass on the background.
Results are shown with the original proposal using a single camera.

# Dataset Prec Rec F0.5 F1

S5
PV 0.813 0.851 0.812 0.816

SynPV 0.630 0.553 0.558 0.531

S6
PV 0.711 0.843 0.844 0.840

SynPV 0.632 0.343 0.368 0.370

S7
PV 0.787 0.810 0.780 0.779

SynPV 0.632 0.535 0.527 0.504

S8
PV 0.716 0.827 0.813 0.914

SynPV 0.672 0.490 0.492 0.499

Figures 6 and 7 below show the ∆(t) of the validation process between the computer
and the Raspberry Pi for each experiment.

As expected, the validation times on the computer were more consistent owing to its
processor and memory characteristics. However, the validation times on the Raspberry Pi
were more erratic. Experiment S1 had the highest peak time, with a maximum runtime of
roughly 90 ms. This could be because this experiment was trained from scratch, with no
data augmentation or fine-tuning, indicating that this model does not employ pre-trained
weights like the other models. Additionally, its weight in bytes might be larger than the
other models, resulting in higher memory storage and resource utilization. Despite these
variances, the models are still appropriate for our application.

Figure 6. Delta (t) obtained in the validation within PC.
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Figure 7. Delta (t) obtained in the validation within the Raspberry Pi.

5. Conclusions

This study introduces a low-cost smart device that allows for the detection of possible
diseases, increasing the robustness of the classification process by capturing several images
of the leaves and integrating techniques based on data fusion. The device has been devel-
oped using a Raspberry Pi 4 and a four-camera array and incorporates a deep learning
model to classify and display information on an LCD screen and is easily mountable on
drones, robots, or agricultural machinery. The performance measures and tests have been
performed in a controlled environment with modified images to simulate outdoor spaces
and evaluate the system’s robustness.

The device offers a more efficient method of visualizing plant disease spots, reducing
costs by eliminating the excessive use of fungicides, pesticides, and herbicides.

The results show how the proposed device demonstrates that current EDGE technol-
ogy permits carrying out plant disease classification and detection systems, considerably
lowering the usage cost as no images are transmitted over an Internet connection. Moreover,
it allows farmers to perform a pre-analysis of possible diseases that may be present in
their plants.

We also show that our system is more robust than a single-camera setup, obtaining
better results than the original and synthetic datasets, where noise and unwanted intimation
have been added to the images.

Future work aims to put the proposed system to the test in a natural environment
mounted on a robot or drone. Further, another experimental path is to detect changes
in plant disease severity over time by adapting models to identify, classify, and assess
the extent of disease progression following the disease evolution cycle. Furthermore,
determining the effects of multiple infections on plants is also of interest.
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