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Abstract: Industrial control systems (ICSs), supervisory control and data acquisition (SCADA)
systems, and distributed control systems (DCSs) are fundamental components of critical infrastructure
(CI). CI supports the operation of transportation and health systems, electric and thermal plants, and
water treatment facilities, among others. These infrastructures are not insulated anymore, and their
connection to fourth industrial revolution technologies has expanded the attack surface. Thus, their
protection has become a priority for national security. Cyber-attacks have become more sophisticated
and criminals are able to surpass conventional security systems; therefore, attack detection has
become a challenging area. Defensive technologies such as intrusion detection systems (IDSs) are
a fundamental part of security systems to protect CI. IDSs have incorporated machine learning
(ML) techniques that can deal with broader kinds of threats. Nevertheless, the detection of zero-day
attacks and having technological resources to implement purposed solutions in the real world are
concerns for CI operators. This survey aims to provide a compilation of the state of the art of IDSs
that have used ML algorithms to protect CI. It also analyzes the security dataset used to train ML
models. Finally, it presents some of the most relevant pieces of research on these topics that have
been developed in the last five years.

Keywords: intrusion detection systems; machine learning; critical infrastructure; industrial control
systems; supervisory control and data acquisition

1. Introduction

Modern society depends on sophisticated infrastructures (cyber and physical) to
carry out its day-to-day activities. These infrastructures are classified as critical assets to
protect services not only in the physical but also in the digital world. Their protection
has become a national security concern [1]. ICSs have exponentially evolved over the
last few decades. New technologies from the fourth industrial revolution have increased
efficiency while, at the same time, saving resources. The connection of ICSs to the internet
and the incorporation of protocols such as TCP/IP have expanded the attack surface and
made CI vulnerable to a wider range of attacks [2]. In particular, the incorporation of
the industrial internet of things (IIoT) to connect devices at an industrial level, such as
sensors and actuators, has increased cybersecurity risks [3]. A variety of security solutions
have been developed to enhance security control in ICSs. Technologies that incorporate
machine learning (ML)—a type of artificial intelligence—have become must haves in the
identification of cyber-attacks. In particular, ML can identify patterns, outliers, or anomalies
connected to a particular attack [4]. This will prevent these attacks from happening again.
Nevertheless, cybersecurity measures are not as good at identifying a zero-day attack [5,6].
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This kind of attack exploits a vulnerability that has not been disclosed. Therefore, no
specific security measures can be taken.

ML as a part of intrusion detection systems (IDSs) has had positive results using
different kinds of learning, including supervised, unsupervised, and reinforcement learn-
ing [5,7,8]. Supervised learning can identify more well-known attacks with a high level
of accuracy and a low level of false positives. This has been mostly tested in outdated
datasets that do not represent real-world security scenarios, so their generalization can be
questioned, and they may not be able to detect unknown attacks. Unlike supervised learn-
ing, unsupervised learning has had better results in identifying zero-day attacks through
techniques such as clustering or association, however, the number of false positives has
increased significantly [9,10]. Finally, reinforcement learning, which is the most recent type
of learning, can handle the complexity of cybersecurity threats if the required time to learn
is available [8]. Complex techniques as a part of IDSs are leading to better results. Some
additional techniques that are used in IDSs are meta learning, layered models, artificial
neural networks, and deep learning networks.

This paper provides a review of the most remarkable research works that have been
developed in the IDS field. Specifically, IDSs aim to enhance the cybersecurity level of
critical infrastructure with solutions based on ML techniques, as shown in Table 1. It
should be taken into consideration that the characteristics of CI do not normally coincide
with information technology networks. This work will help to identify the key aspects of
intrusion detection in industrial systems. The challenges of developing IDSs for CI are
also discussed. Although some surveys provide information about the application of ML
to IDSs, they tend to fail in highlighting the applications of these systems in industrial
networks. This survey will also help to establish the most up-to-date IDSs for CI.

Table 1. Comparison of this survey and similar surve.

Ref Name Survey Area IDS Specific Methodological
Approach ML IC or ICS

Specific
Dataset

Analysis

[11]
A Survey on Industrial Control
System Testbeds and Datasets

for Security Research

Security
Research x x x

[5]
A Survey on Machine Learning
Techniques for Cyber Security

in the Last Decade
Cybersecurity Own process for

Article Selection x x

[12] A survey of network-based
intrusion detection datasets

Intrusion
Detection
Dataset

x

[13] Cybersecurity for industrial
control systems: A survey Cybersecurity x x x

[7]
Survey of intrusion detection
systems: techniques, datasets,

and challenges

Intrusion
Detection
Dataset

x x x

[14]
A Survey of Security in SCADA
Networks: Current Issues and

Future Challenges
Cybersecurity x

[15]

A Survey of Anomaly Detection
in Industrial WirelessSensor

Networks with Critical Water
SystemInfrastructure as a Case

Study

Cybersecurity
in industrial

wireless
sensor

x x x

[16]

Survey on Intrusion Detection
Systems based on Machine
Learning Techniques for the

Protection of Critical
Infrastructure

Cybersecurity x x x x
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2. Research Objectives

The main objective of our research was to perform a systematic review of IDSs to
improve the cybersecurity level of CI through ML techniques. The review covered the last
five years. Additionally, there are two specific objectives:

• Synthesize and analyze the most representative research works that have been con-
ducted to develop IDSs for industrial systems through ML techniques;

• Generate a discussion and a critical evaluation of the existing foundation of knowledge
in the development of IDSs using ML techniques for the protection of CI.

3. Methodology

To ensure a systematic and representative review of IDSs that use ML technology in
CI, the literature review adapts the methodology presented in 2016 by Antonio Tavares,
Luiz Scavarda, and Annibal Scavarda [16]. This methodology has eight steps: “(1) plan-
ning and formulating the problem, (2) searching the literature review, (3) data gathering,
(4) quality evaluation, (5) data analysis and synthesis, (6) interpretation, (7) presenting
results, and (8) updating the review”.

Following the chosen methodology, various combinations of keywords were used
when searching the Scopus database, as shown in Table 2. Thus, the methodology was
applied. After this, 166 documents were selected for deep analysis. Finally, 98 documents
that positively contributed to the survey were included.

Table 2. Methodology to filter the data.

Methodology Criteria Results

Keywords

IDS, NID, Anomaly Detection
Method, Signature Detection Method,

Hybrid Detection Method, ML, AI,
Deep Learning, CI, ICS, SCADA

More than 30,000 results; a lot
of redundancy and
inaccurate results

Keyword filter IDS, ML, CI 1396 document results
1st filter The last five years from 2018 to 2022 1192 document results

2nd filter Article, Conference Paper, Review, or
Short Survey 1091 document results

3rd filter Written in English or Spanish 1079 document results

4th filter Focus on papers that specifically deal
with IDSs, ML, and CCI 300 document results

5th filter Abstract analysis to filter
the documents 166 documents results

Abstract review
Deep analysis to select the documents

that positively contribute to
the survey

98 documents results *

* Some of the documents that incorporate information from cybersecurity datasets or specific concepts could be
older than 2018.

4. Fundamental Concepts

The following section aims to introduce the main concepts that are part of this study.
First, this research focuses on the characteristics that make CI a type of infrastructure
that must be secured. Then, this work explains ML techniques used in IDSs to protect CI.
Finally, this study analyzes the cybersecurity datasets used to prove theories in real-world
scenarios, or scenarios as close as possible to the real world.

4.1. Critical Infrastructure Concept

Concepts of critical infrastructure differ depending on the source [17]. From the
academic’s perspective, there is a consensus on defining CI as an essential national asset
that keeps society functioning [6,18], and its disruption could impact a nation or nations,
causing a socioeconomic and political crisis [19].
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Furthermore, nations have released their definitions of CI that align with their char-
acteristics and interests. For instance, the United States (US) government (by means of
the Cybersecurity and Infrastructure Agency (CISA)) defines CI as any system and its
components that are vital to the country, where their incapacitation or destruction could
affect national security. The European Union Agency for Network and Information Security
(ENISA) defines CI as any system—total or partial—that is vital to maintaining societal
functions. In addition, a set of sectors that constitute CI has been established. While there
is not a consolidated list that applies to every country, it is feasible to identify a list of
sectors that are usually included. For example, energy was included as a critical sector by
17 countries in the European Union and the US. A CI category that is included by
15 countries in the European Union and identified by the US is the Information and
Communication Technology sector. The communication technology category is divided
into sectors in the United States, which are known as the Communication and Information
Technology sectors. Water, food, financial, and transport sectors are other key sectors that
are identified as CI [20,21]. Although each critical industry has its own infrastructure, they
are usually composed of industrial control systems (ICSs). These ICSs allow electronic
control in the industrial process as shown in Figure 1.
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The proper functioning of our current society depends on CI [22]. Emerging technolo-
gies have become key to providing a high quality of life to citizens [23], and industrialized
nations rely on information and communication technologies to allow society to transport,
communicate, manage money, produce food, and even have health technology systems.
Consequently, CI needs to be protected from a variety of risks [24], including physical and
digital. From a digital perspective, a cyber-attack could have a significant impact on the
security sector, the economy, and public health, among others [25]. If an attack involves
communication networks—a CI category of its own—that support CI, this could have the
potential to cause a ripple effect, resulting in a significant disruption of vital services in
different CI sectors [19,20].

4.2. ML and IDSs to Protect CI

There is an interconnectivity between ICSs, information, and communication tech-
nology (ICT), and technology from the fourth industrial revolution (4IR) including the
industrial internet of things (IIoT), 5G communications, and artificial intelligence (AI).
Although this interconnectivity has brought numerous advantages to CI’s performance,
such as the quality of products and services, operational efficiencies, automatization, and
cost reductions [26], the number of cyber-attacks has increased since these industrial in-
struments have been connected to the internet [27]. Therefore, the attack surface used by
attackers to compromise CI has expanded.

In [28], there is a wide range of techniques (non-AI) that have been used to detect
cyber attacks on technology systems, and some of these techniques have been partially
adapted for industrial systems and their particular attack vectors. These include game
theory, rate control, heuristics, intrusion detection systems (anomaly-based and signature-
based), autonomous systems, and end-user security controls. Machine learning (ML) has
become one of the most useful methods to improve cybersecurity in CI. This is due to
ML’s capacity to manage enormous amounts of data and its ability to detect anomalies,
patterns, or outliers has dramatically improved [29]. Therefore, one of the most important
applications of ML in cybersecurity has been in IDSs [30].

IDSs have different classifications depending on the criteria they use to classify the
divisions. There are two well-known divisions: scope and methodology. Scope classification
involves host-based IDSs and network-based IDSs. Methodology classification involves
signature-based IDSs, anomaly-based IDSs, and hybrid IDSs [31], as shown in Table 3. IDSs
have implemented ML algorithms to obtain better performances (as compared to regular
security systems). Regular systems lack accuracy in identifying and detecting unknown
cyber-attacks and have some limitations in dealing with significant amounts of data [5],
while ML models do not have similar issues.

Table 3. Classification of IDSs.

According to the scope Host-based IDSs
Network-based IDSs

According to the methodology

Signature-based IDSs
Anomaly-based IDSs

Rule-based IDSs
Hybrid IDSs

Most ML algorithms have been tested as a part of IDSs. This started with supervised
and unsupervised ML, more recently moving on to reinforcement learning, as shown
in Figure 2. The results of these tests vary depending on the ML algorithm used and
its configuration, namely the parameters and hyperparameters. However, a common
obstacle is that previous studies were tested using inadequate datasets [5]. Although there
are online datasets available for research purposes, they do not accurately represent the
current security challenges and threats. Additionally, operators of CI avoid having data
extracted from their networks as a security measure, as extracted data could expose their
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vulnerabilities. Having limitations in the data used to train ML models could affect the
outcome of the research, considering that a model can perform particularly well with one
dataset but poorly with another [32].

Sensors 2023, 23, x FOR PEER REVIEW 6 of 19 
 

 

from their networks as a security measure, as extracted data could expose their vulnera-
bilities. Having limitations in the data used to train ML models could affect the outcome 
of the research, considering that a model can perform particularly well with one dataset 
but poorly with another [32]. 

 
Figure 2. Machine learning algorithms. There are some differences in the ML types depending on 
the information’s source. 

4.3. Cybersecurity Datasets to Test IDSs 
The most popular cybersecurity dataset to test IDSs is KDD-99 [33–35]. This collection 

of data originated in 1990 with the aim of correcting some of the weaknesses identified in 
its predecessor, CUP-99, which were the redundancy of data and the bias in some classes 
[35]. Although in 2009, the NL-KDD dataset was created to offer an improved and up-
dated version of KDD-99, it has been more than a decade since its release, and a decade is 
a considerable amount of time in the cybersecurity area as threats and vulnerabilities mu-
tate or evolve steadily. In [5], the authors compared the ML models used in IDSs. They 
found that 26 out of 65 articles used KDD-99 to prove their theory, 18 out of 65 articles 
used NLS-DDD, 9 out of 65 articles used KDD-CUP 99, and only two articles used cus-
tomized datasets. Therefore, research to test previous theories in more accurate scenarios 
is still needed as it is well known that ML models depend on datasets to learn, and their 
results are directly affected by the quality of the dataset [36]. Currently, there is no reliable 
dataset to represent both common and novel attacks [37], and the differences among se-
curity datasets have caused limitations in the evaluation’s methods [38]. To collaborate in 
the testing of a new hypothesis, a variety of institutions and laboratories have released 
their datasets, as illustrated in Table 4. This does not solve the difficulties in testing since 
the datasets are often not up to date, not always freely available, have a lack of diversity 
in the logs, and have incomplete documentation [39]. Despite this, these data collections 
are still helping researchers test new hypotheses. 

  

Figure 2. Machine learning algorithms. There are some differences in the ML types depending on the
information’s source.

4.3. Cybersecurity Datasets to Test IDSs

The most popular cybersecurity dataset to test IDSs is KDD-99 [33–35]. This collection
of data originated in 1990 with the aim of correcting some of the weaknesses identified in its
predecessor, CUP-99, which were the redundancy of data and the bias in some classes [35].
Although in 2009, the NL-KDD dataset was created to offer an improved and updated
version of KDD-99, it has been more than a decade since its release, and a decade is a
considerable amount of time in the cybersecurity area as threats and vulnerabilities mutate
or evolve steadily. In [5], the authors compared the ML models used in IDSs. They found
that 26 out of 65 articles used KDD-99 to prove their theory, 18 out of 65 articles used
NLS-DDD, 9 out of 65 articles used KDD-CUP 99, and only two articles used customized
datasets. Therefore, research to test previous theories in more accurate scenarios is still
needed as it is well known that ML models depend on datasets to learn, and their results are
directly affected by the quality of the dataset [36]. Currently, there is no reliable dataset to
represent both common and novel attacks [37], and the differences among security datasets
have caused limitations in the evaluation’s methods [38]. To collaborate in the testing of a
new hypothesis, a variety of institutions and laboratories have released their datasets, as
illustrated in Table 4. This does not solve the difficulties in testing since the datasets are
often not up to date, not always freely available, have a lack of diversity in the logs, and
have incomplete documentation [39]. Despite this, these data collections are still helping
researchers test new hypotheses.
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Table 4. Additional datasets for cybersecurity purposes.

Release Year Dataset’s Name Source

2005 LBNL [40]
2009 TWENTE [41]
2010 MAWILab [42]
2011 KYOTO [43]
2012 TTUIDS [44]
2012 ISCX [45]
2014 SANTA [46]
2014 SSENET(V2) [47]
2015 ARCS [48]
2016 DDoS [49]
2017 NDSec-1 [50]
2018 PUF [51]
2018 UGR’16 [52]
2019 SWAT [53]
2020 MedBIoT [54]
2021 MWS [55]
2022 NF-UQ-NIDS (V2) [38]
2022 NF-CSE-CIC-IDS (V2) [38]
2022 NF-ToN-IoT [38]

2002–2020 CAIDA [56]

In general, most cybersecurity datasets cannot represent the networking behavior of
CI. Most of them were created with standard architectures, protocols, and technologies
that differ from those that are part of CI [57,58]. However, some datasets consist of both
conventional and unconventional logs of network activities occurring at infrastructure
levels in diverse industries, such as NGIDS-DS [59,60]. Datasets that represent the traffic
between IIoT and CI are also available, such as TON_IoT [52,61], MQTT-IOT-IDS [62],
X-IIoTID [63], and Edge-IIoTset [64]. These have logs for normal operation and attack types.
The attack types that are part of each dataset are as follows. For TON_IoT, they are DoS,
DDoS, and ransomware. MQTT-IOT-IDS has the following: aggressive scan, UDP scan,
Sparta SSH brute force, and MQTT brute force. In the case of X-IIoTID, the attack types
are brute force, dictionary attack, malicious insider, reverse shell, and man-in-the-middle.
Edge-IIoTs have DoS, DDoS, information gathering, man-in-the-middle, injection, and
malware [65].

Cybersecurity datasets usually have imbalanced data because normal traffic constitutes
the majority of the datasets’ logs [66]. This class imbalance can reduce the effectiveness
of ML algorithms in identifying intrusions. Thus, there are three main techniques to deal
with imbalanced data: oversampling, undersampling, and hybrid sampling. Moreover,
there is a deficiency of available datasets that represent ICSs and SCADA systems [67]. For
instance, in [57], the authors developed a testbed of network traffic extracted from a water
system to provide data on physical and network systems and to keep the dataset balanced.
In [58], the authors focused on creating a testbed that represents physical components, such
as controllers, sensors, and actuators. These components are usually part of CI and must
be taken into consideration to develop any defensive solution as an IDS. Therefore, if a
cybersecurity dataset does not provide information from a cyber-physical environment, it
should not be considered for testing cybersecurity measures for CI [68].

5. Machine Learning in Intrusion Detection Systems (IDSs) to Protect CI

ML is a category of AI and is focused on helping computers to learn. This learning is
based on previous knowledge from experiences, patterns, and behaviors [28]. Since 1950,
when AI started, a considerable amount of research has been conducted in almost every area
of investigation from agriculture to space. In the cybersecurity area, the ability to identify
and learn from patterns is used to detect similar attacks. For instance, signature-based IDSs
use ML to detect attacks in which signatures had been previously learned [31]. Although
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this kind of identification has produced excellent results in identifying previous well-known
attacks, its performance is inaccurate when applied to zero-day attacks. Furthermore, a
small modification to an attack would change its signature, thus making it difficult to
identify an attack by a signature-based IDS [5]. In the case of anomaly-based IDSs, an ML
algorithm models the normal behavior of the network and identifies everything outside
of the learned model as an anomaly. This kind of IDS is better at detecting unknown and
zero-day attacks. However, the false positive rate is considerably higher, and abnormal
behavior is not always an indication of an attack. A plastic bag can block or alter the digital
measures of a sensor in a hydroelectric system, and while this is not a cyber-attack, the bag
would be detected as an anomaly. More recent research has shown the benefits of a hybrid
approach, i.e., mixing the potential of both kinds of IDS. While a mixed approach has some
benefits, its use would result in a complex system that is difficult to implement [7,31,34,69].

ML algorithms have been used to attack and defend in cyberspace [5,70]. From
a protection point of view, ML classifiers have advantages for security systems. These
advantages include (1) decision trees that can find an accurate set of “best” rules that are
used to classify network traffic; (2) k-nearest neighbors (an interesting solution in IDSs)
that can learn patterns from new traffic to classify zero-days attacks as an unseen class;
(3) support vector machines; and (4) artificial neural networks that can adapt to new forms
of communications and learn from incidents without training all models again and can
adjust their neurons’ weight to identify unseen attacks [28]. All the previous examples
have common characteristics in that they depend on the quality of the dataset to learn to
identify a cyber-attack, they conduct supervised learning, and they need a periodic update—
there are different updating techniques depending on the trained model and particular
needs. Nevertheless, the need to update the model is not just for ML classifiers but for any
ML model.

The incorporation of the fourth industrial revolution’s technologies such as the internet
of things has exponentially increased the amount of diverse data that CI is generating [8].
Additionally, SCADA systems, which are the core of most CI, have implemented TCP/IP
communication protocols [32], resulting in a wider attack surface with the possibility of
more complex and diverse attacks [5]. There is a need to develop new technologies to cope
with changing and novel risks. ML solutions have established a strong resistance against
security threats [8]. Nonetheless, depending on experts’ labeling is becoming pointless
as attackers are always changing their methods, and the exponential increase in real-time
network traffic [28] has made it impossible to keep security rules updated. Additionally,
it could be difficult to recognize patterns in unbalanced, noisy, or incomplete data [71].
These features are normally present in CI’s network traffic. Consequently, UL and RL
have become the most adept solutions to cope with these problems. UL helps to uncover
hidden characteristics, patterns, and structures from datasets to establish indicators of
cyber-attacks [31,60] and, through clustering, has enhanced its capacity to identify novel
attacks. RL learns from its own experience, and it is the closest to human learning. RL
performs well when working in real-time adversarial scenarios [8], and its characteristics
make it attractive as a cybersecurity solution.

Typical security solutions tend not to identify vulnerabilities that merge the inter-
action of IT and physical systems [72,73]. There is a need to develop IDSs with specific
characteristics that take into consideration CI requirements: (1) industrial control systems
(ICSs) have a continuous operation that cannot be interrupted for long periods to carry out
any security management tasks, and the highest service availability is usually mandatory;
(2) in industrial networks, the jitter or delay is kept at lower levels than in IT networks;
(3) a physical process is developed by sensors, actuators, or programmable logic controllers
(PLC), which are key components for ICS operation, and their security is a priority [1];
(4) a cyber-attack on CI could scale and generate economic losses, and social or political
issues, and even impact human lives [19]; and (5) ICS traffic is more stable, and the payload
depends on system specifications and usually manages their communication protocols [74].
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Details of some of the ML algorithms used in IDSs are explained in Figure 2. The most
frequently used ML method is supervised learning. This method has shown meaningful
results in measures such as accuracy. Nevertheless, making comparisons between results
is not simple work, since they are calculated using different measures from different
algorithms and training datasets. In [60], the authors based their evaluation on calculating
the area under the curve (AUC) and obtained the best possible results (1.0). This measure
does not allow the minimization of one type of error. Thus, the AUC is not useful if
optimization of false positives or false negatives is needed. Most complex metrics are also
included to evaluate the performance of IDSs, such as the Matthews correlation coefficient
(MCC) and F1-score. The latter is becoming popular since it is computed as a harmonic
mean of precision and recall [75]. There is a limitation in the parametric comparison of
ML algorithms used in IDSs, and most of the analyzed works do not evaluate the results
with a variety of measures [35,76,77]. The most common measure is accuracy, followed by
precision, recall, and F1-score, as shown in Table 5. Calculating metrics such as the MCC,
confusion matrices, specificity, sensitivity, and the kappa coefficient help to understand the
behavior of ML algorithms and to deeply understand the research results, as in the case
of [72], in which the authors offer the results in more than five metrics.

Table 5. Datasets and ML to develop IDSs.

Ref Dataset Dataset
Date

Learning
Model Characteristics Tested Algorithms Results

Accuracy Precision Recall F1-Score Other

[76]
NF-BoT-

IoT
(V2)

2022

Supervised
learning

Ensemble
models

Random forest
decision tree classifiers AUC: 1.0

[33] KDD 99 1990 Naïve Bayes, decision
tree classifiers 0.998 0.998 0.998

[78] CTU-UNB 2015
Convolutional

networks

Dilated convolutional
neural networks
(unsupervised

pretraining and
supervised
fine-tuning)

0.899 0.917 0.899 0.897

[35]
CICDS 2017

Convolutional neural
networks

0.992
ADFA-LD 2009 0.953
NSL-KDD 2009 0.834

[77] CICDS 2017

Deep networks Deep neural networks
0.997

NF UNSW-
NB15 2022 0.970

[79] NSL-KDD 2009 0.954 0.962 0.935
[80] CICDS

2017
Multi-layer perceptron 0.77 0.83 0.76

[36] TRAbID

Decision trees

Decision tree (DoS) 0.900
FP (%):

0.00, FN
(%): 19.84

[81] KDD CUP 1999
Decision tree,

multi-objective DT
pruning

0.966 0.998

[77] NF UNSW-
NB15 2022 Random forest

(multiclassification) 0.917

[80] CICDS 2017
Random forest 0.98 0.97 0.97

Adaboost 0.77 0.84 0.77
ID3 0.98 0.98 0.98

[36] TRAbID 2017

Bayesian
networks

Naïve Bayes (DoS) 0.833 FP: 0.35%,
FN: 36.99%

[80] CICDS 2017 Naïve Bayes 0.88 0.04 0.04

[72]
NSL-KDD 2009 Likelihood naïve Bayes

(PPGO-LNB)

0.965 0.975

Sensitivity:
0.965

Specificity:
0.964

CICDS 2017 0.999 0.999

Sensitivity:
0.999

Specificity:
0.999

NF-BoT-
IoT
(V2)

2022 0.999 0.999

Sensitivity:
0.999

Specificity:
0.999

[80] CICDS 2017 Generative
models

Quadratic
discriminant analysis 0.97 0.88 0.92
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Table 5. Cont.

Ref Dataset Dataset
Date

Learning
Model Characteristics Tested Algorithms Results

Accuracy Precision Recall F1-Score Other

[32] CSIC 2018 Long
short-term
memory
networks

Recurrent neural
networks 0.976 0.977 0.96

[82] MAWI 2022 Deep recurrent neural
networks

[80] CICDS 2017
Neighbor-based

models

K-nearest neighbors 0.96 0.96 0.96

[60] NGIDS-DS 2009
Unsupervised

learning
ODIN 0.98 0.948 0.729 MCC: 0.824
COF 0.87 0.253 0.759 MCC: 0.824

[83] ISOT-CID 2010 Reinforcement
learning Deep networks Double Deep

Q-Networks
0.9217 AUC: 0.811

NSL-KDD 2009 0.797 AUC: 0.798

In the case of anomaly-based IDSs, the detection rate and false alarm rate are the
most common metrics used to evaluate the detectors. Nonetheless, these cannot fully
assess a detector designed to work in CI. For instance, detection latency is a key factor [74].
Operators of CI need to know about a cyber-attack as soon as possible.

Ensemble models obtained positive results using the F1-score as an evaluation metric,
however, the training dataset could not represent the current threats due to it being from
1990 [31]. Models that used decision trees, neighbor-based models [27,76], and recurrent
neural networks [82] obtained results over 0.96 in accuracy, with more updated datasets.
The problem to solve using an ML model is not always the same. In some cases, it is a
binary classification, while in others, it is a multiclassification. The number of classification
options depends on the security information available in the dataset and the model’s
purpose. From the cybersecurity perspective, it is not enough to detect a cyber-attack—
binary classification. It would be better to know which kind of intrusion was detected in the
system—multiclassification. This knowledge can determine incident management. There
has been a surge in new techniques such as the clustering-based classification methodology
named perceptual pigeon galvanized optimization (PPGO) [72]. Although this technique
proposes a binary classification, it has good results not only in metrics such as accuracy but
also in different evaluations such as MCC, confusion matrices, sensitivity, specificity, and
F1-score. This kind of technique has better options to implement in industrial networks
than some multiclassification solutions with less accurate results. Additionally, PPGO is
also a method for choosing the optimal features, which is always a challenge when working
with ML. An analysis of some previous works that have been done to develop IDs using
ML is shown in Table 6.

Future selection (FS) is a demanding task, not only in the development of ML algo-
rithms for industrial systems but also in any solution that implements ML. In classification
problems, an adequate FS technique finds the best characteristics that solve the problem,
increases the classification accuracy, and decreases the training and testing time. There are
different techniques for FS, and some of the most common are wrapper methods, which
include forward, backward, and stepwise selection; filter methods, which include mea-
sures such as Pearson’s correlation and analysis of variance (ANOVA); and embedded
methods, in which the FS process is evolving as part of creating models such as decision
trees. Additional methods or tools that can be used for FS have been developed, such as
principal component analysis (PCA). Although a deep analysis of the FS techniques is out
of the scope of this review, it is necessary to highlight their importance. An example of an
FS algorithm for IDSs in CI was developed in [73], where the authors present a wrapper
method composed of the BAT algorithm and support vector machines (SVMs). The results
were positive in different measures; however, the study was carried out with the benchmark
KDD Cup dataset from 1999, which might bring some limitations to its implementation in
real-world scenarios since the dataset cannot represent the characteristics of current attacks
and only has data from four kinds of attacks: denial-of-service attacks, which prevent users
from accessing services; probe attacks, which scan vulnerabilities; remote-to-local attacks,
which obtain access from remote connections; and user-to-root attacks, which obtain root
access from a normal user.
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Table 6. Advantages and disadvantages of previous works that use ML to detect cyber-attacks.

Ref Dataset Tested Algorithms Advantages Disadvantages

[76] NF-BoT-IoT (V2)
Ensemble model:

Random forest decision
tree classifiers High accuracy and stability prediction,

minimal misclassification.

High complexity in
algorithm design

[33] KDD 99
Ensemble model:

Naïve Bayes, decision
tree classifiers

Outdated dataset (1990). High
complexity in algorithm design

[78] CTU-UNB

Dilated convolutional
neural networks
(unsupervised

pretraining and
supervised fine-tuning)

It is well-suited to large-scale
networks, has low detection

time, feature
extraction capability

Highly dependable on the
relevancy of the features

[35]

CICDS
Convolutional neural

networks

Context-aware Feature Extraction, the
dataset contains network flows High resource computing

ADFA-LD Context-aware Feature Extraction,
Host-based intrusion detection

Outdated dataset (2009). High
resource computing

NSL-KDD Context-aware Feature Extraction

[77] CICDS Deep neural networks Binary and multiclass classification,
the dataset contains network flows

Complex model difficult to
interpret the results, high

resource computing

[80] CICDS Deep network:
Multi-layer perceptron The dataset contains network flows Long execution time with

nonlinear problems

[72]

NSL-KDD

Likelihood naïve Bayes
(PPGO-LNB)

Low false positives and low
computational cost, low

detection time

Outdated dataset (2009), the
model was applied just to

binary classification. It
assumes that the variables

are independent.

CICDS
The dataset contains network flows,

low false positives, low computational
cost, and low detection time.

The model was applied just to
binary classification. It

assumes that the variables
are independent.NF-BoT-IoT (V2)

Low false positives, low
computational cost, and low

detection time

As shown in [33,71,75], the detection time is a factor that should be considered and
calculated. Although proper identification is mandatory to protect CI, the detection time is
key in avoiding escalation, mitigating the major effects of a cyber attack, and being able to
continue to offer the service.

Currently, to overcome the identified setbacks related to the application of ML al-
gorithms in IDSs, there has been a tendency to use hierarchical, layered [33], hybrid, or
meta-learning algorithms. These algorithms improve the capacity for the detection of
unseen and infrequent attacks and conserve their accuracy in the detection of well-known
attacks. In general, one model is used as the input for the next one, and multiple com-
binations of models have been shown to produce positive results in measures such as
accuracy, as shown in Table 5. The results are generally well-accepted and much better
than a classical approximation. However, some of them have been proven by datasets
that, for the most part, do not represent current threats, thus diminishing the capacity
to generalize the results and establishing doubts about their behavior in the real world.
Furthermore, there is a concern about the technical requirements needed to develop and
support the models. Additionally, they have not been successful at identifying all types
of intrusions [34]. Most models lack proper adaptivity [83] as the attackers’ changing
patterns are usually not identified. In some cases, they require human intervention to intro-
duce new vulnerabilities, however, the number of new vulnerabilities could surpass the
technique’s availability.
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In [84], the authors present a hybrid approach that focuses on dealing with highly
imbalanced data in SCADA. This proposal combines a customized content-level detector—
a Bloom filter—with an instance-based learner (k-nearest neighbor (KNN)). The detector is
signature-based; therefore, it cannot detect attacks that were not previously identified. To
overcome this issue, the authors used KNN. However, the performance is highly dependent
on the number of neighbors considered for classification. Implementing hybrid algorithms
with unsupervised learning is also an option, as presented in [85], where a mutated self-
organizing map algorithm (MUSOM) deployed an agent that identified the node behavior
as malicious or normal. The MUSOM wants to reduce the learning rate, which is a positive
characteristic in developing security systems for SCADA due to the decrease in the training
time without increasing the memory needs.

In [60], meta-learning approaches—bagging, boosting, stacking, cascading, delegating,
voting, and arbitrating—with unsupervised learning were tested in 21 datasets, and the
authors concluded that no algorithm outperformed another during the research. Despite
this, they were able to recognize that some factors would improve the results, such as
implementing accurate parameter tuning or using a better feature extractor.

Another method is to focus on developing models to detect specific attacks, as shown
in Table 7. This kind of approximation mainly focuses on the most frequent and high-impact
attacks on CI such as distributed denial-of-service (DDoS) attacks, which affect a service’s
availability. In detecting DDoS attacks, results above 0.97 in classification accuracy have
been obtained [32]. The interruption of the availability of CI tends to have the most severe
impact on people’s daily lives as it interferes with access to daily commodities such as
energy, communications, and water. Although the other security information characteristics
are also vital—integrity and confidentiality—CI operators always prioritize availability
over all other considerations [22,24].

Table 7. IDSs and cyber-attacks to protect CI.

ICC Dataset Attacks ML Techniques Source

SCADA

CSE-CIC-IDS 2018

“Bot, DDoS, DoS, SSH-Brute Force,
FTP-Brute Force, Infiltration, Brute
Force Web, Brute Force XXS, SQL

Injection”

Multifaceted data
clustering model;

gradient descent spider
monkey

optimization-deep
sequential long

short-term memory

[86]
NSL-KDD DoS, probe, R2L, U2R

BoT-IoT “Information Gathering, DDoS,
DoS, Information Theft”

Water treatment system SWAT

“Single Stage Single Point (SSSP),
Single Stage Multi-Point (SSMP),
Multi-Stage Single Point (MSSP),

Multi-Stage Multi-Point (MSMP)”

Autoencoder neural
network (modified) [87]

“36 attacks were carried out on
communication links attacking

different sensors/actuators aiming
at one device or multiple devices
and/or stages simultaneously”.

Convolutional neural
networks (modified) [88]

Power system

Dataset developed by
Mississippi State

University and Oak
Ridge National

Laboratory

“Data injection, remote tripping
command injection, and relay

setting change”.

Supervised
autoencoder and PCA

algorithm
[89]

Industrial Control
System (ICS), Cyber

Attack Datasets

“False Data Injection and Denial of
Service attacks”. Deep belief network [90]

Custom “Injection attack, function code
attack, and reconnaissance attack”. GAN [91]
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In previous research, as illustrated in Table 5, there are positive results for IDSs that
implement ML techniques, where some of them obtain results over 0.99 in measures of
accuracy. Nonetheless, the training datasets do not have logs from cyber–physical systems
such as sensors or actuators. These components are essential for the operation of CI and
have specific characteristics [92]. Therefore, the results can be imprecise due to the inaccu-
racy and outdatedness of the datasets used to train the models. Additionally, the kinds of
cyber-attacks that CI is a victim of differ from the typical attacks on other infrastructure
mainly due to (1) the physical components that are involved, (2) the real-time data trans-
mission, (3) the geographically distributed components [93], (4) the kind of attacker, and
(5) the attack motivation. When these characteristics are taken into consideration, a different
set of threats is analyzed, as shown in Table 7. These types of attacks include elements such
as the alteration or disruption of the information issued by specific sensors [87,88].

Finally, from the cybersecurity point of view, the design of new ML-based IDSs
should consider their robustness against adversarial attacks. These attacks exploit the
vulnerabilities of ML systems to bypass IDSs [94]. Adversarial attacks use different attack
vectors, for instance, the alteration of the classifier to change the output, the modification
of the input data, and an adversarial honeypot. Some of the techniques used to develop
an adversarial attack are the fast gradient sign method (FGSM) and projected gradient
descent (PGD), which add noise to the original data [95]. These attacks are particularly
challenging as some authors argue that the maximum mean discrepancy (MMD) might
not be effective in identifying legitimate and malicious traffic. However, previous research
works have found that if modifications are made to the original implementation, MMD
would help in the identification of adversarial attacks [96]. Defense techniques were also
implemented to improve the security of ML-based IDSs in [94,97], where the authors
proposed three categories: modify the input data, augmenting the original dataset to
improve the capacity of generalization (Gaussian data augmentation); modify the classifier,
changing the loss function or adding more layers (gradient masking); add an external model,
adding one or more models during the test, and keeping the original (generative adversarial
networks (GANs)).

6. Conclusions and Future Direction

In this paper, we have presented a survey on IDSs that have been developed for the
protection of CI, based on data from the last five years. These IDSs use ML techniques as a
principal component to detect cyber-attacks. Although there are meaningful advances in
the development of detection tools for the accurate identification of known attacks, there
are still challenges, such as the detection of zero-day attacks, the model’s updating, and
the high rate of false positives. Future research could focus on improving these identified
challenges. This work highlights the weaknesses and strengths of: (1) the ML used to
improve the cybersecurity level of CI; (2) the cybersecurity datasets; and (3) the CI security
requirements. Finally, it serves as a starting point for forthcoming studies.

The protection of CI is a national security concern [1], and its cybersecurity models de-
pend on traditional approximations that typically utilize standalone security solutions [98].
Systems such as IDSs incorporate ML solutions to improve the prediction capacity, and
different kinds of learning methods have been implemented to obtain results that do not
cover all the protection levels required to secure CI. On the one hand, supervised learning
has been producing positive results when identifying well-known attacks, but it struggles
to detect zero-day attacks. On the other hand, unsupervised learning, which is better
at detecting unknown attacks, does not obtain the same results as known attack vectors.
Additionally, reinforcement learning has been incorporated to resolve high-dimensional
cyber defense problems [8]. More complex approximations are being developed, and
meta-learning learners and artificial neural networks have been tested.

Although the results seem promising in the anomaly detection field, most of the
testing that has been conducted was carried out with datasets that do not represent network
traffic from CI from either past or present cyber threats, thus questioning the algorithms’
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generalization capacity in real-world scenarios. There is a need for accurate characterization
of data extracted from CI’s networks, not only to train network-based IDSs but to help in
the development of host-based IDSs. Developing a more accurate dataset is an open area of
research that would highly contribute to closing the gap between academic findings and
real-world applications.

Comparing results with previous works is challenging. Tables 5 and 6 show some
works that have been developed to detect cyber-attacks using ML techniques; however, this
comparison is not an easy task since they used different datasets with different techniques,
and in some cases, they calculated different metrics or calculated only the accuracy of
the model [30,72] and we already know that accuracy metric is not enough to analyze
an ML model. Particularly in ICS, the detection time is a factor that must be calculated.
Additionally, the works might not have enough information to replicate the model. Thus,
advances in how to compare ML models are considered an encouraging research area.
Additionally, there is a need to close the gap between cybersecurity systems and incident
management, so organizations can undertake appropriate control measures to mitigate risk
proactively [18].
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