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Abstract: A wearable antenna functioning in the 2.4 GHz band for health monitoring and sensing
is proposed. It is a circularly polarized (CP) patch antenna made from textiles. Despite its low
profile (3.34 mm thickness, 0.027 λ0), an enhanced 3-dB axial ratio (AR) bandwidth is achieved by
introducing slit-loaded parasitic elements on top of analysis and observations within the framework
of Characteristic Mode Analysis (CMA). In detail, the parasitic elements introduce higher-order
modes at high frequencies that may contribute to the 3-dB AR bandwidth enhancement. More
importantly, additional slit loading is investigated to preserve the higher-order modes while relaxing
strong capacitive coupling invoked by the low-profile structure and the parasitic elements. As a
result, unlike conventional multilayer designs, a simple single-substrate, low-profile, and low-cost
structure is achieved. While compared to traditional low-profile antennas, a significantly widened CP
bandwidth is realized. These merits are important for the future massive application. The realized
CP bandwidth is 2.2–2.54 GHz (14.3%), which is 3–5 times that of traditional low-profile designs
(thickness < 4 mm, 0.04 λ0). A prototype was fabricated and measured with good results.

Keywords: characteristic mode; parasitic loading; slit loading; low-profile; wearable antenna

1. Introduction

Due to the restrictions on cost, reliability, productivity, safety, and robustness, as well as
the requirement for a good user experience in advanced communications and wireless body
area networks (WBAN) for health care, health monitoring, sensing, and athlete training,
etc., a tremendous effort has been devoted to minimizing traditional rigid antennas [1,2].
However, as a compromise, the miniaturization sacrifices the antenna performance since
the antenna gain is essentially related to its dimensions [3]. Alternatively, flexible wearable
antennas based on textiles [4–6], polyimide [7], PDMS [8–10], etc., are supposed to be good
candidates for maintaining good performance and user experience while relieving the
dimension restriction. For instance, [6] reports a wearable antenna for energy harvesting
applications; however, the reported antenna has a low front-to-back ratio (FBR) without
ground shielding. It is well known that the unshielded design results in a significant gain
decrease (e.g., it decreases by a factor of 2 or more in [6]) due to the coupling and power
absorption caused by the vicinity loading of the lossy human body. In contrast, patch
antennas are reported to be insensitive to the human body and can obtain high FBR due to
their shielding ground, which can benefit wearable applications. Their merits of low profile
and low cost are also favorable for massive usage. Additionally, one needs to address the
issue of polarization mismatch, which inevitably happens due to unpredictable movements
in realistic circumstances when linearly polarized (LP) antennas are used. Hence, CP
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antennas are a more appropriate choice [11–16]. Ref. [11] reports an S-shape slot CP
antenna with a narrow 3-dB AR bandwidth (1.23%) for Iridium and GPS communications.
Ref. [12] presents an omnidirectional button antenna using conceptual magnetic dipoles
for 5 GHz applications. There are some other wearable CP antennas designed using a low-
profile approach since clothes mostly have a thin thickness [17–22]. However, according
to the above-mentioned literature, most of these wearable antennas have a limited CP
bandwidth and a degraded performance in harsh environments. There are some antennas
with bandwidth-enhancing techniques reported for traditional rigid antenna designs, for
example, using aperture coupling [23], metamaterials/metasurfaces [24–28], parasitic
elements [14,23], thick-air substrates [14,24], multilayer stacking [13], pin-loading [29],
reflectors (e.g., AMC, PRS) [30,31], AI-based approaches [25,32], etc. However, most
of these popular techniques are not suitable for wearable applications because of the
thickness restrictions.

In this paper, we present a low-profile slit-loaded CP antenna with enhanced 3-dB AR
bandwidth using Characteristic Mode Analysis (CMA). Its CP bandwidth is 2.2–2.54 GHz
(14.3%). This design features two essential merits over the literature: (1) a superior CP
bandwidth and high gain are achieved for low-profile wearable CP antennas in the 2.4 GHz
band; (2) increased bandwidth with only single layer substrate, which is easy to fabricate
and low-cost. It is worth mentioning that not many designs are capable of obtaining a
decent 3-dB AR bandwidth for low-profile CP antennas (LPCPA), as depicted in Table 1,
whereas our work draws a clear distinction. In detail, a multilayer structure with stacked
patches and parasitic elements is reported in [13], which leads to 20.7% CP bandwidth at
6 GHz. Ref. [14] reports a strip-loaded antenna with 24% CP bandwidth. However, they are
only suitable for traditional rigid substrates. Ref. [17] presents a wearable antenna array fed
by a sequential feeding network. The feeding is embedded in the inner layer of the antenna,
which makes the fabrication complicated. A modified metasurface is also applied to the
antenna design in [18], which results in a wideband property with a peak gain of 8.5 dBic.
In [12,19], shorting pins are used to design flexible antennas for off-body or on-body
communication. However, these antennas work in the 5 GHz band [12,13,17–19]. If such
antennas are scaled to the 2.4 GHz band, the physical thickness of the antennas increases.
The scaled designs may be too bulky for wearable applications. As for the 2.4 GHz band
low-profile wearable designs [16,20–22], they all have a limited CP bandwidth. This is due
to the fact that with a physically similar low-profile thickness, their electrical thickness
in the 2.4 GHz band is smaller than that one in the 5 GHz band, and thus, leads to a
high Q, in other words, a narrow bandwidth in the 2.4 GHz band. Comparing to these
reported wearable designs with a low profile, the proposed antenna achieves the highest
CP bandwidth of 14.3%, around 3–5 times that of the counterparts. This is accomplished
by adopting parasitic elements, as in [14], and a novel slit-loading technique. Notably,
except for the parasitic loadings, Ref. [14] also utilizes a widely used bandwidth boosting
method, i.e., air gap loading [14,23], and two blind disk-loaded pins to realize a single-feed
design. However, the approach in [14] is unfavorable for wearables because of the thick
air gap, and the blind disk and pins make the antenna fabrication complicated and costly
(which are not easy to be addressed for wearables). Moreover, it is worth emphasizing
that unlike traditional parasitic loadings [14,29], the bandwidth enhancement in this work
is also attributed to the slit-loading approach, which introduces higher-order modes and
also unblocks the requirement of inductive matching compensation in traditional designs.
Overall, both the parasitic elements and the slit-loading lead to a decent CP bandwidth
with a low-profile single-layer substrate.

This work is organized as follows. Section 2 illustrates the antenna configuration.
Section 3 introduces the CP bandwidth-enhancing procedure from the perspective of CMA.
Further, under the guidance of the obtained CMA results, CST microwave studio 2020 is
employed to validate the antenna design with full-wave simulations. Then the antenna is
fabricated, and the measurement results are discussed in Section 4. Finally, conclusions are
given in Section 5.
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Table 1. Comparison with counterpart CP antennas in the literature.

Ref. f 0
(GHz)

Size (mm3,
λ0×λ0×λ0

Impedance
BW (GHz)

3-dB AR
BW(GHz) Peak Gain Efficiency FBR

(dB)
Wearable
Material

[12] 5.8 14.1 × 14.1 × 10.29,
0.273 × 0.273 × 0.199

5.68–5.91
3.97%

5.72–5.89
2.93% 2.1 dBic 72.6% NA Yes

[13] 6 40 × 40 × 4.5,
0.8 × 0.8 × 0.09

5.0–7.0
33%

5.38–6.62
20.7% 8.6 dBic NA 20 * No, rigid

[14] 2.49 130 × 130 × 15,
1.079 × 1.079 × 0.125

1.87–3.11
49.8%

2.32–2.95
24% 8.7 dBic NA 25 * No, rigid

[17] 5.44 40 × 40 × 4,
0.725 × 0.725 × 0.072

4.25–6.63
43%

4.71–6.67
34% 7.5 dBic NA 30 * Yes

[18] 5.47 54 × 54 × 4.4,
0.985 × 0.985 × 0.080

4.51–6.43
35.1%

5.02–5.98
17.5% 8.5 dBic 77% 35 * Yes

[19] 5.86 35 × 35 × 2.24,
0.684 × 0.684 × 0.044

5.67–6.05
6.6%

5.73–5.955
3.85% 7.2 dBic NA 28 * Yes

[20] 2.43 65.6 × 58.9 × 3.94,
0.531 × 0.477 × 0.032

2.26–2.6 *
14.0%

2.365–2.499
5.5% 6.5 dBic 73% 25 * Yes

[21] 2.45 100 × 100 × 3.94,
0.818 × 0.818 × 0.032

2.34–2.57
9.4%

2.4–2.45 *
2.1% 6 dBic 62% 30 * Yes

[22] 2.5 60 × 60 × 3,
0.5 × 0.5 × 0.025

2.36–2.64
11%

2.42–2.49
2.86% 1.8 dBic 30.7% 18 * Yes

[16] 2.45 60 × 60 × 3.4,
0.48 × 0.48 × 0.027

2.26–2.64 *
15.5%

2.3–2.4
4.08% 2.5 dBic 42.26% 25 * Yes

This work 2.4 130 × 130 × 3.34,
1.04 × 1.04 × 0.027

2.18–2.61
18%

2.2–2.54
14.3% 8.9 dBic 52.96% 35 Yes

NA: not available. *: evaluated from figures.

2. Antenna Configuration

The geometry of the antenna is depicted in Figure 1. The antenna is composed of a
corner-truncated patch surrounded by parasitic elements. The patch is with a cross-slot at
the center. The antenna is deposited on top of a grounded single substrate layer made of
felt (εr = 1.35, tan δ = 0.03). Both the patch and the ground are made of conductive textiles
with a conductivity of σ = 1.18 × 105 S/m (Shieldit Super from LessEMF Inc, Latham NY,
USA.). The materials are flexible so that the antenna is friendly to be worn on the body.
A ground shielding topology rather than unshielded ones [6,33] is adopted to reduce the
human body loading effect on the antenna performance. Since a large area is available
on the body, the antenna ground can be kept large to have higher gain and less radiation
exposure issues. The thickness of the felt substrate and the conductive textiles are 3 mm
and 0.17 mm, respectively. This results in a low-profile structure whose thickness is only
0.027 λ0. An antenna prototype is fabricated, as shown in Figure 9a. All the materials were
cut manually. The textile radiator, the ground layer, and the felt substrate were ironed
together with thermal melting glue. An SMA connector was soldered to the ground and
to the patch to feed the antenna for measurements using a temperature-tunable soldering
iron to avoid burning the textile.
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3. Working Mechanism
3.1. Characteristic Mode (CM) Theory

To ease the illustration of the working mechanism of the CP bandwidth enhancement,
here we review the main theoretical elements of CMA first.

According to the CM theory [34], an impedance matrix Z can be written as

Z = R + jX,

where R and X are the real and imaginary parts of the impedance matrix, respectively.
Accordingly, a generalized eigenvalue problem is defined as:

XJn = λnRJn,

where Jn is the nth characteristic current mode of a conductive structure and λn is the
corresponding eigenvalue of the nth mode. For each mode, modal significance MS is
defined as [35]:

MS = |1/(1 + jλn)|.

It is an intrinsic property of the structure and is independent of external excitations.
Thus, by investigating the MSs of a certain structure, the properties of the structure can be
envisioned and modified. Especially for λn = 0, i.e., MS = 1, the nth mode is in resonance.
If we take an antenna as an example, with proper feeding excitation, the antenna may
effectively radiate.

Another important factor for antennas design in CM theory is the characteristic angle
(CA), which is defined as [35]:

αn = 180o − tan−1 λn.

It presents the constant phase lag between the current Jn and the tangential component
of characteristic fields En, where En is the field produced by current Jn.

To design a CP antenna, in practice, it is required that two orthogonal modes be
effectively excited, and their MSs be close. Meanwhile, the characteristic angles should
have a phase difference of nearly 90◦ (70◦–110◦).

3.2. Characteristic Mode Analysis (CMA) of the Low-Profile CP Antenna

CMA Multilayer Solver in CST studio 2020 is applied to carry out the predesign and
analysis of the proposed antenna. Figure 2 shows the design in 3 steps. The design starts
from a traditional corner-truncated patch, and then a cross-slot and four parasitic elements
are adopted to introduce extra resonant modes in the frequency band of interest. Afterward,
slits are cut on the parasitic elements to further broaden the bandwidth. Figure 3 illustrates
the MSs and CAs of the first six modes of the three-step design, and Figures 4–6 illustrate
the corresponding modal current distributions. As we can see in Figure 3a, mode 1 and
mode 2 have large MSs in the 2.5–2.8 GHz band, while the MSs of mode 3–6 are almost 0,
which means mode 1 and mode 2 could be excited. However, the MS and CA conditions to
generate CP waves are effective in a limited bandwidth, i.e., 2.62–2.72 GHz, indicated in
the colored zone 1 in Figure 3b. This also explains the natural narrow CP bandwidth of
traditional corner-truncated patch antennas [21,22,36].

To increase the bandwidth, four parasitic elements are utilized to introduce extra
modes in the interested band in the second step. The MSs and CAs for the interested mode
1–6 are shown in Figure 3c,d. It can be seen that mode 1 and mode 2 are the dominant ones
and satisfy the CA requirements for generating CP waves around 2.34 GHz (colored zone
1, 2.3–2.39 GHz), while other modes around 2.34 GHZ have low MSs so that they can be
ignored. Similarly, mode 2 and mode 3/4 contribute to a potential CP around 2.45 GHz
(colored zone 2), mode 3/4 and mode 5 contribute to the frequency band of 2.47–2.51 GHz
(colored zone 3), and mode 5 and mode 6 contribute to 2.51–2.55 GHz (colored zone 4).
To sum up, the antenna may theoretically have a CP bandwidth in the frequency band
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of 2.3–2.55 GHz as long as all the modes can be effectively excited. Notably, the resonant
frequencies of mode 1 and mode 2 are lower than the ones in step 1. This is due to the
introduction of the cross-slot at the patch center and due to the coupling between the
parasitic elements and the patch. This can be seen from the modal current distributions of
mode 1 and mode 2, as shown in Figure 4a,b and Figure 5a,b. Such coupling can be modeled
using LC model methods [5,28]. Moreover, it is worth mentioning that the parasitic patches
and the traditional center patch without slot-loading in step 1 induce a strong capacitive
effect with the antenna ground. This makes a traditional high-profile design preferable
since a long feed probe can be used to compensate for the capacitive effect by its intrinsic
inductance. However, for a wearable design with low-profile restrictions, the feed probe is
too short to fulfill this requirement. Hence, a cross-slot is cut at the center patch to reduce
the capacitive effect and to release the need for a long probe.
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Last, we find that the topology with slit-loadings on the parasitic elements proposed in
step 3 has similar MSs, CAs, and modal currents as in step 2 (see Figure 3e,f and Figure 6).
The potential CP bandwidth is 2.26–2.52 GHz. This is due to the fact that all the modal
currents of modes 1–6 on the parasitic elements flow along the x or y direction so that slits
along x or y directions have limited impact on the modal currents and the characteristic
properties. Thanks to this, narrowing down the size of parasitic patches in step 2 by means
of additional slits increases the parasitic inductance and decreases the capacitance while
keeping the characteristic properties, meaning that a short, less inductive feeding structure
may be sufficient to feed and excite the antenna. Overall, this approach with slits and the
cross-slot is significantly different from the thick multilayer designs in [14,29], which need
extra disks and pins for impedance matching.

3.3. Full-Wave Simulation

Summarized, topology 3 has the potential to obtain a wide CP bandwidth if the
desired modes 1–6 are effectively excited with proper feeding. In the following, a coaxial
probe (inner-pin diameter is 1 mm, outer-shell diameter is 4.1 mm) is used as feeding, and
full-wave simulations are carried out to validate the proposed design. The final optimized
parameters are given in Figure 1. The simulated reflection coefficient and AR results of the
three topologies are shown in Figure 7. The full-wave simulation results agree with the
above-analyzed results very well. It is clear that the proposed LPCPA with slit-loadings
has significantly improved the performance of the low-profile antennas of topology 1 and
topology 2. Its impedance bandwidth (S11 < −10 dB) and CP bandwidth (AR < 3 dB) are
2.2–2.64 GHz and 2.29–2.53 GHz, respectively.
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The Specific Absorption Rate (SAR) over 10 g of tissue is simulated by CST Studio
2020 according to the IEEE C95.3 standard. For realistic wearing applications, the antenna
is placed about 5 mm above the body most of the time due to the insertion of air gaps
and mid-layers to prevent scratching, potential allergic reactions, etc. Figure 8 shows the
simulation model, which has been validated in [37,38]. The permittivity of the fat, skin, and
muscle is 5.28, 38.01, and 52.73, respectively [39]. The simulated SAR result is 0.0159 W/kg
at 2.4 GHz. The simulated SAR value is significantly lower than the European standard
threshold of 2 W/kg. This is a benefit of the ground shielding of the proposed design.
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4. Measurement and Discussion

The fabricated antenna was measured in an anechoic chamber with a Vector Network
Analyzer 8510 system. Three scenarios were considered: free-space, on-body, and on-
phantom. The measurement setups are shown in Figure 9. Since a wearable antenna is
inevitably bent when being worn on the body in practice, bent antennas with curvature radii
of 5 cm and 8.5 cm (i.e., conformal situations) were measured for the free space scenario.
Further, the reflection coefficient of on-body scenarios, for example, on-arm and on-chest,
was measured. As for the AR measurements, body tissue simulating liquid MSL2450v2 [40]
was used to mimic the body loading due to the fact that a human may move during the
measurement and cause unstable transmissions and reflections. A cylinder with a 10 cm
diameter and a liquid bag packed with a 10-mm-thick foam were used as phantoms to
mimic the on-arm and on-chest situations, respectively.
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4.1. Reflection Coefficient

As shown in Figure 10a, in free space, the impedance bandwidth (S11 < −10 dB)
is 2.2–2.64 GHz in simulation and 2.18–2.61 GHz in measurement when the antenna is
flat. The slight discrepancy between simulation and measurement may be caused by
manual fabrication errors. For the conformal cases, a slight frequency shift is observed.
Nevertheless, the antenna still shows a good performance. Further, the on-body results
are shown in Figure 10b. The simulated impedance bandwidth is 2.21–2.64 GHz, and the
measured bandwidth of on-arm and on-chest is 2.18–2.59 GHz. It is evident that, due to
the benefit of ground shielding, the proximity of the body results in a limited influence
when the antenna is worn on the arm and on the chest. Overall, we can conclude that
the simulation and the measurement results match well. The antenna shows a robust
impedance performance in free space and on-body scenarios.

4.2. Axial Ratio

The simulated and measured AR results of the antenna in free-space and on-phantom
scenarios are shown in Figure 11. They are evaluated on the normal axis (θ = 0◦) of the
antenna. For the free-space scenario (see Figure 11a), the simulated flat antenna has a
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CP bandwidth (AR < 3 dB) of 2.29–2.53 GHz, and, accordingly, the measurement result
is 2.2–2.54 GHz. The measurement bandwidth is wider than that of the simulation. This
may be caused by fabrication errors during the manual fabrication process. The measured
results when the antenna is bent show a frequency shift (depression) compared to the
flat scenario. This is due to the symmetry of the structure that is broken. In detail, the
modal currents of the dominant modes at high frequencies, i.e., modes 3–6 in Figure 6c–f,
mainly flow on the rotationally symmetric parasitic elements. So, when the symmetric is
broken, the CP waves cannot be effectively generated at high frequencies, and a frequency
shift (depression) is observed. As for the on-phantom scenarios (see Figure 11b), a similar
phenomenon can be observed.
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4.3. Radiation Pattern and FBR

Figure 12 shows the LHCP and RHCP realized the gain pattern of the LPCPA at
2.3 GHz and 2.4 GHz for both the free space and the on-phantom scenarios. The LHCPs
are 10 dB larger than the RHCPs, which means the main polarization of the antenna
is left-handed circular polarization. In free space (Figure 12a,b), the flat antenna has a
measured realized gain of 8.9 dBic and 7.1 dBic at 2.3 GHz and 2.4 GHz, respectively.
Correspondingly, the estimated proximate efficiencies are 52.96% and 44.12% based on the
half-power beamwidth [41]. Compared to the literature in Table 1, the designed low-profile
antenna has achieved the highest peak gain even with lossy textile materials rather than
the less-lossy PCB substrates that are used in [13,14]. Due to the bending, a decrease in
the LHCP gain is observed. The measured realized gain is 8.7 dBic (2.3 GHz) and 5.4 dBic
(2.4 GHz) when the antenna is bent with a curvature radius of 5 cm. As for the on-phantom
scenario, see Figure 12c,d, the measured realized gains at 2.3 GHz are 8.6 dBic for on-chest
and 8.4 dBic for on-arm, respectively, and at 2.4 GHz the corresponding ones are 7.1 dBic
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and 5.9 dBic. According to the patterns, we can also obtain the FBR values. The evaluated
FBR values are all larger than 18 dB, and the peak one is 35 dB for the flat antenna in
free space, which shows good radiation shielding due to the presence of the ground. As
for positions having limited space or with drastic bending, for example, the wrist, the
ground should be decreased accordingly for good wearing comfortability. Alternatively,
the materials could be changed to more flexible and stretchable ones.
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5. Conclusions

A wearable low-profile antenna with circular polarization is designed. Slit-loaded
parasitic elements are used to improve the CP bandwidth in the 2.4 GHz band. CM
theory is used to reveal the modal current distributions of the antenna. According to
these current distributions, we find that the antenna can achieve a wide CP bandwidth by
loading slits on the parasitic elements whilst the antenna profile remains low. Full wave
simulations and measurements validate our design. The size of the prototype antenna is
1.04 × 1.04 λ0

2 while the profile is only 0.027 λ0. The antenna has an impedance bandwidth
of 2.18–2.61 GHz (18%) and a CP bandwidth of 2.2–2.54 GHz (14.3%) and realized a peak
gain of 8.9 dBic. Compared to other low-profile wearable designs in the 2.4 GHz band, this
design achieves a bandwidth that is 3–5 times larger.
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