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Abstract: The advent of digitization has brought about new technologies that enable advanced
condition monitoring and fault diagnosis under the Industry 4.0 paradigm. While vibration signal
analysis is a commonly used method for fault detection in literature, it often involves the use
of expensive equipment in difficult-to-reach locations. This paper presents a solution for fault
diagnosis of electrical machines by utilizing machine learning techniques on the edge, classifying
information coming from motor current signature analysis (MCSA) for broken rotor bar detection.
The paper covers the process of feature extraction, classification, and model training and testing
for three different machine learning methods using a public dataset to then export the results to
diagnose a different machine. An edge computing approach is adopted for the data acquisition,
signal processing and model implementation on an affordable platform, the Arduino. This makes it
accessible for small and medium-sized companies, albeit with the limitations of a resource-constrained
platform. The proposed solution has been tested on electrical machines in the Mining and Industrial
Engineering School of Almadén (UCLM) with positive results.
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1. Introduction

Society is currently deeply immersed in the fourth industrial revolution, where digi-
talization has led to the emergence of new technologies and lines of research, such as the
Internet of Things, Big Data, Smart technology, and Cloud Computing, all with the goal of
digitalizing information.

The digitalization process is having a significant impact not only in industry but
also in other areas, such as smart cities and buildings [1], energy systems [2], pollution
monitoring [3], health tracking [4], and intelligent transportation systems [5]. However, its
full realization within industry has yet to be fully achieved, and its impact on small and
medium-sized enterprises (SMEs) is considerably lower.

In Spain, Industry 4.0 is known as Connected Industry 4.0 [6]. In order to assist SMEs
in the development of digitalization, the government has created the Digital Transformation
Offices within red.es (a public entity attached to the Ministry of Economic Affairs and Digi-
tal Transformation) [7]. This is not insignificant, as SMEs make up 99.6% of total companies
in Spain according to data from the Social Welfare, as of December 2022, including 59.7% of
the total number of workers [8].

The present paper is focused on one of the fundamental concepts of Industry 4.0,
namely predictive maintenance, with a specific emphasis on fault diagnosis in electrical
machines. As per the International Energy Agency report [9], approximately 70% of all
energy expended in industries in developed countries is consumed by electric motors.
Therefore, there has been a significant increase in interest in predicting and detecting faults
in these machines [10–13], and the advent of Industry 4.0 provides an additional boost for
this trend [14].
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Induction motors are protected by devices such as relays, circuit breakers, etc., but the
performance of these protections is limited either to protecting the motor against an external
problem or to a significant level of motor deterioration when the fault is often irreversible.
On the other hand, the demand from users to increase the reliability of electric motors is
constantly growing due to the importance of many applications, advances in technology
and the need to obtain better operating results. Therefore, the ability to predict and detect
the onset of failures becomes crucial in applications where the complexity, criticality, cost of
shutdown or repair, and safety considerations do not permit unexpected motor failure [15].

This paper presents a solution for the fault diagnosis of electrical machines in an edge
computing approach. The novelty of this work is the constant condition monitoring of the
machines and the edge application of machine learning classifying methods based on a low-
cost and resource-constrained platform, with the objective of reducing maintenance costs
and equipment downtime through the detection of equipment faults, from the perspective
of making it accessible for SMEs. Another innovative aspect is the extrapolation of the
classification model. This model has been developed using a dataset from a specific
machine, and it is now being applied to other machines. This process requires the selection
of features that are independent of the absolute magnitudes of each motor. Novel features
have been proposed.

The subsequent sections of this paper are structured as follows: In Section 2, the
prevalent methods for fault diagnosis in electric induction motors are discussed, along with
a brief overview of Machine Learning techniques and Industrial Cyber-Physical Systems
(ICPS). Section 3 presents the components of the ICPS system responsible for fault diagnosis
and emphasizes their implementation on platforms with limited resources using an edge
computing approach, which enables local data processing. Section 4 presents the public
dataset used, the development of the classification models, the practical implementation of
the proposed solution, and the detailed analysis of the results. Lastly, Section 5 concludes
the paper by summarizing our findings and outlining potential future avenues for research.

2. State of the Art

Several diagnostic techniques have been established for three-phase induction motors.
These techniques are primarily based on the examination of the magnitudes that are
accessible at the motor terminals or those faults that can be detected through appropriate
equipment by performing measurements under normal operating conditions of the motor
or when the machine is out of service.

2.1. Out-of-Service Diagnostics

The techniques for diagnosing three-phase induction motors typically involve conduct-
ing evaluations when the machine is not in operation. This often requires the motor to be
shut off and, in some cases, partially or fully disassembled. These evaluations are typically
performed during scheduled maintenance intervals. The majority of these methods focus
on assessing the condition of the insulation system and the state of the magnetic core. The
methods utilized for the diagnosis of three-phase induction motors include, but are not
limited to [16]:

• Measurement of insulation resistance to ground, including the determination of polar-
ization index, absorption current, tangent delta capacitance, loss factor, and overvolt-
age tests.

• Analysis of insulation between turns, utilizing techniques such as the shock wave test,
measurement of insulation resistance, reverse sequence impedance, electrical circuit
analysis, and parameter estimation.

• Examination of the magnetic core through the application of nominal or reduced flux.
• Analysis of bearing lubricants, including the examination of physical characteristics

and particle content.
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2.2. In-Service Diagnostics

In-service diagnostic methods offer the advantage of providing information on the
state of the machine without interrupting its operation. This is a significant advantage,
as these methods typically include a series of analysis utilities, commonly in the form
of software, which can be utilized in predictive maintenance programs, making their
implementation highly desirable.

The most prominent methods for detecting faults through Condition Monitoring (CM)
are [10]:

• Stator current analysis or motor current signature analysis (MCSA) [17,18].
• Vibration analysis [19–21].
• Temperature measurement (thermography) [22–24].
• Partial discharges.
• Gas analysis.
• Axial dispersion flux analysis.
• Torque and speed fluctuations.
• Input power analysis.

Motor Current Signature Analysis (MCSA) is a non-invasive diagnostic technique
used to analyze the health of induction motors. It involves analyzing the current waveform
generated by the motor during normal operation and comparing it to a known good signa-
ture to detect anomalies and faults. It represents the first step in fault diagnosis, typically
accompanied by signal processing techniques such as Fast Fourier Transform (FFT) [19,25],
wavelet [17,26] or Hilbert–Huang Transform [27,28]. MCSA can provide inaccurate results
with the occurrence of saturation, interbar currents or magnetic asymmetry [29].

Reference [17] studied two techniques of signal processing to diagnose inter-turn
short circuit (ITSC) and the unbalanced voltage supply (UVS) using MCSA and processing
the information first with Fast Fourier Transform (FFT) and then with Discrete Wavelet
Energy Ratio (DWER). Reference [18] used MCSA for detecting the combination of bearing
faults by applying Discrete wavelet transform (DWT) to de-noise the signal, and then a
pre-fault component cancellation using an adaptive filter (Wiener filter) to finally estimate
the fault using Matrix Pencil method (MPM). A similar approach with MCSA and Wiener
filter is taken in [30] for several types of fault detection. In [31] is presented a guideline
for avoiding false fault detection based on MCSA. The guideline includes studying the
relationship between other faults and the potential for misidentification, as well as strategies
for overcoming such issues. MCSA is mainly applied in stationary conditions, but it is also
interesting to analyze nonstationary conditions as in [32], which is focused on detecting
eccentricities in the startup time modeling the induction motor, or in [27], which uses new
transient-based diagnosis approaches involving time-frequency transformations.

There are alternatives to the application of MCSA, mainly the analysis of vibration
signals. Accelerometers are used for the acquisition of vibration data, and their adequate
location conveys a great part of the result. Reference [19] proposed to utilize vibration
signals for detecting faults in rotors, with the support of classification machine learning
techniques. It is typical to utilize FFT in vibration data signal processing [33]. The fracture
of races in bearings can be detected by utilizing radial and axial accelerometers [20]. In
the event of bearing faults or imbalance, it is possible to measure the vibration of the
machine through an antenna and subsequently classify the issue using deep learning
techniques [34]. The combined usage of vibration and stator current signals shows great
promise in accurately classifying broken rotor bars [21].

Thermography is a method commonly used for diagnosing faults in machinery. To
effectively apply this technique, it is necessary firstly to pre-process the images, for example
using the region of interest (ROI). Once this has been done, the images can then be classified
using machine learning algorithms [23]. It is a common method in short-circuit faults or
inter-turn faults [24]. Model-based diagnosis is another alternative for fault diagnosis in
electrical machines [11,35].
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In this paper, MCSA is selected as a non-invasive, cost-effective, and reliable technol-
ogy [12,36]. The next subsections briefly present some faults detected with Motor Current
Signature Analysis.

2.2.1. Eccentricity Faults

Two distinct types of eccentricity faults can occur: static and dynamic. Figure 1
illustrates both.
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Figure 1. Healthy motor (left), static eccentricity fault (center), and dynamic eccentricity (right).

Eccentricity is related to air gap distortion. When a mixed eccentricity fault occurs,
sidebands of the fundamental frequency of the power supply appear. These sideband
frequencies are given by [10,11,32]:

fecc = fs

[
1±m

(
1− s

p

)]
(1)

where fs is the supply frequency, s is the slip, p is the number of pole pairs, and m = 1, 2, 3,
. . . . In contrast to other approaches, this method does not necessitate knowledge of the
mechanical properties of the motor.

2.2.2. Broken Rotor Bars

The breaking of rotor bars is one of the primary causes of failure in induction motors,
particularly in high-power motors that are frequently started under load. Figure 2 shows
an example of a broken rotor bar.
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Figure 2. Broken rotor bar.

The presence of broken rotor bars in a motor results in the destruction of rotor symme-
try, which, in turn, generates a rotating field that produces harmonics in the stator current
as described by [36,37]:

fbrb2 = fs[1± k2s] (2)

where k = 1, 2, 3, 4, . . . .

2.2.3. Bearing Damage

The prevalent cause of installation issues is the improper application of force when
installing the bearing onto the shaft or within the housing. This can result in physical
damage, such as brinelling or false brinelling of the raceways, leading to an early failure of
the bearing. Figure 3 shows two examples of bearing damage.
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The mechanical displacement caused by damaged bearings leads to variations in the
machine air gap, which can be characterized by a combination of rotating eccentricities that
move in both directions. Similar to the deviation in the air gap, these fluctuations generate
stator currents at specific frequencies [10,35,37]:

fbng = | fs ±m fi,o| (3)

where m = 1,2,3, . . . and fi,o is one of the distinctive vibration frequencies which are
determined by the dimensions of the bearing.

fi,o =
n
2

fr

[
1± bd

pd
cosβ

]
(4)

where n is the number of bearing balls, fr is the mechanical rotor speed in Hz, bd is the
ball diameter, pd is the bearing pitch diameter, and β is the contact angle of the balls on
the races.

In this paper, the focus is on the analysis of broken rotor bars.

2.3. Machine Learning Algorithms

Machine learning (ML) techniques have been proven effective and dependable for a
wide range of applications, including identifying patterns, forecasting, modeling, optimiza-
tion and data analysis. ML methods can be categorized into supervised, unsupervised,
semi-supervised and reinforcement learning [39], depending on the characteristics of the
data used and the type of system to be developed.

Supervised learning uses labeled input data to predict an output variable and can
be further divided into classification and regression techniques. The standard procedure
in supervised learning is to first train a classification model using a labeled dataset that
encompasses the relevant classes. Then, the model is tested on another data set, which is
unlabeled, in order to evaluate its performance.

The use of machine learning methods is widely used for fault diagnosis of induction
machines in literature. It is common to find fault diagnosis solutions based on Artificial
Neural Networks (ANN) and Decision Tree (DT) methods, such as Random Forest (RF)
and Support Vector Machine (SVM) [40], among others. Renowned methods, such as
Random Forest, are continuously being advocated for detecting broken rotor bars [41] or
other Decision Trees models for short circuit faults [42]. Several models, including Random
Forest and Support Vector Machine, were used to monitor switch open-circuit faults in an
inverter-fed induction motor in [28]. An example of another type of solution that employs
AI and machine learning is [43], where a genetic algorithm (GA) was presented for bearing
fault diagnosis based on information obtained from MCSA.

The research community is devoting significant efforts to real-time and online so-
lutions [10]. In [44], the application of 1-D Convolutional Neural Networks (CNN) is
presented, which offers real-time fault detection in a powerful Field-Programmable Gate
Array (FPGA) deployment without requiring a feature extraction algorithm using current
measurements. In [19], Nearest Neighbour (NN), Linear Discriminant Analysis (LDA), and
Support Vector Machine were used to classify rotor faults from vibration data.
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Deep Learning techniques can also be applied to classifying faults, such as the use of
Deep Convolutional Neural Networks (DCNN) in the case of data obtained from vibration
signals for broken rotor bar analysis [21] or for the diagnosis of bearing faults [45].

In [23], a Support Vector Machine was applied to classify thermography images in
order to detect short-circuit faults. Meanwhile, in [33], regression models were presented for
classifying the severity of eccentricity faults, using data from current harmonics, vibration,
rotation speed, and torque, with the aim not only of detecting but also classifying the gravity
of the fault. More sophisticated approaches have been taken for classifying nonstationary
operations without a dataset for training, such as using an Ensemble framework, Fuzzy
Rough Active Learning, and drift detection for detecting broken bars [46].

The availability of training sets can be a challenge in both industrial settings and
laboratories, as there may be a limited number of faulty machines for training purposes,
and collecting data with multiple faults in a single machine can be difficult [39]. It is
also observed that many of the research studies presented in the literature are based on
datasets from laboratory tests. It would be interesting to start recording real data from
actual environments [47].

The following subsections present a concise overview of the machine learning methods
employed in this paper. These methods were chosen due to their high performance,
explainability and suitability for implementation on resource-constrained platforms, as is
the case at hand.

2.3.1. Decision Trees

A decision tree (DT) is a commonly used machine learning method for decision
support in data analysis and statistics, with a particular focus on artificial data mining. The
goal of DTs is to create a model that predicts the target value based on multiple inputs.
Decision Tree methods, therefore, are a widely used model for solving classification and
regression problems in the context of supervised learning. The structure of DTs is depicted
by branches and leaves, where branches contain the attributes that the function relies on,
and leaves contain the function’s value. Other nodes contain attributes that distinguish the
decision cases. An illustration of the DT algorithm is presented in Figure 4.
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Figure 4. Decision tree diagram.

Compared to other decision models, DTs are simple and require only a small amount
of data to produce results. They can also be combined with other decision models to
increase accuracy. However, undoubtedly, the main feature that makes these methods
one of the most widely used is the ease of explanation of the decision process thanks to
its tree structure, which inherently allows for reproducing the decision process obtained
after training the model. For this reason, decision trees are known as white-box models, as
opposed to other models, such as Artificial Neural Networks or Support Vector Machines,
which are known as black-box models, since they do not offer such an understandable
explanation of the decision process. However, DTs are inherently unstable, and even a
small change in input data can result in a significant change in the decision tree structure
and potentially lead to inaccurate results.
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2.3.2. Random Forest

Decision trees present a dilemma. A deep tree with numerous leaves can result in
overfitting as the prediction is based solely on the few features present in its leaves. On the
other hand, a shallow tree with few leaves lacks the ability to capture distinctions in the
raw data and thus performs poorly.

In contrast, the random forest approach utilizes multiple trees, which are built using
random subset attributes. This way, an uncorrelated forest is generated. Then, the predic-
tion is built by taking the average of the predictions made by each individual tree or using
other criteria. As a result, it generally exhibits improved predictive accuracy compared to a
single decision tree.

2.3.3. Support Vector Machines

Intuitively, Support Vector Machines (SVMs) are models that map sample points into
a multi-dimensional space, separating them into two distinct classes. This division is
achieved by a hyperplane, as demonstrated in Figure 5. The hyperplane is determined by
the two closest sample points from each class, referred to as support vectors. These support
vectors determine the boundaries of the classes, with the distance between the support
vectors of each class, referred to as the margin. Although there are multiple hyperplanes
that can effectively classify the samples, it is common practice to select the hyperplane with
the greatest margin.
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In the figure, two data classes are represented: Class 1 (triangles) and Class 2 (squares).
In addition to linear classification, SVMs can deal with non-linear classification using
the kernel trick, using polynomial, radial or sigmoid kernels to map the data to a higher
dimension where data is separable.

When a multiclassification problem is addressed, let n be the number of classes, a total
of n(n−1)

2 binary classifiers must be trained to separate all the pairs of n classes. This way,
the predicted class for a new instance is the most voted among all the classifiers built. For
that reason, when the number of classes is high, and the dataset is large, SVMs involve an
expensive computational cost in terms of time and memory.

2.3.4. Evaluation of Methods

The Confusion Matrix is utilized to assess the effectiveness of various classification
techniques by determining the accuracy of a classifier. It is represented as a square ma-
trix, with the dimensions being determined by the number of classes present. In the
current scenario, there are two classes: healthy and faulty. The confusion matrix shows the
next values:

• True Positives (TP): This occurs when the prediction that an observation belongs to a
specific class is accurate, as the observation indeed belongs to that class.

• True Negatives (TN): This occurs when the prediction that an observation does not
belong to a specific class is accurate, as the observation indeed does not belong to
that class.
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• False Positives (FP): This occurs when the prediction that an observation belongs to a
specific class is incorrect, as the observation actually does not belong to that class.

• False Negatives (FN): This occurs when the prediction that an observation does not
belong to a specific class is incorrect, as the observation actually belongs to that class.

It is necessary to indicate the analysis parameters to measure the performance of the
different classification methods. The accuracy is the ratio of true cases to all cases, as shown
in (5). The recall is focused on the positive class. It is the ratio of the correct positive
predictions to all observations in the positive class, given by (6). The precision is the ratio
of the correct positive predictions to all positive predictions, given by (7).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 score is a measure given by (8), being the harmonic mean of precision and recall. F1
varies from 0 to 1, with zero as the worst value.

F1 = 2
Precision·Recall

Precision + Recall
(8)

2.4. Industrial Cyber-Physical Systems

A Cyber-Physical System (CPS) combines computational applications with physical
devices and is structured as a network of interacting cyber and physical elements [48].
Unlike embedded systems, which primarily focus on computational elements housed
in standalone devices, CPSs are primarily designed as a larger network of interacting
computational and physical elements [49]. When CPSs are used in industrial environments
emergence the Industrial Cyber-Physical Systems (ICPSs) [50] or Cyber-Physical Production
Systems (CPPSs) [51], in combination with the widespread use of the Internet of Things
(IoT) [52].

Under the subject matter discussed in this paper, the ICPS will consist of various
components, but those related to fault diagnosis can be summarized as follows:

• Physical component: it comprises the hardware and all the sensors involved in data
acquisition, which is necessary to conduct fault diagnosis.

• Cyber component: it is the intelligent component where data collected from the
physical world is analyzed and interpreted. This is where emerging technologies
are utilized.

Two different approaches can be taken at this stage: Edge or Fog/Cloud Computing.

2.4.1. Fog/Cloud Computing

In these scenarios, data is collected at the local level and then transmitted to the fog
or cloud for further processing. This approach offers high computing power. Researchers
often focus on testing or developing new machine learning models using simulation
environments such as MATLAB/Simulink [53] or by modifying datasets to include potential
failures in order to evaluate the performance of various classification techniques [54]. It is
typical for machines to be positioned in a fixed location, although there are exceptions. An
example of this is the predictive maintenance of mobile machinery in a mining complex
utilizing Bluetooth Low Energy vibration sensors, as presented in [55].

2.4.2. Edge Computing

When the cyber and physical components are situated in close proximity to the
electrical machine under examination, this approach can be challenging to implement
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in industrial settings due to the computational resources required for data processing,
necessitating the presence of a nearby personal computer.

In controlled environments, such as laboratories, this setup is prevalent. It typically
involves the use of data acquisition cards and specialized software running on a personal
computer to provoke faults in an electrical machine and study their effects. In [18], a
National Instruments Data Acquisition (NI DAQ) device is utilized to acquire information
from a current sensor in order to test various pre-filter techniques for data preparation.
In [21], a NI DAQ, a current probe, and a tachometer are utilized to evaluate an induction
motor and investigate various machine learning techniques, including neural networks
and deep multimodal learning. Reference [17] suggests the utilization of a deep network-
based approach to examine the characteristics of thermograms with the aid of a thermal
camera. NI DAQ and current sensors are used for short-circuit detection [42]. These
methods are suitable for academic settings to conduct experiments and evaluate outcomes
to advance new techniques. However, their implementation in industrial environments
may prove challenging.

In a limited number of instances, edge computing has been utilized to its fullest
potential. As demonstrated in reference [56], a method for detecting bearing faults through
vibration analysis utilizing ultra-low power wireless sensors is proposed. These sensors
collect and analyze the data and only transmit information pertaining to the operational
status of the machine to the rest of the ICPS. This application’s feasibility is made possible
through the employment of single-axis accelerometers and the creation of a lightweight
neural network classifier.

An edge computing solution for fault diagnosis based on an ICPS architecture imple-
mented over the Arduino platform is presented in the following sections.

3. Proposal

This paper presents a rotor bar-breaking fault diagnosis method implemented in an
ICPS approach. The subsequent subsections introduce the components of the ICPS. It
functions using MCSA data and employs a machine learning-based classification method.
Its purpose is to operate at the edge of a platform with limited resources.

3.1. ICPS Physical Part

The physical part of the ICPS oversees the data acquisition system. It must collect
enough current measurements to extract the components of the power spectrum.

The Arduino platform has been selected because it is looking for an affordable data
acquisition system. It includes an analog-to-digital converter (ADC) with a default sampling
rate of 9600 Hz. To ensure accurate detection of the faults is required a sampling frequency
adheres to the Shannon-Nyquist frequency, thereby avoiding potential issues of aliasing or
inaccurate signal reconstruction. Therefore, with the default configuration, it is possible to
correctly sense signals up to 4800 Hz. It is also possible to increase the sampling frequency
of Arduino, setting the prescaler of the clock. For example, the Arduino Uno is equipped
with a microcontroller ATMega328P that includes a clock speed of 16 MHz and a prescale
factor of 128 by default. In case of necessity, it is possible to achieve a higher rate of 615 kHz
by adjusting the prescale factor and using interrupts. The sampling frequency will be set
depending on the physical characteristics of the monitored machine.

In order to measure the current consumed by induction motors, a non-invasive clamp
sensor, model SCT-013-030 by YHDC®, was selected. As shown in Figure 6, this sensor is
a current transformer with a range of 0–30 A and provides an output voltage range of 0
to 1 V.
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Additional hardware has been added to adapt the signal from the sensor to the input
of Arduino’s ADC, including an offset and amplification stage by means of AD623 by
Analog Devices® and an OP113 operational amplifier was configured in voltage follower
to further improve the characteristic curve of the sensor. The final characteristic curve of
the sensor is as follows:

i(t) =
30
4
(v(t)− 0.5) (9)

3.2. ICPS Cyber Part

The cyber component is responsible for processing the data obtained from the sensors,
extracting relevant features, classifying them, and communicating the status of the machine
to the rest of the ICPS, as depicted in Figure 7.
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3.2.1. Signal Processing

Raw data coming from the sensors is a time-based signal. A frequency-based signal is
needed to extract the convenient information.

FFT is the chosen method in this paper. So, the signal has to be windowed:

i∗R(t) =
{

i∗R(t) f or t ε [0, T]
0 Otherwise

}
(10)

And then compute the Fourier Transform:

I∗R(ω) =

∞∫
−∞

i∗R(t)e
−jωtdt (11)

The output signal obtained after the FFT calculation of the acquired current signal is
presented in Figure 8.
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3.2.2. Feature Selection

As stated in previous Section 2.2.2, it is necessary to measure the sidebands of the
main frequency to detect broken rotor bars. Taking that information as starting point and
given that we will be training the model based on data from a specific motor, but our
objective is to design a model that can be used on different motors, it is essential that the
definition of the features is extrapolatable to any motor. Hence, the following features have
been proposed:

• Difference between the amplitude of the main frequency and the sidebands up to 5th
order, in Db. The selection of sidebands is according to Equation (2) in Section 2.2.2.
The frequency of these sidebands depends on the characteristics of the motor.

• The relative root mean square (RMS) error of the current signal in comparison with
the expected RMS value, its nominal value according to the manufacturer. It is the
relative root mean square error (RRMSE). The RMS is calculated in the frequency
range covering the above sidebands.

Irms =
√

∑n
j=1 i2j,rms (12)

RRMSE =
Irms,nominal − Irms

Irms,nominal
(13)

where ij,rms is the rms current value of the n frequency from the FFT, and Irms,nominal is the
nominal current of the characteristics of the motor.

• The total harmonic distortion (THD) calculated among the range covering the above
sidebands:

THD(I) f =

√
∑n

j=1 i2j, rms

I f tal,rms
(14)

where iftal,rms is the rms current value of the main frequency.
These two parameters are chosen to provide the model with an idea of the number of

harmonics in the signal that could lead to a proper classification.

3.2.3. Classification

It is proposed to apply supervised learning techniques for classifying new observations
between healthy or faulty states. The classification is based on Decision Trees (DTs),
Random Forest (RF), and Support Vector Machine (SVM), paying special attention to their
possible implementation on Arduino.
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3.2.4. Dissemination

Upon determining the state of the machine, the system will disseminate the informa-
tion to the rest of the ICPS that control the system. The mode of communication that is used,
either LAN or wireless, will depend on the scenario. For systems that utilize an Arduino
Uno, the implementation of a communication shield is a feasible option. However, it may
be more efficient to use a UART-LAN/WIFI interface module to handle the communication
protocol and allow the Arduino to only transmit the information via the USART port in
order to avoid interfering with the normal operation of the microcontroller.

4. Case Study

The proposed fault detection method based on Arduino boards has been tested on
equipment of the Mechanical Engineering Laboratory at the Mining and Industrial En-
gineering School of Almadén (UCLM-Spain), specifically, a lathe and a milling machine
(Figure 9) equipped with a three phases electrical motor AEG AM 100 LZ 4 and a Siemens
1LA3 106-4AA20 respectively, with the characteristics shown in Table 1.
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Table 1. Characteristics of the Electrical Motor tested.

Description Lathe Milling Machine

Manufacture AEG Siemens
Power 4 kW 2 kW

Frequency 50 Hz 50 Hz
Voltage 230/400 V 230/400 V
Current 13.94/8.04 A 6.97/4.03 A

Number of revolutions 1420 rpm 1410
Number of poles 4 4

4.1. Datasets

In this research, there was no starting dataset available, so the one from the Laboratory
of Intelligent Automation of Processes and Systems and Laboratory of Intelligent Control
of Electrical Machines, School of Engineering of São Carlos of the University of São Paulo
(USP), Brazil [57], is used to train and test the machine learning models.

4.1.1. Raw Data

Their setup consists of a three-phase induction motor coupled with a direct-current
machine, which works as a generator connected by a shaft containing a rotary torque
wrench, simulating the load torque. In their laboratory they artificially produced rotor
broken bars faults and tested the motor from 12.5% to 100% load under a stationary state.

The USP dataset includes 10 tests for each of the 8 operational setups (loads every
5 Nm from 5 Nm to 40 Nm) for 5 states: a healthy motor or a motor with 1, 2, 3 or 4 broken
rotor bars. Eleven variables are measured for 19 s:
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• 3-phase motor current at 50 kHz sampling frequency.
• 3-phase motor voltage at 50 kHz sampling frequency.
• 5 vibration sensors at 7.6 kHz sampling frequency.

4.1.2. Feature Extraction

The raw data from the motor current was loaded in MATLAB, split into a four seconds
test, and processed to calculate the power spectrum by the FFT. By considering the charac-
teristics of the motor tested in the laboratory of USP (with a nominal speed of 1715 rpm and
four poles), it is possible to calculate the synchronous speed and the slip. As a result, the
relevant sidebands, according to literature alerts of broken rotor bar, are shown in Table 2.

Table 2. Sidebands of interest for developing the classification model.

K = 1 K = 2 K = 3 K = 4 K = 5

Upper 65.67 71.33 77.00 82.67 88.33
Lower 54.33 48.67 43.00 37.33 31.67

Then, features were calculated following the indications in Section 3.2.2 in the range
from 4.5 Hz to 94.5 Hz. This range encompasses all sidebands and mitigates the inaccuracies
that arise in the extreme ends of the FFT calculation, particularly when windowing is
utilized. The final dataset consists of 12 features and an additional column indicating
whether the machine is in a healthy (1) or faulty (−1) state. It comprises 474 cases, equally
divided between healthy and faulty cases (237 cases each). The data is organized as a
475 × 13 matrix with 475 rows and 13 columns.

4.2. Model Development

Python programming language and the sci-kit-learn library in the Kaggle environment
were used to develop the models, which were later deployed on the Arduino platform.
Decision Trees (DT), Random Forest (RF), and Support Vector Machine (SVM) models were
trained using the created dataset. The dataset was divided into two parts, with 355 cases
utilized for training (which corresponds to 75% of the available data) and 119 cases reserved
for testing (the remaining 25%). The selection of training and test set instances has been
uniformly performed. The aim of the models is to classify new observations as healthy or
faulty depending on the 12 presented features, as Figure 10 shows.
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After all the classification algorithms were applied to the test dataset, the classification
metrics listed in Section 2.3.4 were derived from the confusion matrix data for each model,
shown in Table 3. The results of these metrics are presented in Table 4. It is worth
mentioning that the best results obtained with SVM are based on the radial kernel with a
regularization parameter, C, equals 1000 and with no maximum leaves defined for DT.



Sensors 2023, 23, 2649 14 of 20

Table 3. Comparison of classifier performance using a confusion matrix.

DT RF SVM

TP 60 53 44
TN 55 51 44
FP 2 9 18
FN 2 6 13

Table 4. Comparison of classifier performance using evaluation metrics.

DT RF SVM

Accuracy 0.958 0.866 0.714
Recall 0.952 0.895 0.755

Precision 0.967 0.836 0.656
F1 0.959 0.864 0.702

In order to validate these metrics, each model was subjected to a K-fold cross-validation
test, yielding consistent results.

It is observed that the DT model provides the highest accuracy, correctly classifying
96.6% of the observation, followed by RF at 87.4% and SVM at 73.9%. With regard to
recall, the DT model demonstrates the best performance. Recall measures the ability to
correctly predict positive class samples. In certain scenarios, it is imperative to avoid
misclassifying any positive class, such as in the case of misclassifying cancer samples. DT
achieves a recall score of 96.8%, followed by the RF model at 89.8% and the SVM model at
77.2%. Precision reflects the model’s ability to correctly identify positive predictions, such
as avoiding labeling a regular email as spam. In terms of precision, SVM and RF models
perform with a score of 71.0% and 85.5%, respectively. The DT model is ahead with a score
of 96.8%. Ultimately, the F1 score measures the overall performance of the models, and the
DT model attains the highest score of 96.8%, followed by RF at 87.6% and SVM at 73.9%.

Throughout the process of training and testing the classification model, we have
observed that the RMS value of the signal provides precise results. Notably, an accuracy of
nearly 100% was achieved when using the RMS value. However, it should be noted that
this may not be applicable to motors with differing characteristics. Therefore, since the goal
is to find a versatile model that can be used with different types of motors, an equivalent
value, RRMSE, has been used, as was presented in Section 3.2.2.

4.3. Implementation of Resource-Constrained Platform

Given that we are working with the resource-constrained platform, Arduino, it is
important to optimize the current measurement for better performance and to ensure proper
processing of the FFT signal. In order to achieve this, three variables must be optimized:
sampling frequency, number of samples, and frequency resolution. The sampling frequency
is restricted by the Shannon–Nyquist frequency and by the range of frequencies associated
with the fault to be detected. According to the equations described in Section 2.2 and the
motor characteristics presented in Table 1, this range can go up to 618.00 Hz (bearing fault),
168.33 Hz (eccentricity) or 80.00 Hz (broken rotor bar).

The number of samples is limited by the memory resources of the Arduino board.
The Arduino Uno has 2 KB of RAM and can store a maximum of 128 samples, while the
Arduino Mega, with 8 KB of RAM, can store up to 512 samples.

The frequency resolution refers to the spacing between two consecutive frequencies in
the power spectrum and, therefore, the frequencies that would be detected. It is calculated
as follows:

Res f =
fsampling

samples
(15)

There are two options to improve the resolution: use a smaller fsampling or increase
the number of samples. Both are restricted by the characteristics already commented on.
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Table 5 shows the achievable resolutions for measuring up to the fifth sideband frequency
of the lathe and milling machine for the three types of faults discussed, using either the
Arduino Uno (with 128 samples) or the Arduino Mega (with 512 samples).

Table 5. Resolution frequency for each type of fault using the Arduino Uno or the Arduino Mega for
the lathe (L) and milling machine (M).

Max Frequency Sampling Freq. Num. of Samples Resolution

Bearing fault 618.00 Hz (L)
1236.00

128 9.66
614.00 Hz (M) 512 2.41

Eccentricity 168.33 Hz (L)
336.67

128 2.63
167.5 Hz (M) 512 0.66

Broken rotor bar
73.61 Hz (L)

147.22
128 1.15

80.00 Hz (M) 512 0.29

Based on the results shown in Table 5, it can be observed that it is not possible to carry
out the bearing and eccentricity fault diagnosis using the Arduino Uno, as the resolution
frequency is quite poor. Using the Arduino Mega, it is possible to carry out the three types
of fault diagnosis.

The micromlgen library was utilized to export the classification models from Python to
C code. Table 6 summarizes the impact of each model on Arduino. It can be observed that
RF has many more code lines than the rest. This is because it calculates 100 DT models and
provides the mean value of all of them. SVM has a bigger impact on program space, using
13% more space than the other due to the kernel calculation conducted. Dynamic memory
is the same in all the models, as it is related to the FFT calculations. As the results in
Tables 4–6 show, we can conclude that DT is the best model to be implemented on Arduino.

Table 6. Impact of the models on Arduino sketch.

Code Lines Program Space Dynamic Memory

DT 133 6924 bytes (2%) 4341 bytes (52%)
RF 26,571 6924 bytes (2%) 4341 bytes (52%)

SVM 224 40,294 bytes (15%) 4341 bytes (52%)

A graphical representation of the DT model with the decisions made to classify a new
observation is shown in Figure 11. It is worth noting the importance that the RRMSE value
takes, appearing in 9 out of the 22 decisions made by the decision tree. The theory would
suggest that the presence of sidebands is the determining factor, but in this case, it is not
as significant.

4.4. Real Case

After developing and programming the classification model in the Arduino Mega, a
series of tests were conducted on the lathe and milling machine under varying loads to
verify their optimal operating conditions. The lathe was tested under no-load conditions,
turning 1 mm and 2 mm. The milling machine was tested under no-load conditions, milling
0.1 mm and 1 mm.

Arduino measured the current feeding the motor, calculated the FFT of the signal,
extracted and computed the features, and executed the classification model. After that,
Arduino concluded that the lathe was faulty, while the milling machine was healthy.

In order to check these results, the process followed by Arduino was replicated in
the laboratory. Debug codes were loaded into the Arduino to download the values of the
current measurements and the locally calculated FFTs. From there, features were extracted,
and the decision tree model was applied.
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The first step to extracting the features is to determine the relevant sidebands of the
lathe and the milling machine. The sidebands are shown in Table 7.

Table 7. Sidebands of interest for lathe and milling machine testing.

K = 1 K = 2 K = 3 K = 4 K = 5

Lathe
Upper 55.33 60.67 66.00 71.33 76.67
Lower 44.67 39.33 34.00 28.67 23.33

Milling
machine

Upper 56.00 62.00 68.00 74.00 80.00
Lower 44.00 38.00 32.00 26.00 20.00

For both machines, the features defined in Section 3.2.2 and shown in Tables 8 and 9
were extracted. Based on these values, it is possible to reproduce the steps followed by the
decision tree model. In the case of the lathe, the first leaf compares whether f5d is less than
or equal to 49.6737. This first comparison is true, so the process continues to the second
leaf. In the second leaf, f5d is compared to 43.5598, and the result is false. The next leaf
compares whether f3d is less than or equal to 51.549. In this case, the result is true, so the
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model classifies the machine as faulty. This result was completely unexpected since it was
thought that the machine was in proper condition. The same result is achieved using data
from other tests in which the load is varied.

Table 8. Extracted features for lathe classification.

Feature Value Feature Value Feature Value

f1d 40.2260 f3d 45.8927 f5d 45.9219
f1u 38.1941 f3u 49.5721 f5u 46.4160
f2d 35.5643 f4d 51.9447 THD 1.0342
f2u 38.8301 f4u 47.1394 RRMSE 0.6803

Table 9. Extracted features for milling machine classification.

Feature Value Feature Value Feature Value

f1d 45.8208 f3d 40.9054 f5d 52.3244
f1u 42.2207 f3u 43.6715 f5u 49.1608
f2d 47.9009 f4d 46.8002 THD 1.0255
f2u 49.6617 f4u 48.6237 RRMSE 0.4917

In the milling machine classification, the process begins similarly to the previous case
by comparing if f5d is less than or equal to 49.6737. The comparison result is negative, so
we proceed to the leaf where it is compared if RRMSE is less than or equal to 0.5573, which
is true. We then continue to compare if f5d is less than or equal to 65.5342, which is correct,
and therefore it is determined that the machine is healthy.

Following the successful implementation of the models on the Arduino 2560, it has
been demonstrated that platforms with limited resources, such as Arduino, can execute
machine learning models to undertake fault diagnosis tasks.

5. Conclusions

In this paper, an edge computing approach for fault diagnosis is proposed. The
system has been designed as an Integrated Cyber-Physical System (ICPS) embracing the
physical and the cyber world. Both parts have been developed using the Arduino platform,
specifically the Arduino Mega board.

A classification method was developed by utilizing a publicly available dataset con-
taining information on a three-phase inductive motor under both healthy and broken bar
conditions. The purpose was to create a model that could be applied to other three-phase
induction motors with varying features. For this, novel features were defined based on
well-known MCSA sidebands. However, during the development of the model, it was
discovered that the sidebands are not as crucial to the classifiers as previously believed.

The research has shown that machine learning models, including Decision Trees,
Random Forests, and Support Vector Machines, can be executed satisfactorily on resource-
constrained platforms such as the Arduino Mega. However, due to memory limitations,
the amount of data that can be stored is limited, which in turn limits the features that can
be extracted using the Fast Fourier Transform.

The process of feature extraction, classification, and model training and testing has
been presented and implemented in Arduino Mega, testing two electric motors in the
laboratories of the Industrial and Mining School of Almadén.

The proposed solution is cost-effective for small to medium-sized enterprises, enabling
them to embrace the digitalization era and reap its benefits.

Further research is aimed at incorporating more complex classifiers that draw infor-
mation from multiple sensors, not only to detect faults but also to make prognoses.
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