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Abstract: Deoxynivalenol (DON) in raw and processed grain poses significant risks to human and
animal health. In this study, the feasibility of classifying DON levels in different genetic lines of
barley kernels was evaluated using hyperspectral imaging (HSI) (382–1030 nm) in tandem with
an optimized convolutional neural network (CNN). Machine learning methods including logistic
regression, support vector machine, stochastic gradient descent, K nearest neighbors, random forest,
and CNN were respectively used to develop the classification models. Spectral preprocessing
methods including wavelet transform and max-min normalization helped to enhance the performance
of different models. A simplified CNN model showed better performance than other machine
learning models. Competitive adaptive reweighted sampling (CARS) in combination with successive
projections algorithm (SPA) was applied to select the best set of characteristic wavelengths. Based on
seven wavelengths selected, the optimized CARS-SPA-CNN model distinguished barley grains with
low levels of DON (<5 mg/kg) from those with higher levels (5 mg/kg < DON ≤ 14 mg/kg) with an
accuracy of 89.41%. The lower levels of DON class I (0.19 mg/kg ≤ DON ≤ 1.25 mg/kg) and class
II (1.25 mg/kg < DON ≤ 5 mg/kg) were successfully distinguished based on the optimized CNN
model, yielding a precision of 89.81%. The results suggest that HSI in tandem with CNN has great
potential for discrimination of DON levels of barley kernels.

Keywords: hyperspectral imaging; deoxynivalenol; feature wavelength selection; convolutional
neural network

1. Introduction

Barley (Hordeum vulgare L.), which is the fourth most grown cereal in the world [1], is
an ancient and significant cereal grain crop [2]. While barley is suffering from many diseases
due to global climate change. Among these diseases, Fusarium head blight (FHB), caused
mainly by Fusarium, has rapidly become one of the devastating crop diseases worldwide [3].
The three main negative effects of FHB infection in cereals include impaired technical
quality, loss of cereal yield and contamination with Fusarium toxins [4]. During infection,
Fusarium spp. can produce a number of trichothecene toxins, such as deoxynivalenol
(DON), nivalenol (NIV) [5], zearalenone (ZEA) and moniliformin (MON) [6]. Of these
trichothecene mycotoxins, DON is the most common one in barley, which can cause food
refusal, vomiting, diarrhea and dermatitis [7]. DON content is routinely measured before
the harvested grain for malt, food, and feed [8]. Regulatory guidelines for DON levels vary
by country [9]. The US Food and Drug Administration has set a recommended limit of
1.00 mg/kg for DON in processed wheat products [10], while Brazil has established DON
limits of 1.00 mg/kg and 0.75 mg/kg in whole wheat grain and other wheat derivates,
respectively [11]. In addition, the maximum level of DON in unprocessed grains has been
approved by the European Union at 1.25 mg/kg [12]. Therefore, cereals with DON levels
higher than 1.25 mg/kg should not be used as food for humans. However, it can be mixed
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with clean cereals or other cereal batches low in DON to eventually produce cereal batches
for feed specifications.

Due to the devastating nature of FHB, it is vital for growers to devise strategies to miti-
gate losses caused from the disease [13]. These strategies include cultural practices, tolerant
cultivars or planting resistant, biological control, chemical control, harvesting strategies,
and use of forecasting systems. Agronomic practices and fungicides only partially reduce
the risk of damage [14]. The best way to control FHB and reduce mycotoxin contamina-
tion is to create wheat genotypes carrying effective resistance genes [15]. Thousands of
breeding lines are screened for DON levels annually to develop resistant cultivars. The
resistance to DON accumulation in barley is inherited quantitatively [8]. Due to the health
concerns, barley replaced wheat cultivated area, food or feed requires periodic detection of
DON levels. And the barley kernels are harvested for DON assays. Nowadays, various
techniques have been used to detect and quantify DON contamination in cereals. The
typical chemical methods include gas chromatography-mass spectrometry (GC-MS), high
performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay
(ELISA). Although these techniques can determine the DON concentration, they are time
consuming, costly, and destructive [16]. Consequently, farmers and the food industry need
to seek alternative techniques for rapid and non-destructive detections of DON levels.

Spectroscopic methods have been used to evaluate the mycotoxins in cereals widely [17].
Hyperspectral imaging (HSI) is an emerging, non-destructive and cost-effective method
for capturing spectral data at a per-pixel location in a sample image. This method may
become an alternative to time-consuming wet chemical methods for toxin assessment [18].
However, one of the challenges in HSI is how to handle large amounts of high-dimensional
data. Traditional machine learning algorithms have been widely used in the field of spectral
data analysis. Hamidisepehr and Sama [19] tested several commercial machine learning
algorithms using spectral data collected from moisture-controlled silt loam and wheat
straw residue samples. The stereoscopic support vector machine (SVM) and integrated
bagged tree methods predicted 96% and 93% accuracy for the silt samples and 86% and
93% accuracy for the wheat straw residue samples respectively. Feng, et al. [20] used three
different data fusion approaches (raw data fusion, feature fusion and decision fusion) to
fuse three types of spectral features for the classification of rice diseases using machine
learning methods such as SVM and logistic regression (LR) with the accuracy of over 93%.

The performance of detection of models built by conventional algorithms may be
limited by specially designed constraints and model parameters. Deep learning has been
proven to be an advanced big data analysis technique applied in food quality inspection [21].
Yu, et al. [22] presented a novel method for the non-destructive identification of pesticide
residues on the surface of cantaloupe using visible/near infrared (Vis/NIR) spectroscopy
(348 -1141 nm) in combination with deep feature fusion. The proposed one-dimensional
convolutional neural network (1D-CNN) model accurately distinguished the presence
of pesticide residues with an identification accuracy of 99.17%. Later, Zhu, et al. [23]
implemented a rapid in situ identification of pesticide residues in tea by combining surface-
enhanced Raman scattering (SERS) and 1D-CNN. In recent years, 1D-CNN has made
some progress in the non-destructive detection of agricultural products by combining with
spectral imaging techniques. Gao, et al. [24] used 1D-CNN to classify the presence of
aflatoxin in peanuts and wheat with the highest test accuracy of 96.35%. A model based on
HSI and 1D-CNN to differentiate soybean seed varieties achieved a classification accuracy
of over 98% [25]. Another method based on Vis/NIR spectroscopy combined with 1D-CNN
was proposed for the non-destructive detection of pesticide residues on the surface of
cantaloupe with an accuracy of 95.83% [22]. To the best of our knowledge, no previous
study has been conducted to assay the DON content in barley kernel samples combining
hyperspectral techniques and 1D-CNN. Furthermore, feature variable selection allows
the best combination of several discrete wavelengths to be determined from hundreds
of spectral variables, which is a straightforward and effective way to reduce redundant
data [26–29]. Wavelength selection approaches like competitive adaptive reweighted
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sampling (CARS), successive projections algorithm (SPA), first order derivative and mean
centre iterative algorithm (FMCIA) and uninformative variable elimination (UVE) have
been effectively employed to recognize information on characteristics related to chemical
composition, texture, authenticity and fungal contamination of food products [30,31].

In this study, 1D-CNN algorithm was employed to analyze the obtained hyperspec-
tral data to assay the DON content in barley kernels. The specific objectives were to:
(1) evaluate the potential of HSI for DON level detection in barley grain; (2) construct
a deep learning model on the basis of the 1D-CNN algorithm and to compare its capa-
bilities with conventional machine learning models; (3) build a classification algorithm
to distinguish samples with the low DON level (≤1.25 mg/kg) from those with higher
DON levels.

2. Materials and Methods
2.1. Data Collection

Barley samples used in this study varied depending on their reaction to FHB. Samples
were taken from field plots that produced artificial epidemics of FHB. The grain spawning
method proposed by Steffenson [32] was used for inoculation. The spikes of each strain
were harvested at physiological maturity in August, desiccated to approximately 2%
moisture in a forced air dryer at 12 ◦C for 35 days, threshed and cleaned. After the resulting
cereal samples were used for hyperspectral scanning imaging, the DON content (mg/kg)
of barley samples is assayed by triplicate analysis using the Gas Chromatograph-Mass
Spectrometer (GC-MS) reference method [33]. A total of 590 samples were evaluated (about
10 g per sample). Based on the DON levels determined by GC-MS, the samples in the
calibration group were divided into 3 categories: 28 samples in class I (0.19 mg/kg ≤ DON
≤ 1.25 mg/kg), 109 samples in class II (1.25 mg/kg < DON ≤ 5 mg/kg) and 453 samples in
class III (5 mg/kg < DON ≤ 14 mg/kg).

Before GC-MS analysis, hyperspectral images of the barley samples were obtained by
a linear scan Vis/NIR HSI system (367–1048 nm). As shown in Figure 1, this hyperspectral
system (PlantSpec 10, Middleton Spectral Vision, Middleton, WI, USA) consists of a com-
plementary metal oxide semiconductor (CMOS) (MSV500, Middleton Research, Middleton,
WI, USA), a two-line halogen light source (2 × 13 × 35 W, luminous flux: 840–950) (MSV
Series 13 illumination, Middleton Spectral Vision, Middleton Spectral Vision, Middleton,
WI, USA), a spectrometer with optical resolution (V10E, Specim, Oulu, Finland) consisting
of a 1.2 nm, a computer with data acquisition software for controlling the hyperspectral
camera, scanner carrier table and image acquisition, and a conveyor system operated by
stepper motors. Once all hyperspectral images were acquired, a developed coding algo-
rithm was used to calculate the calibration of all spectral images. The average spectrum of
each sample was then automated and extracted according to Matlab R2019a (The Math-
works Inc., Natick, MA, USA). Data from the hyperspectral images were restricted to the
interval 383–1030 nm (550 variables) due to the low signal-to-noise ratio on both sides of
the obtained spectra. The number of the samples in this research is unbalanced with respect
to the deep learning model. In order to avoid overshooting of CNN training and to obtain
a superior deep learning model, a data augmentation Tian, et al. [34] proposed was used to
increase the number of samples.
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Ultimately, the 28 raw data from the class I were augmented to 112. Every 7 original
spectral data were divided into groups (grouped adjacent to DON index), and the data
in each group were enhanced in pairs. The 109 raw data in the class II were expanded to
217. Every 3 original spectral data were divided into groups, and the data in each group
were enhanced in pairs. The training and test sets were divided according to 7:3, with
548 samples in the training set and 234 samples in the test set after data enhancement. The
distribution of samples in the test set was the same as that in the training set.

2.2. Data Pre-Processing Method

Conventional max-min normalization (MMN) is a method to normalize data by show-
ing all factors in the whole data set x as values between 0 and 1 [35]. It determines the
range of data by setting the minus between the maximum and minimum amounts acting
as the numerator. With regard to the numerator, each element of x can be represented as a
value between 0 and 1 by deducting the minimum value of the x element from each factor
of x. Wavelet transform (WT), a new mathematical technique, has been shown to have fast
computational and fast fading properties [36]. WT theory was extensively developed in
the 1980s. It can be seen as a synthesis of ideas derived from physics (coherent states and
reformation groups), pure mathematics (the study of Calderon-Zygmund operators) and
engineering (sub-band coding). WT has emerged as a widespread tool for the analysis of
signals. In addition to the two methods mentioned above, other pre-processing methods
were also used in this study. First difference (FD) is a transformation of a time series
consisting of a difference between adjacent periods, i.e., the latter period is subtracted
from the former. The moving-average filtering (MAF) is a statistical rule based on which
successive sampled data are considered as a queue of fixed length N. Following a new
measure, the first of the above queue is deleted, the rest of the N-1 data are moved forward
in sequence and the new sampled data are plugged in as the end of the new queue; the
arithmetic operation is then carried out on this queue and the outcome is taken as the result
of the current measurement.

2.3. Traditional Machine Learning Methods

SVM is a computational algorithm that assigns labels to objects through instance
learning [37]. This algorithm has been widely applied for speech recognition, image
recognition, text classification, face detection and error card detection [38]. Perceptron [39]
is a binary linear model with a feature vector as input and a category as output; Perceptron
acts as a hyperplane that divides data into positive and negative categories and is the
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most basic classifier in machine learning. Stochastic gradient descent (SGD), which is also
referred to as stochastic approximation, describes the structure of certain simple iterations
for solving random optimization and root searching problems [40]. The identifying features
of SGD are very similar to those of gradient descent used for deterministic optimization.
Each successive iteration in a recursion is identified by adding appropriately scaled gradient
estimates to the previous iterations. Random forest (RF) is a supervised algorithm that
uses an integrated learning method consisting of numerous decision trees, with the output
being a consensus on the best answer to the problem [41]. K nearest neighbors (KNN) is a
common algorithm used for supervised learning, which works by finding the K nearest
training samples in the training set based on some distance given a test sample, and then
predicting based on information from these K neighbors [42]. Decision tree [43] (DT) is
a fundamental approach of classification and registration. A DT model is a dendritic
structure that indicates the process of categorizing instances on the basis of features in
a categorization issue. Naive bayes (NB) is a method of classification founded on Bayes’
theorem and the conditional independence assumption of features [44]. The joint probability
distribution from input to output is first learnt from a known set of training items, assuming
that independence between feature terms as a prerequisite. Input X is used to find the
output Y that maximizes the posterior probability based on the learned model.

2.4. Convolutional Neural Network (CNN)

The fundamental structure of a CNN is composed of a convolutional layer, an activa-
tion function layer, a pooling layer and a fully connected layer. The convolutional layer
is primarily employed to select hidden features from the data. The feature map of the
inputs data is available by means of a continuous sliding filter. In this study, two CNN
architectures were proposed. The pool size was set to 2 × 1. As shown in Figure 2, the
data is input into the original 1D-CNN when the number of features is 550. The original
1D-CNN includes one input layer, seven convolutional layers, three max pooling layers,
one global average pooling layer, one dropout layer and one full connected layer. While
the simplified 1D-CNN consists of one input layer, four convolutional layers, one max
pooling layers, one global average pooling layer, one dropout layer and one full connected
layer. The input layer is used for inputting spectral data and the output layer is used
for prediction. In addition, a 2 × 1 max-pooling layer reduces the feature dimension by
half, and the three maxpooling layers are used in the original model structure as shown in
Figure 2. Such a structure can work normally when the input feature quantity is 550. When
the number of features is less than a certain value, the maxpooling layer does not work
and increases the calculation time. Therefore, a simplified model is proposed for training
after feature band selection. In the simplified model, due to the reduction in the number
of features, we have reduced the kernel size of the convolution layers and the number of
maxpooling layers to adapt to the smaller number of features. Compared to the original
model structure, a smaller kernel size means a smaller receptive field, so the original model
structure has better feature extraction ability under 550 features. Therefore, it is chosen to
retain both the original model and the simplified model for use in different feature quantity
situations. It should be noted that the experiments before feature band selection in this
paper are trained by the original model, and the subsequent experiments are completed by
the simplified model.
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2.5. Variable Selection Algorithm

CARS is an efficient tactic for the selection of the best combined of key wavelengths in
multicomponent spectral data according to the “survival of the fittest” principle [45]. A
subset of N variables is selected by N iterative ways through N number of sampled runs,
with the final subset with the smallest root mean square error of cross-validation (RMSECV)
value being selected as the best subset. CARS performs four consecutive steps in each
sampling run, including Monte Carlo model sampling, EDF forced wave reduction, ARS
competitive wave reduction and RMSECV computation of each subset. CARS achieves the
selection of the optimal subset of wavelengths to some extent.

SPA [46] is a forward selection method that uses simple operations to minimize
variable covariance in vector space, as a new variable selection strategy for multivariate
calibration. SPA carries out a simple projected operation in vector space to get a useful
subset of variables with minor covariances. Here is a summary of the main points. First,
before selecting the starting vector in the n-dimensional space, set the maximum number
of variables N to be selected (where n is an original number of variables). Afterwards, the
vector of the higher projection is selected in the orthogonal subspace to become the starting
new vector. At each iteration an orthogonal subspace is chosen so that only non-covariates
are selected. The best initial variables and number of variables can be identified from the
minimum root mean square error of validation (RMSEV) [47].

2.6. Model Evaluation

Performance of the 1D-CNN was assessed using a few parameters. False positives
(FP), false negatives (FN), true positives (TP) and true negatives (TN) were computed
and applied to generate metrics including confusion matrix, classification error, recall
and precision and F1-score. The confusion matrix gives a direct indication of the model’s
exact prediction results for each class. Precision is applied to assess the model’s overall
performance. F1-score, classification error, precision and recall were employed to assess the
model’s classification performance for each class. The calculation equations of each index
are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 × Precision × Recall

Precision + Recall
(3)

where TP is the number of samples from the target class that the model correctly found, FN
is the number of samples from the target class that the model incorrectly found, and FP is
the number of samples from other classes that the model incorrectly judged to be the target
class TN is the number of samples from other classes that the model correctly found.

Python was utilized to preprocess the spectral data. Traditional machine learning
models including SVM, SGD, RF and KNN were also implemented with Python. The
proposed CNN architecture was constructed using program language Python 3.7. All
software tools were carried out on a Win11 64-bit computer with Intel(R) Core™ i7-10750H
CPU, 2.60 GHz, 2.59 GHz and 16 GB RAM (ASUS, China).

3. Results
3.1. Full Wavelength Models

The performance of the 1D-CNN model proposed was much better compared with
other traditional machine learning algorithms, as illustrated in Table 1. The 1D-CNN
achieved the highest precision of 89.41%, the recall of 0.8922 and the F1-score of 0.8911
when classifying the class (I, II) and the class III. It also performed best when classifying
class I and class II with a Precision of 90.08%, a Recall of 0.8947 and a F1-Score of 0.8961.
All models achieved a precision greater than 80% for one-step classification. In particularly,



Sensors 2023, 23, 2668 8 of 16

perceptron and SGD, only achieved 15.52% and 36.73% accuracy respectively. This could be
attributed to the fact that these two models are not very powerful in classifying low levels
of DON. In summary, it suggests that 1D-CNN is expected to replace ordinary machine
learning algorithms when classifying DON levels.

Table 1. Precision, recall, and F1-score of the classification for different models.

Models
Class (I, II) and Class III Class I and Class II

Precision (%) Recall F1-Score Precision (%) Recall F1-Score

1D-CNN 89.41 0.8922 0.8911 90.08 0.8947 0.8961
SVM 86.83 0.8681 0.8674 81.68 0.7374 0.6951
LR 84.33 0.8340 0.8299 78.92 0.6768 0.5984

Perceptron 83.57 0.8340 0.8322 15.52 0.3939 0.2226
SGD 81.17 0.7489 0.7454 36.73 0.6061 0.4574
RF 81.68 0.8170 0.8169 81.82 0.8182 0.8149
DT 77.81 0.7787 0.7769 68.15 0.6869 0.6824
NB 59.89 0.5277 0.4998 49.40 0.4444 0.4388

SVM, Support Vector Machine; LR, Logistic Regression; SGD, Stochastic Gradient Descent; RF, Random Forest;
Decision Tree, DT; Naive Bayes.

3.2. Data Pre-Processing

Spectral preprocessing improved the classification performance of the 1D-CNN model.
Different one-step spectral pre-processing methods such as MMN, MAF, WT were first
used. As shown in Table 2, the WT achieved the highest precision (91.48%), recall (0.9138)
and F1-score (0.9132) when classifying the class (I, II) and the class III. And it is worth
noting that the filter used in this study is the Daubechies wavelet transform filter. While
the FD performed best in classifying the first and second classes with a precision of 93.86%,
a recall of 0.9368 and a F1-score of 0.9373.

Table 2. Precision, Recall, and F1-score for prediction of spectral data with 1D-CNN based on different
one-step pre-processing methods.

One-Step Pre-Processing
Method *

Class (I, II) and Class III Class I and Class II
Precision (%) Recall F1-Score Precision (%) Recall F1-Score

None 89.41 0.8922 0.8911 90.08 0.8947 0.8961
FD 90.20 0.9009 0.9 93.86 0.9368 0.9373

MMN 89.72 0.8966 0.8958 93.39 0.9263 0.9275
MC 89.41 0.8922 0.8911 88.84 0.8842 0.8854

MAF 89.64 0.8966 0.8962 90.62 0.9053 0.9056
MSC 90.60 0.9052 0.9045 89.86 0.8842 0.8865
SNV 90.13 0.9009 0.9002 86.15 0.8632 0.8614

Standardlize 89.67 0.8966 0.896 79.66 0.8 0.7974
VN 89.72 0.8966 0.8958 91.97 0.9158 0.9164
WT 91.48 0.9138 0.9132 90.62 0.9053 0.9056

* FD, First Difference; MMN, Max-Min Normalization; MC, Mean Centralization; MAF, Moving-Average Filtering;
MSC, Multiplicative Scatter Correction; SNV, Standard Normal Variate; VN, Vector Normalization; WT, Wavelet
Transform.

Figure 3 showed the reflectance spectra of MMN and MAF after the two-step pre-
processing. The reflectance spectra were more concentrated around 420 nm and more
dispersed around 450 nm after the two-step pre-processing. The results of the 1D-CNN
model developed using two-step spectral pre-processing is shown in Table 3. The model
on the basis of MAF-WT achieved the highest precision of 91.96%, the recall of 0.9181 and
the F1-score of 0.9174 when classifying Class (I, II) and Class III, while the model based on
WT-MMF performed best when classifying Class I and Class II with a precision of 95.05%,
a recall of 0.9474 and an F1-score of 0.9479.
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Table 3. Precision, Recall, and F1-score for prediction of spectral data with 1D-CNN based on different
two-step pre-processing methods.

Two-Step Pre-Processing
Method

Class (I, II) and Class III Class I and Class II
Precision (%) Recall F1-Score Precision (%) Recall F1-Score

MMN-MAF 90.07 0.9009 0.9006 91.79 0.9158 0.9164
MMN-WT 89.20 0.8922 0.892 92.63 0.9158 0.9173

MAF-MMN 89.67 0.8966 0.896 90.91 0.9053 0.9062
MAF-WT 91.96 0.9181 0.9174 90.47 0.9053 0.9049
WT-MMN 90.51 0.9052 0.9049 95.05 0.9474 0.9479
WT-MAF 91.48 0.9138 0.9132 92.14 0.9158 0.9169

MMN, Max-Min Normalization; MAF, Moving-Average Filtering; WT, Wavelet Transform.

3.3. Feature Wavelength Selection

Various variable selection algorithms were employed to recognize the characteristic
wavelengths. The CARS-based wavelength selection process is depicted in Figure 4. There
were 50 Monte Carlo sampling runs performed in CARS. Each variable’s contribution was
assessed by cross-validation. As shown in Figure 4a, the number of sampling variables
decreases as the number of sampling runs increases. The decrease is greatest at the begin-
ning and then gradually decreases as the number of sampling passes increases. Through
this approach, most of the redundant variables in the full spectral range (550 variables)
are gradually eliminated. Figure 4b depicts the RMSECV values versus the number of
sample runs. The best subset of characteristic variables was determined by the lowest
RMSECV values produced in multiple sampling runs. It is evident that the RMSECV value
decreases continuously until the number of sampling runs reaches 27, then the RMSECV
value gradually increases. The minimum RMSECV value for the 22nd sampling run is
marked with a red dashed line, indicating the combination of the characteristic variables.
Figure 4c shows the regression coefficient paths for the 550 variables in different sampled
runs. The values of the coefficients for some samples decrease to zero, while the values
of the coefficients for some other variables increase. Based on the CARS algorithm, 28
of the 550 variables were selected (390.905, 392.015, 393.126, 403.128, 407.581, 413.152,
415.382, 431.022, 433.261, 456.825, 460.2, 569.42, 571.72, 584.39 606.346, 607.504, 608.662,
724.598, 728.15, 810.477, 815.287, 823.714, 924.577, 970.104, 971.339, 1014.733, 1018.467 and
1023.449 nm). Although the 28 selected wavelengths represent only 5.09% of all variables,
they may still be too many to be any real use. Versatile spectral imaging systems for use in
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real-time monitoring require the smallest possible number of characteristic wavelengths
with consistent detection precision.
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number of samples increases. The line (labelled with a dashed line) indicates the optimal point with
the lowest RMSECV value.

An evaluation of the 28 wavelengths selected by CARS was re-evaluated using the
SPA algorithm in order to optimize the selected variables. It can be clearly observed from
Figure 5 that the RMSE values show a decreasing trend with the increase of the number
of wavelengths. When the number of wavelengths is greater than 7, the change in RMSE
values is no longer significant.

3.4. Model Optimization

The simplified 1D-CNN models were constructed with the selected feature bands. The
classification results of the models using CARS, SPA and CARS-SPA are shown in Table 4,
based on the results of the pre-processing of the raw spectral data by MMN, WT, MAF, etc.
When only one feature variable selection method is considered to extract feature bands,
the number of feature bands obtained is more than the variables selected when the two
methods of CARS and SPA are combined. The built model worked best with the two-step
preprocessing method (combination of WT and MMN) combined with the two-step feature
band selection method (combination of CARS and SPA). The precision of the model built
using seven feature bands was slightly lower than that of the model built using 28 bands,
but the results of both models were almost equivalent. Based on WT-MMN-CARS-SPA,
seven feature bands were finally identified. The optimized 1D-CNN model achieved a
precision of 88.38%, a recall of 0.8836 and an F1-score of 0.8829 when classifying class (I, II)
and class III. Furthermore, a precision of 89.81%, a recall of 0.8981 and an F1-score of 0.8955
were achieved when classifying class I and class II. To sum up, WT-MMN-CARS-SPA not
only lowers the original data complexity, but also keeps the precision of the model. The
results indicate that CARS-SPA is preferable for the selection of characteristic wavelengths.
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3.5. Comparison of Optimized Models

After using WT-MMN to perform two-step preprocessing on the original data and
using CARS-SPA to obtain seven feature bands, the effects of different machine learning
methods established by using the selected feature bands to classify the data were compared,
as shown in Table 5. Compared with the proposed CNN method, the classification results of
the other machine learning methods were much worse. LR had the worst performance with
only 29.21% precision in the first step of classification and 39.22% precision in the second
step of classification. This suggests that LR is not suitable for classifying and predicting 1D
data. Both the SVM and perceptron models had a precision above 79% for classification of
class (I, II) and class III, but below 40% for further classification. RF achieved a precision of
84.29% for one-step classification and 86.92% for two-step classification, but neither was as
good as the simplified 1D-CNN model.
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Table 4. Precision, Recall, and F1-score of the classification for different methods of extraction of
feature bands.

Extraction of Feature Bands
Class (I, II) and Class III Class I and Class II

Precision (%) Recall F1-Score Precision (%) Recall F1-Score

MAF-WT-CARS(39) 90.43 0.9009 0.8995 93.95 0.9263 0.9278
MAF-WT-SPA(31) 90.38 0.9004 0.899 72.53 0.7340 0.7275

WT-MAF-CARS(20) 89.97 0.8966 0.8971 72.13 0.7053 0.7105
WT-MMN-CARS(28) 90.95 0.9052 0.9038 92.98 0.9263 0.9271
WT-MMN-SPA(30) 91.57 0.9138 0.9130 91.79 0.9158 0.9164

WT-MMN-CARS-SPA(7) 88.38 0.8836 0.8829 89.81 0.8966 0.8955

MMN, Max-Min Normalization; MAF, Moving-Average Filtering; WT, Wavelet Transform; CARS, Competitive
adaptive reweighted sampling; SPA, Successive projections algorithm.

Table 5. Precision, Recall, and F1-score of the classification based on different machine learning
models.

Models
Class (I, II) and Class III Class I and Class II

Precision (%) Recall F1-Score Precision (%) Recall F1-Score

1D-CNN 88.38 0.8836 0.8829 89.81 0.8966 0.8955
SVM 85.32 0.8170 0.8090 39.22 0.6263 0.4823
LR 29.21 0.5404 0.3792 39.22 0.6263 0.4823

Perceptron 79.52 0.6979 0.6592 39.22 0.6263 0.4823
SGD 83.18 0.7702 0.7533 72.22 0.6667 0.5798
RF 84.29 0.8340 0.8314 86.92 0.8687 0.8665
DT 79.53 0.7914 0.7891 72.88 0.7273 0.7279
NB 65.47 0.6553 0.6549 56.33 0.5657 0.5644

SVM, Support Vector Machine; LR, Logistic Regression; SGD, Stochastic Gradient Descent; RF, Random Forest;
Decision Tree, DT; Naive Bayes.

The final optimized 1D-CNN model also achieved a high accuracy rate on the test
dataset. The accuracy of the 1D-CNN model was 80% and 96% when initially classifying
class (I, II) and class III for testing, as shown in Figure 6a. As shown in Figure 6b, the
accuracies were 82% and 93% for classifying class I and class II separately. The accuracy at
this point is less than that in Figure 6, due to the fact that some of the relevant information
is lost through feature band extraction, which is in line with the general rule.
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4. Discussion

In general, the optimized 1D-CNN model in this paper can classify and predict spectral
data. Compared with the traditional models, the final prediction accuracy of the proposed
method is 88.38% with a recall of 0.8836 and an F1-score of 0.8829 when classifying Class I,
II and Class III. While a precision of 89.81%, a recall of 0.8981 and a F1-score of 0.8955 were
achieved when classifying class I and class II. In order to obtain more accurate training
results, data augmentation was performed on three levels of data. In the end, the class I was
enhanced from 28 to 112, class II from 109 to 217. And the class III was reduced from 819 to
453, removing spectral data with DON levels greater than 14 mg/kg. A higher resolution
and predictive power for lines with lower DON content would be helpful for selection
purposes. In breeding programs, samples of greater than 14 mg/kg of actual barley grain
may be discarded. These samples are not intended for human use for grain buyers, but can
be blended with samples containing lower levels of DON to achieve tolerable levels for
animals on farms, particularly for ruminants that can cope with higher levels of mycotoxins.
In contrast to pigs, which are very DON-sensitive, tolerances in ruminants such as dairy
cattle are comparatively high because micro-organisms in the rumen can convert these
toxins into the lower virulence deep oxygen DON [48]. And the enhanced spectral data are
kept at a certain scale rather than averaged to prevent over-fitting.

Prior studies have explored the possibility of coupling hyperspectral imaging with
selected feature variables to evaluate DON in barley grains and to categorize grain samples
into various categories depending on DON levels [8]. Based on the seven wavelengths
selected by CARS and iterative selection of SPA (ISSPA), partial least squares discriminant
analysis (PLSDA) distinguished barley grains with low DON levels (<1.25 mg/kg) to
those containing high levels (comprising 1.25–3 mg/kg, 3–5 mg/kg and 5–10 mg/kg) with
a Mathews correlation coefficient (M-R) of 0.931 in cross-validation. Compared to the
above-mentioned studies, the proposed method chooses different classification intervals
and achieves the same high level of accuracy. So far as we know, this is the first time that
deep learning has been applied to the online detection of wheat plague level grading In
this study, the proposed 1D-CNN can be used to efficiently analyze spectral data. The
convolutional layers in 1D-CNN are specially designed to extract concealed features in the
spectrum more accurately and efficiently than traditional machine learning methods.

The characteristic wavelength model can achieve prediction precision similar to that
of the full band model. In the study, the 28 variables selected by CARS (390.905, 392.015,
393.126, 403.128, 407.581, 413.152, 415.382, 431.022, 433.261, 456.825, 460.2, 569.42, 571.72,
584.39 606.346, 607.504, 608.662, 724.598, 728.15, 810.477, 815.287, 823.714, 924.577, 970.104,
971.339, 1014.733, 1018.467, 1023.449 nm) lie in the visible and NIR spectral ranges within
the visible and NIR spectra, suggesting that the cyan region of the spectra may not contain
characteristic information relevant to the DON content. After removing 21 of the 28 wave-
lengths, the remaining seven feature wavelengths selected by CARS-SPA (403.128, 433.261,
460.2, 728.15, 815.287, 971.339, and 1023.449 nm) were used to develop a 1D-CNN model to
predict DON content, yielding very similar accuracy as using 28 variables. This indicated
the redundant information provided by the 21 variables that were removed. With the
majority of the redundant information removed, the improved model still retained a high
prediction precision and greatly facilitated the speedy determination of DON in barley
kernel samples.

However, the classification performance was insufficient. The errors in prediction
may be due to the low DON concentration of the barley samples used in this study. After
feature band extraction using CARS-SPA, the accuracy was reduced due to the removal of
some of the bands containing valid spectral information. At the same time, however, the
model was simplified and the efficiency was improved. More efficient methods are needed
in the future to analyze hyperspectral data with high complexity. The processing of the
initial data can also be further improved, and the replacement of wavelet transform filters
and changes to filter parameters will be further attempted in the future to optimize the
whole process in order to develop more efficient and accurate models. In addition to this,
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laboratory environment can also affect the accuracy of the model. For the best possible
precision of the model, changes in the external environment, like temperature and humidity,
should be avoided in the online detection of DON levels that affect the spectral acquisition.
Hence in the future, further experiments will be carried out on different varieties and
growing environments and portable or mobile equipment will be developed to carry out
experiments under different field conditions.

5. Conclusions

A combination of HSI technology and 1D-CNN was used in this study to classify DON
levels in barley kernels. The data were subjected to one-step and two-step pre-processing
after the enhancements as the physicochemical values of DON were too small. In order
to eliminate the collinearity variable in the original spectrum and simplify the model,
the feature wavelength extraction was performed. CARS was used to search hundreds
of variables for characteristic wavelengths that may be related to the DON levels in the
particulate samples, and these identified wavelengths are then re-optimized by the SPA.
The results showed that the optimized CARS-SPA-CNN model was successfully used to
distinguish barley samples with low levels of DON fortification (≤5 mg/kg) from those
with high levels of DON fortification (>5 mg/kg) with a precision of 89.41%. Further, when
classifying class I (DON: >0.19 mg/kg and ≤1.25 mg/kg) and class II (DON: >1.25 mg/kg
and ≤5 mg/kg), the accuracy was 89.81%. Compared with other models, the proposed
method showed the highest precision. However, the regression performance still has the
potential to be improved, the processing of the initial data can be further improved and the
laboratory environment can also affect the accuracy of the model. Based on this approach,
future studies will validate the reliability of the technique using samples with a wide
range of DON levels from different regions, seasons and experiments. It is certain that
the optimized CARS-SPA-CNN model in this study will have a broad application in the
spectral analysis of agricultural crops.
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