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Abstract: The road transportation sector is a dominant and growing energy consumer. Although
investigations to quantify the road infrastructure’s impact on energy consumption have been carried
out, there are currently no standard methods to measure or label the energy efficiency of road
networks. Consequently, road agencies and operators are limited to restricted types of data when
managing the road network. Moreover, initiatives meant to reduce energy consumption cannot be
measured and quantified. This work is, therefore, motivated by the desire to provide road agencies
with a road energy efficiency monitoring concept that can provide frequent measurements over
large areas across all weather conditions. The proposed system is based on measurements from
in-vehicle sensors. The measurements are collected onboard with an Internet-of-Things (IoT) device,
then transmitted periodically before being processed, normalized, and saved in a database. The
normalization procedure involves modeling the vehicle’s primary driving resistances in the driving
direction. It is hypothesized that the energy remaining after normalization holds information about
wind conditions, vehicle-related inefficiencies, and the physical condition of the road. The new
method was first validated utilizing a limited dataset of vehicles driving at a constant speed on a
short highway section. Next, the method was applied to data obtained from ten nominally identical
electric cars driven over highways and urban roads. The normalized energy was compared with road
roughness measurements collected by a standard road profilometer. The average measured energy
consumption was 1.55 Wh per 10 m. The average normalized energy consumption was 0.13 and
0.37 Wh per 10 m for highways and urban roads, respectively. A correlation analysis showed that
normalized energy consumption was positively correlated to road roughness. The average Pearson
correlation coefficient was 0.88 for aggregated data and 0.32 and 0.39 for 1000-m road sections on
highways and urban roads, respectively. An increase in IRI of 1 m/km resulted in a 3.4% increase in
normalized energy consumption. The results show that the normalized energy holds information
about the road roughness. Thus, considering the emergence of connected vehicle technologies, the
method seems promising and can potentially be used as a platform for future large-scale road energy
efficiency monitoring.

Keywords: live road condition assessment; infrastructure monitoring; pavement analysis; road
energy labeling; emission; smart cities

1. Introduction

The road transportation sector is a dominant and growing energy consumer. Data
from the International Energy Agency (IEA) show that the road transport sector accounts
for 24% of all CO2 emissions from energy, of which, 45.1% comes from the passenger
transport [1]. Furthermore, it is the only sector where emissions have increased in recent
years [2]. With the reduction of CO2 emissions at the forefront of European policy, the road
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transport sector is focusing on electrification, e.g., by promoting electric vehicles (EVs),
and improving the energy efficiency of the transport infrastructure.

In order to accelerate the shift towards a more energy-saving road infrastructure,
the tire industry has implemented labeling that primarily highlights fuel efficiency [3–5].
For many years, the car industry has also had a similar labeling policy displaying fuel
efficiency and projected CO2 emissions [6]. Other examples of energy labeling in the
civil infrastructure domain include the building sector [7], and the railway sector [8].
The purpose of energy labeling is threefold: (i) to increase consumer and user awareness;
(ii) to help consumers/users save money by choosing products that consume less energy
and thereby emit less CO2; and (iii) to encourage manufacturers to develop these energy-
saving products and reduce energy consumption.

Initiatives to quantify the road infrastructure impact on energy consumption have
focused on measuring/modeling rolling resistance [9–13]. This has led to the development
of energy-saving products such as asphalt courses with low-rolling resistance proper-
ties [14,15]. However, from a road operator’s perspective, there is currently no standard
method for monitoring or labeling the energy efficiency of road pavements. This results in
the following implications: (i) road owners and operators are limited to restricted types
of data when managing their road networks, optimizing the timing of repair efforts and
prioritizing resources; (ii) the effect of initiatives to reduce the energy consumption of
road networks cannot be measured nor quantified in a uniform and rational manner;
(iii) the environmental impacts of road networks are difficult to assess (i.e., from a life cycle
perspective) due to the lack of data in the use phase [16].

Smart transportation and smart city traffic management are revolutionizing how
cities approach mobility and emergency response while reducing congestion on city
streets [17–19]. This trend is facilitated by the increasing use of Internet-of-Things (IoT)
devices [20] and 5G communication technology [21,22]. The former provides inexpensive
sensors and controllers that can be embedded into nearly any physical machine to be
controlled and managed remotely. The latter provides the high-speed communications
needed for managing and controlling transportation systems in real time with minimal
latency. Internet of Vehicles (IoV) technology enables internet connectivity and commu-
nication between vehicles and other devices on the network and is an integral part of
IoT [23]. Advanced sensors in modern cars enable vehicles to sense, communicate, report,
and react to the surrounding environment to benefit drivers, commuters, other vehicles,
and authorities [24].

Considering the massive amount of real-time data gathered by vehicles, which is in the
order of a few gigabytes per hour per vehicle [25], research in this area has been focusing on
the development of computing environments to reduce pressure on cloud servers [23,24].
Another challenge relates to security and privacy aspects; data generated by vehicles is
transmitted on public servers, and therefore sensitive information can easily be intercepted
and tampered with [23]. As a result, developing secure data exchange between vehicles
and infrastructure [23,26] is another critical building block to fully utilizing IoV technology.

The global increase of EVs [27], combined with advancements in IoT and IoV technol-
ogy, creates new opportunities for road usage insights and optimization. Vehicle sensor
readings are directly or indirectly related to the ride-surface conditions over which the
vehicle is passing. If sensor readings can be collected, a fleet of modern cars can pro-
vide valuable input to augment and enrich the data needs for pavement management,
and operation [28].

This work is motivated by the need for a road energy efficiency monitoring concept
that can provide frequent measurements over large areas across all weather conditions.
The idea advocated herein is to utilize the readings of in-vehicle sensors. The sensors can
be installed during car manufacturing or retrofitted by the owners after purchase. Unlike
previous work on energy consumption measurements from in-vehicle sensors that focused
on road geometry [29–31] and driving behavior [31,32], this contribution investigates the
link between energy consumption and the physical condition of the road pavement.
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The main contributions of this study are: (i) the presentation of an IoT platform
for performing road energy efficiency monitoring suitable for wide-area implementation;
(ii) a normalization technique of energy data taking into account the effects of road slope,
vehicle speed, and acceleration; (iii) an investigation of the link between vehicle energy
consumption and road pavement roughness; and (iv) a demonstration of the new method
over real data obtained by cars driving over a variety of road types.

The paper commences with a review of related research that focuses on the road
roughness influence on vehicle energy consumption. The review is followed by stating
the specific study objectives and contributions. Next, a framework and methodology for
developing an IoT platform for road energy efficiency monitoring are presented. This
is followed by an experimental study and validation of the proposed method. Next,
the link between vehicle energy consumption and road roughness is investigated. Finally,
the method is demonstrated on data obtained from ten nominally identical electric cars
driven over highways and urban roads.

2. Related Research Work

The road surface characteristics affect the pavement-–vehicle interaction and contribute
to vehicle operating costs [33]. When a vehicle travels at constant speed on an uneven road
pavement surface, the mechanical work dissipated in the vehicle’s suspension system is
compensated by engine power and thus contributes to energy consumption.

The most popular model for evaluation of vehicle operating costs, including en-
ergy/fuel consumption, is the Highway Developmental Management System, Version 4
(HDM-4) model (see, e.g., [34]). The HDM-4 model relates to the International Roughness
Index (IRI) [35] to fuel consumption utilizing empirical relationships [36–40]. The empirical
models have gained importance in life-cycle assessment (LCA) and the relation between
pavement condition, energy consumption, and environmental impacts [39,41].

In the work of [37], the HDM-4 model was used to study the vehicle operating costs
and vehicle fuel consumption caused by pavement conditions. The model was calibrated
using field data and found a linear relationship between changes in fuel consumption and
road roughness. The results showed that an increase in IRI of 1 m/km resulted in 2–3%
increase in fuel consumption of passenger cars regardless of speed.

Related studies by [38,39] utilized the HDM-4 model and MOVES (MOtor Vehicle
Emission Simulator) [42] for predicting impacts on estimates of energy consumption during
the use phase. In [38], the authors reported that ignoring IRI variation or traffic congestion
could lead to underestimations in energy consumption by approximately 6%. In [39],
the authors found that vehicle efficiency accounts for about 27% of the potential total
energy savings, and potential savings from pavement roughness can be up to 7%

To develop a more direct link between energy dissipation and pavement roughness a
mechanistic model approach was proposed in [43,44]. The authors used the quarter-car
model [35] to evaluate the effect of pavement conditions on vehicle fuel consumption.
In addition, the authors presented a method for calibrating the model with measured data.
The dissipated energy was shown to scale with the mean square of suspension motion,
yielding a quadratic increase in fuel consumption with increasing IRI. Monte Carlo simula-
tions were used to estimate the sensitivity of roughness-induced excess fuel consumption
to IRI. A Spearman’s rank correlation test showed that energy consumption was positively
correlated to pavement roughness with correlation coefficients in the range of 0.45–0.66
for the five vehicle types considered. Monte Carlo simulations were also used to estimate
the sensitivity of a mechanical energy dissipation model in [45]. The authors reported a
Spearman’s rank correlation of 0.49 and 0.47 for sedan cars and trucks (respectively).

Related studies by [46,47] proposed more computationally-efficient formulations for
determining the energy dissipated in the vehicle suspension system. Both studies found
a quadratic relationship between changes in fuel consumption and roughness. In the
work of [48], a combined roughness and displacement energy dissipation model was
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utilized, showing that the influence of concrete pavement stiffness on energy consumption
is negligible. Similar findings are reported for asphalt roads [49].

A data-driven approach to study the impact of road geometry and gravel pavement
roughness on the fuel consumption of logging trucks was proposed in the work of [50].
The truck’s CAN-bus system was utilized to log fuel consumption data, and the road
geometry data were measured with a profilograph. An initial Pearson correlation test of
1000-m road sections showed that fuel consumption was negatively correlated to truck
speed (−0.52) and positively correlated to gradient (0.68) and pavement roughness (0.37).
In all cases, the results were statistically significant. The study did not consider the influence
of accelerations (although this was identified as an essential factor), nor did the authors
explain the relatively strong negative correlation between speed and energy consumption.

A summary of related research w.r.t. modeling and measurements of the pavement
roughness influence on vehicle energy consumption is listed in Table 1; the Table shows the
method/approach used and its main limitations.

Table 1. Summary of related research work.

Method Reference Limitation

Empirical [36–40]
(i) Model complexity and correctness
(ii) Calibration required
(iii) Complexity of simulation (not directly measured)

Mechanistic [43–48]
(i) Model correctness
(ii) Extensive system characterization may be required
(iii) Complexity of simulation (not directly measured)

Data-driven [50]

(i) Vehicle types considered (heavy logging trucks)
(ii) Road class (low-volume rural roads)
(iii) Road pavement type (gravel)
(iv) Effect of acceleration not considered

3. Objectives and Methodology

While some of the methods identified in the technical literature have merit, there
are also drawbacks: (i) models are relatively complex and require calibration; (ii) the
mechanical model used needs extensive system characterization; (iii) models have been
developed in a simulation setting and are, therefore, dependent on or limited by the
complexity of the simulation, calibration procedures, as well as model correctness; (iv) the
experimental design utilized is limited to a specific vehicle or pavement type; and (v) the
overall scalability of the methods is not addressed, e.g., how these models should be
implemented in practice, making the methodology suitable for wide-area implementation.

The objective of the current work is threefold: (i) develop a practical method for
road energy efficiency monitoring based on in-vehicle sensor data; (ii) establish a link
between vehicle energy consumption and road pavement roughness; and (iii) demonstrate
and validate the new method over real data obtained by cars driving over a variety of
road types.

Specifically, the proposed system is based on measurements from in-vehicle sensors.
The measurements are collected onboard with an IoT device and then periodically trans-
mitted before being processed, normalized, and saved in a database. The normalization
procedure involves modeling the vehicle’s driving resistances in the driving direction. It
is hypothesized that the energy remaining after normalization holds information about
wind conditions, vehicle-related inefficiencies, and, lastly, the physical condition of the
road pavement. Hence, the method addresses all the shortcomings mentioned above by
utilizing data collected by regular cars in a real-world setting.
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4. Road Energy Monitoring Concept
4.1. Framework

The proposed framework for monitoring road energy efficiency is schematically pre-
sented in Figure 1. As can be seen, the scheme is composed of five elements: (i) data collection
from a fleet of electric vehicles (EVs)—in-vehicle sensor data are collected and synchronized
automatically with a computer connected to the vehicle’s controller area network (CAN)
bus; (ii) transmission and storage—the data are transmitted to a cloud-based system before
being stored in a database for further processing and analysis; (iii) modeling—normalization
of data utilizing a physical model; (iv) data aggregation—averaging of data over several
vehicle passes and a comparison of normalized vehicle energy consumption and standard
road roughness measurements, and (v) demonstration—mapping and visualization of
energy data.

#4

#3

#2

#1
Normalized 

energy
1 0 0 1 1 0 1 1       

0 0 0 1 0 1 1 1 0 
0 1 0 1 0 1 1 1 

00 0 0 0 1 1 1 0 
0 1 0 0 0 0 

Data collection Transmission & storage Modelling Data aggregation Mapping & 
Visualization

Figure 1. Proposed framework for road energy efficiency monitoring, showing the data collection
from vehicle sensors, data transmission, storage, normalization of data utilizing physical models,
data aggregation, and mapping and visualization.

The overall concept relies on the fact that the instant traction force is measured by
a fleet of uniform EVs (i.e., data collection platform). Moreover, measured by EVs are
longitudinal acceleration, road slope, and speed. The latter information enables estimation
of the main driving resistance forces, i.e., by utilizing a longitudinal vehicle dynamics model
(see e.g., [51]), and thus the EVs energy requirements. Therefore, it is hypothesized that
the traction forces remaining after normalization (i.e., after subtracting the main driving
resistance forces from the measured traction force) hold information about wind conditions,
vehicle-related inefficiencies, and the physical condition of the road pavement surface.
The latter component is then isolated to quantify road energy efficiency. As an initial
attempt to link energy consumption and the physical condition of the road pavement,
the normalized energy is compared to the pavement roughness, measured with standard
laser-based methods (see, e.g., [52,53]).

4.2. Data Collection, Transmission, and Storage

The field measurements presented hereafter are part of the live road assessment (LiRA)
project [28,54,55]. This project collected sensor data from a fleet of Renault Zoe EVs operated
by Green Mobility (GM), a car-sharing service company. Relevant EV specifications are
shown in Table 2.

Table 2. Specification/metadata for Renault Zoe EVs utilized in this study.

Parameter Value Unit

Curb weight, mc 1480 kg
Gross weight, mg 1966 kg
Front area of the vehicle 2.33 m2

Drag coefficient, Cd 0.29 –
Torque 220 Nm
Power 68 kW
Effective wheel radius [56] ≈300 mm
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The GM cars are each retrofitted with an IoT hardware dongle—AutoPi Telematics
Unit (3rd generation). This unit includes a single-board Raspberry Pi computer with added
GPS and accelerometer modules. The AutoPi units are physically fixed to the frame in
the middle of the car. The installation of the devices is depicted in Figure 2. The device is
located close to the front axle on the vehicle’s passenger side, inside the middle console.

Figure 2. Picture of the passenger side of the Renault Zoe with the access panel to the middle console
removed and the location of the AutoPi telematics unit inside the middle console.

Overall, an automated data collection process consists of steps of actual data acquisi-
tion, data collection, processing, and storage in a high-level definition. Data acquisition
is processing data onboard, which involves converting bits to decimals and translating
decimal data into actual physical units. Once data are digitized and acquired, they will be
structured into unified files in a Jsonlines format, each so-called ‘trip’ data. A ‘trip’ data
comprises all measurements from when a car is started until it is turned off. This provides
additional metadata such as start and stop position, start and end time, traveled distance,
trip identification, etc. The trip data are initially transmitted to a cloud space in GreenMo-
bility servers. This cloud space is considered a temporary solution to be removed once the
system is up-scaled and taken to production. Once the data are ready to be exported, it
notifies the LiRA big-data pipeline to collect the trip data.

The big-data pipeline [57] plays a coordination role among various steps of an au-
tomated data collection module. Such coordination is fulfilled via two aspects: (i) a
modularized software architecture, where operational steps are designed and developed
in separate modules. (ii) an event-driven software architecture that facilitates online data
streaming among the modules. The pipeline is deployed in a Linux-based infrastructure
and centrally managed and accessible via a Secure Sockets Layer (SSL) connection.

The AutoPi was configured to collect the raw stream from approximately 50 CAN
signals. The present study utilized six CAN signals, i.e., longitudinal acceleration, vehicle
speed, wheel torque, traction power, and trip consumption. Moreover, utilized were vehicle
location and accelerometer signals collected with the AutoPi. Sensor specifications are
presented in Table 3.

Table 3. Description of EV signals utilized in the present study.

Signal Unit Source Sampling Rate Resolution/Accuracy

Vehicle location/GPS DD AutoPi 1 Hz ±10 m
Longitudinal acceleration m/s2 AutoPi 50 Hz 0.01 m/s2

Longitudinal acceleration, a m/s2 CAN bus 100 Hz 0.01 m/s2

Wheel torque, Twhl Nm CAN bus 100 Hz 0.01 Nm
Braking torque, Tbrk Nm CAN bus 100 Hz 0.01 Nm
Vehicle speed, v km/h CAN bus 50 Hz 0.01 km/h
Traction power, Ptr W CAN bus 10 Hz 0.01 W
Trip consumption, Etrip kWh CAN bus 2 Hz 1.00 kWh
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4.3. Modeling Energy Consumption

This section presents the longitudinal vehicle dynamics model for normalizing energy
data. Driving resistances are typically divided into two types: steady-state resistances and
dynamic resistances. Steady-state resistance occurs when a vehicle is traveling at a constant
speed. Rolling resistance force, aerodynamic drag force, and climbing force resistance all
fall into this category. When the vehicle accelerates, a dynamic resistance force occurs.
Steady-state resistances continue to act when the vehicle is accelerating.

Newton’s 2nd law can be utilized to formulate a simple 1D representation of the
vehicle’s longitudinal dynamics

Fp
tr = FD + FR + Fβ + Fa (1)

where FD is the aerodynamic drag traction force, FR is the total rolling traction force, Fβ is
the climbing traction force, and Fa is the inertial traction force (all in units of newton). Fp

tr is
the total predicted traction force, i.e., the force generated by the vehicle motor to overcome
the resistive forces. The individual components of Equation (1) are given below.

The basic formula for the calculation of aerodynamic drag force is given as

FD = sign(v + vwind)
1
2

ρACd(v + vwind)
2 (2)

where v is the speed of the vehicle (meters per second) in the longitudinal direction of
the road, A is the front area of the vehicle (square meters), ρ is the air density of dry air
(kilogram per cubic meter), Cd is the aerodynamic drag coefficient (dimensionless) and
vwind is the headwind speed (meters per second). The wind speed is negligible compared to
the vehicle speed and therefore often omitted. Relevant coefficients can be found in Table 2.

Most rolling resistance calculations assume that a vehicle is driven in a straight line on
a dry road surface. Under these conditions, the total rolling resistance FR can be considered
equal to the tire rolling resistance force FT,R [51]. This assumption can be made if the road
does not undergo plastic deformation, the bearing friction is comparatively small, and the
wheel can roll freely with no camber or toe angle. In this specific case, the rolling resistance
force may be predicted as

FR = mg cos θkR,T where kR,T = 0.01(1 +
3.6v
100

) (3)

where kR,T is a dimensionless tire rolling resistance coefficient (see e.g., [32]).
The climbing force due to a slope/incline of the road is given as

Fβ = mg sin θ ≈ mgβ (4)

where m is the mass of the vehicle (kilogram), g is the gravitational acceleration (kilogram
per square second), and θ the road slope angle (radians), also referred to as the pitch angle.
The road slope is defined as the quotient of its projected vertical and horizontal components
and is often given as β = tan−1(θ) = dh/dx (percentage), where h (meters) is the road
altitude. Assuming θ is small compared to unity sin β ≈ tan β ≈ β.

In order to alter the state of motion of a vehicle with a total mass of m from an initial
velocity v1 to a desired velocity v2 with an acceleration a, an inertial resistance force must
be overcome, given as

Fa = ma (5)

where a is the longitudinal acceleration (meters per square second) of the vehicle.
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The normalized traction force utilized to rate the energy efficiency can then be esti-
mated from

Fn
tr = Fm

tr − Fp
tr =

Twhl
rt
− Fp

tr (6)

where Fm
tr is the measured traction force, Twhl is the measured wheel torque (newton meters)

and rt is the radius of the tire (meters).
The traction energy consumed (in units of newton meters) over a distance traveled of

∆x is given by
E∆x = Ftr∆x (7)

An overview of the relevant force and energy components is given in Table 4.

Table 4. Overview of the relevant energy components utilized in the present study.

Measured Normalized Drag Tire Climbing Acceleration

Force: Fm
tr = Twhl

rt
Fn

tr FD FR Fβ Fa

Energy: Em
∆x En

∆x ED
∆x ER

∆x Eβ
∆x

Ea
∆x

5. Vehicle Energy Dataset
5.1. Validation of Sensor Data

Before further processing and investigation, the data collection platform was validated.
The validation is visualized in Figure 3. The figure compares the CAN sensor reading
versus the AutoPi sensor readings for validation of speed and acceleration measurements.
In the case of validating energy consumption measurements, the accumulated energy
from wheel torque and instant traction power readings is compared to the total measured
trip consumption.

In Figure 3a, the CAN bus speed is compared to the speed computed from the GPS
signal. Due to the noise in the GPS signal (see Table 3), the signal was smoothed for
visualization purposes. Figure 3b shows the vehicle distance traveled calculated from the
CAN bus speed versus the distance traveled calculated from the GPS speed. In Figure 3c,
the CAN bus longitudinal acceleration is compared to the AutoPi longitudinal acceleration.
In Figure 3d, the cumulative sum of instant energy consumption calculated from the
CAN wheel torque and traction power sensor is compared to the total measured trip
energy consumption.

It is observed from Figure 3a that the CAN speed corresponds well with the GPS speed.
The mean absolute error (MAE) between CAN speed and raw GPS speed is 5.44 km/h,
and the Pearson correlation coefficient, r, is 0.907. It is also found that the difference
between calculated distances is small (see Figure 3b), with an MAE of 6.5 m and r of 0.999.
It is observed from Figure 3c that there is a near-perfect match between accelerometers.
The MAE is 0.095 m/s2 and the r is 0.983. Finally, it is observed from Figure 3d that the
cumulative sum of instant energy consumption calculated from the CAN wheel torque
and traction power sensor resembles the total measured trip energy. It is also found that
the total trip energy is reported in steps/resolution of 1 kWh. Hence, the instant traction
energy from the CAN wheel torque sensor is further utilized in this study to achieve the
highest possible sampling rate and resolution (see Table 3).
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Figure 3. Validation of data collection platform: (a) speed from Can bus versus speed calculated
from AutoPi GPS sensor, (b) distance calculated from CAN bus speed versus distance calculated
from GPS speed, (c), CAN bus acceleration versus AutoPi acceleration, and (d) cumulative sum of
instant energy consumption calculated versus the total measured trip energy consumption.

5.2. Field Measurements

Two roads in the LiRA project were selected for further investigation and demonstra-
tion of the proposed method; highway M3 in the southbound direction and urban ring
road O2 (both directions) in the proximity of Copenhagen city, Denmark. Figure 4 depicts a
map of the two roads; highway M3 is shown as a black dashed line, and ring road O2 is
shown as a black dashed-dotted line. The choice of roads was guided by the desire to cover
a wide variety of pavement conditions w.r.t age, type, and distress severity. They represent
realistic scenarios for a wide-area road monitoring system.

Road roughness data were measured on 10 September 2020. The data were collected
with a P79 profilometer operated by the Danish Road Directorate. The P79 is a van equipped
with a high-quality GPS and a beam hosting 25-point lasers. It delivers longitudinal and
transverse profiles at 0.1 m intervals. The P79 vehicle also measures the road slope utilized
in this study. Figure 5 depicts the standard data from the P79 for the two roads shown
as a black dashed line and a dash-dotted line for the highway road and the urban road
(respectively). The IRI is plotted here to give an ‘intuition’ of the roughness variability,
which is expected to cause variability in energy consumption.

The vehicle data were collected in the autumn of 2020 and spring of 2021 utilizing
seven different GM cars. Designated drivers were instructed to drive in the right lane
at a constant speed of 90 km/h on the highway road and 50 km/h on the urban road or
follow the speed limit (e.g., in case this was lower than the instructed speed) or the traffic
(e.g., in the case of congestion).
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Figure 4. Overview of roads utilized in the experimental investigation: map of highway road M3
(marked with a black dashed line) and urban city ring O2 (marked with black dashed-dotted line) in
the proximity of Copenhagen city, Denmark.
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Figure 5. Overview of standard road condition data utilized in the experimental investigation:
(a) measured IRI (black line) for highway road M3 in the southbound direction and (b) measured IRI
for urban road O2.

An overview of the timing of measurement campaigns, vehicles used, and surface
conditions are shown in Table 5; the heading ‘Unit’ refers to the different AutoPi units
(cars) used.

Once the GM car data were transmitted and stored in a database, several process-
ing steps were carried out: (i) re-orientation of accelerometer axes to align with the
principal vehicle axes; (ii) smoothing—removing digital errors in time series signals;
(iii) map-matching—where the GPS roads are corrected using the P79 measurements;
(iv) interpolation—where GPS coordinates are assigned to all sensor readings; and (v) struc-
turing of data—where sensor readings are resampled to ensure consistency between
EVs—and reference data across all sensors.

For a given car pass, time-series data shared via the CAN bus included: vehicle speed,
road slope, vehicle acceleration in the travel direction, and instantaneous traction force. This
time series was first resampled at 50 Hz. Then, the speed data were integrated w.r.t. time
to provide cumulative distance and the traction energy was calculated from Equation (7).
Lastly, all measured and calculated values were resampled based on 1 m distance intervals
to produce a dataset with v—vehicle speed [km/h], β—road slope [m/km], a—longitudinal
acceleration [m/s2] and E10—average traction energy per 10 m [Wh]. An electric car’s
typical average total traction energy, Em

10, is 1.5 Wh per 10 m.
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Table 5. Overview of measurement campaigns.

Road TaskID Unit Date Time Temperature Surface
/Trip Start Stop [◦C] Conditions

M3

5642 TMU2 3 November 2020 14:24 17:06 12 Dry
7567 TMU11 16 April 2021 18:08 18:58 11 Dry
7885 TMU11 24 April 2021 09:07 10:51 7 Dry
7895 TMU11 24 April 2021 12:38 14:20 9 Dry
7995 TMU10 26 April 2021 11:49 16:52 6 Dry
8189 TMU12 30 April 2021 09:30 11:38 10 Dry

Profilometer (P79) 10 September 2020 18:52 19:16 16 Dry

O2

8040 TMU14 27 April 2021 15:58 17:48 11 Dry
8227 TMU11 30 April 2021 18:19 20:40 9 Dry
9289 TMU6 15 May 2021 06:57 08:47 9 Dry

10218 TMU12 20 May 2021 18:40 20:21 13 Dry
10900 TMU11 27 May 2021 07:14 11:31 11 Dry
11360 TMU7 30 May 2021 07:28 09:04 13 Dry
11367 TMU7 30 May 2021 09:04 12:42 16 Dry

Profilometer (P79) 10 September 2020 10:04 11:29 15 Dry

Average vehicle speed and measured traction energy from the GM cars traveling over
the same road are visualized in Figure 6. The speed is shown as a black dashed line and
dash-dotted line for the highway road and the urban road (respectively), and the traction
energy as a grey dashed line and dashed-dotted line for the highway road and the urban
road (respectively).
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Figure 6. Typical data utilized in the experimental investigation: measured car speed (black line) and
energy consumption (gray line) for (a) highways and (b) urban roads.

It is observed from Figure 6 that cars traveling over the urban road experienced
more variability in energy consumption compared to vehicles traveling over the highway.
This result is mainly due to the difference in speed variations; the speed on the highway
is relatively high and constant, whereas the car speed on the urban road is lower and
relatively variable. It may also be seen that sometimes the car speed drops to almost zero;
these situations, which mostly correspond to light crossings, are not expected to provide
information about the road condition [58]. Overview of key characteristics of the selected
roads employed in this study are summarized in Table 6; IRI10 is the 10 m moving average
of the IRI reported by the P79 profilometer. Moreover, µ is the section mean, and σ is the
section standard deviation.
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Table 6. Overview of selected roads employed for demonstration of the road energy efficiency
monitoring system.

Road Length µ(IRI10) σ(IRI10) Pass TaskID µv σv µ(Em
10) σ(Em

10)
[km] [m/km] [m/km] [No.] /Trip [km/h] [km/h] [Wh] [Wh]

M3 25 1.27 0.67

1 5642 63.12 23.31 1.49 1.70
2 7567 86.27 0.08 1.79 0.50
3 7885 89.43 3.33 1.79 0.54
4 7885 91.18 9.52 1.68 1.35
5 7895 88.24 2.88 1.73 0.67
6 7995 69.89 21.10 1.53 1.61
7 7995 70.78 21.44 1.47 1.55
8 7995 82.21 7.18 1.54 1.04
9 7995 87.16 3.12 1.67 0.66

10 8189 91.22 6.41 1.76 0.74

O2 25 3.24 2.09

1 8040 47.17 9.46 1.41 2.48
2 8227 47.70 11.11 1.39 2.79
3 8227 48.34 10.73 1.40 2.87
4 9289 45.54 10.19 1.30 2.30
5 10218 45.06 9.69 1.26 2.78
6 10900 46.26 11.57 1.37 2.50
7 11360 48.43 9.85 1.49 2.45
8 11367 46.47 12.00 1.47 2.59
9 11367 45.78 11.06 1.44 2.48

10 11367 48.69 11.97 1.45 2.28

It can be seen from Table 6 that the average speed for the highway is higher compared
to the urban road. It is also seen that the standard deviation in speed between single passes
is high for the highway. In contrast, the standard deviation in speed for the urban road
is relatively constant. The different road types/categories can explain this. The speed
on a highway is mainly affected by traffic flow. Thus, phenomena such as congestion
during rush hours may cause significant variability in vehicle speed. The speed is mainly
controlled by road geometry, such as light crossings on urban roads. The table also shows
that the energy consumption is slightly higher for the highway compared to the urban
road and that the energy consumption increases with increasing average speed. It is also
seen that the standard deviation in traction energy consumption is higher on the urban
road compared to the highway. Finally, it is seen that the standard deviation in traction
energy consumption increases with the increasing standard deviation in speed for the
highway road.

6. Investigation
6.1. Validation of Normalization Technique

In order to visualize the influence of the normalization technique and validate the
proposed method, the road slope versus measured and normalized energy data are plot-
ted in Figure 7. The road slope from the P79 is utilized to minimize the influence of
measurement errors.

For road sections where the car drives at a constant speed, the energy consumption
must vary according to the longitudinal slope since all other driving resistances are constant,
as verified/shown in Figure 7a. The chart presents E10 versus β for two different vehicles
driving at a constant speed (i.e., highway ‘pass no. 2’ and ‘pass no. 10’): 23.9 m/s (86 km/h)
and 29.4 m/s (106 km/h). The chart in Figure 7b presents the traction energy normalized
for acceleration En,a

10 versus β for the same data, i.e.,

En,a
10 = Em

10 − Ea
10 (8)
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The chart in Figure 7c presents the traction energy normalized for acceleration and
speed En,a,s

10 versus β for the same data, i.e.,

En,a,v
10 = Em

10 − Ea
10 − ED

10 − ER
10 (9)

Finally, the chart in Figure 7d presents the traction energy normalized for acceleration
and speed En,a,v

10 versus β for two different car passes on Highway M3 with a standard
deviation in speed σ(v) of 0 and 21 km/h, respectively (i.e., with low and high variability
in speed). For each dataset, a black dashed and dashed-dotted regression line is included.
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Figure 7. Slope versus traction energy consumption: (a) slope versus measured traction energy at
constant speed, (b) slope versus traction energy normalized for acceleration at a constant speed,
(c) slope versus traction energy normalized for speed and acceleration at a constant speed and
(d) slope versus traction energy normalized for speed and acceleration for varying speeds (full trip).

From Figure 7a, it is observed that the slope of the regression lines is almost identical
and parallel, increasing with increasing positive β. The data are characterized by some
noise with a moderate to a high positive correlation. The slope of the lines is 0.028–0.036,
and the Pearson correlation coefficient, r is 0.68–0.83. Since it is impossible to drive at an
exact speed (i.e., 86 km/h and 106 km/h) there is some noise in the data caused by small
changes in longitudinal acceleration. Figure 7b shows that normalization w.r.t acceleration
results in reduced noise and increased correlation. The regression lines are parallel and
the offset is relatively unchanged. The slope of the lines is 0.044–0.046, and r is 0.93–0.96.
Figure 7c shows that normalization w.r.t speed results in a change in offset—the regression
lines almost coincide. The slope of the regression lines and the noise in the data are
relatively unchanged. The same trend is observed for full trips with high variability in
speed, as shown in Figure 7d. The noise in the data for the trip with high variability in
speed is higher than the noise in the data for the trip with low variability in speed. However,
both datasets are characterized by a high correlation. The slope of the lines is 0.045–0.048,
and the r is 0.91–0.97.
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The spikes in the data around a slope of zero in Figure 7b,c for ‘pass no. 10’, between a
slope of −30 and −10 in Figure 7d for ‘pass no. 6’ correspond to situations with large
variations in acceleration. Thus, energy data contain some information about acceleration
after normalization. However, the approach seems robust; the additional ‘noise’ does not
result in biased data (i.e., the results are very consistent for the two significantly different
speed profiles).

The results in Figure 7 can also be used to ensure that the value magnitudes of
data have physical meaning. From Figure 7d, the average slope of the regression lines
gives the expression Eβ

10 = 0.0465 β. Inserting the expression in Equations (4) and (7) (see
Table 4) yields

mgβ∆x = 0.0465β× 3600× 1000→ m =
0.0465× 3600× 1000

g∆x
(10)

Utilizing g = 9.81 m/s2 (earth’s gravity acceleration), ∆x = 10 m (length of analysis
section), the resulting vehicle mass, m, is 1706 kg, which falls within the expected range
of 1500–1900 kg (see Table 2). Factors 3600 and 1000 were included for converting the
energy from Watt hours [Wh] to Newton meters [Nm] and slope from meters per kilometer
[m/km] to meters per meter [m/m] (respectively).

Figure 8 presents the traction energy consumption results from a single pass on
Highway M3. Figure 8a depicts the measured and predicted traction energy consumption
along Highway M3. Figure 8b shows the influence of the normalization for the same dataset.
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Figure 8. Energy consumption data for a single trip on M3: (a) measured versus predicted energy
consumption and (b) energy normalization.

Figure 8a shows that the predicted traction energy consumption resembles the mea-
sured traction energy consumption; the Pearson correlation coefficient is 0.966. Normal-
ization for slope and acceleration significantly influences the shape of the traction energy
consumption curves, as shown in Figure 8b; En,a

10 resembles the En
10 curve. As expected,

the speed and slope normalization primarily cause a shift in the curves since these parame-
ters are relatively constant over longer road sections.

6.2. Estimating Road Energy Efficiency

This section investigates the link between normalized energy consumption and road
pavement roughness. The analysis is divided into two steps. First, the collected data are
aggregated and divided into road groups and roughness categories to discover overall
patterns in the data. Next, the method’s reproducibility and performance are tested for
individual car passes and shorter road sections.
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The Pearson correlation coefficient, r, is used to quantify the relationship between
energy and road roughness. The method’s reproducibility is quantified from the standard
deviation, σ(r). In order to test the statistical significance of the results, one-way Analysis
of Variance (ANOVA) tests are carried out [59]. ANOVA tests the hypothesis that the
means for each category/group of data samples is equal, also referred to as the ‘null
hypothesis’ (H0), against the ‘alternative hypothesis’ (H1) that the means are not equal.
The test returns the p-value. A low p-value (typically below 0.05) indicates that the analysis
results are significant.

From Table 6, it is observed that the ratio between roughness for the urban road and
the highway road is 2.55. The corresponding ratio in normalized energy consumption is
2.95. The ratios in standard deviation are 3.1 and 1.8 for IRI10 and En

10 (respectively). These
observations indicate that the normalized energy holds some information about the road
roughness, e.g., the method can capture variations in energy consumption due to large
variations in road roughness.

In order to test the hypothesis, the normalized energy data are aggregated for 15 km of
road and then divided into three groups. Group no. 1 contains data from both the highway
road and the urban road, group no. 2 contains data from the highway road, and group
no. 3 the data from the urban road. The data are divided into five categories within each
group, each representing roughness properties from very smooth (i.e., low) to very rough
(i.e., high). Each category contains 20 percent of the data, i.e., from the 0–20th percentile to
the 80th–100th percentile for ‘very smooth’ to ‘very rough’ (‘respectively’). Next, the linear
correlation between means in each group is calculated as shown in Figure 9; the mean value
in each group is shown as a blue square marker. For each dataset, a red-dashed regression
line is included.
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Figure 9. Relationship between road roughness and normalized energy for (a) group no. 1: highway
and urban road, (b) group no. 2: highway road, and (c) group no. 3: urban road.

It is observed from Figure 9 that there is a strong linear relationship between µ(IRI10)
and µ(En

10), for all three groups. The correlation coefficients are 0.92, 0.97, and 0.75 for
groups no. 1, 2, and 3 (respectively). Utilizing the trend line in Figure 9a, it is found that a
one unit increase in µ(IRI10) results in a 3.4% increase in µ(En

10).
The ANOVA test results for group no. 1 are visualized in the box plot in Figure 10.

The box plot shows the data distribution within each road roughness category, i.e., ‘very
rough,’ ‘rough,’ ’medium rough,’ ‘smooth,’ and ‘very smooth’. On each box, the red line
halfway mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles (respectively). The whiskers extend to the most extreme
data points not considered outliers, and the outliers are plotted individually using a red
cross marker.
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Figure 10. Box-plot of aggregated normalized energy data divided into road roughness categories:
(a) energy data for group no. 1 and (b) close-up of the same data.

The results are summarized in Table 7; it is observed that a p-value of zero is obtained
for all three groups, indicating that differences between column means are significant.
The table shows the between-category variation (‘columns’) and within-category variation
(‘error’). SS is the sum of squares, and d f is the degrees of freedom. The total degree of
freedom is the total number of observations minus one. The between-category degrees of
freedom are the number of categories minus one. The within-category degrees of freedom
are total degrees of freedom minus the between-category degrees of freedom. The F-statistic
is the ratio of the mean squared errors. The p-value is the probability that the test statistic
can take a value greater than the value of the computed test statistic. MS is the mean
squared error (i.e., SS/d f ) for each source of variation (i.e., P(F > SS)). The total number of
observations is 300,000 for group no. 1 (i.e., 1 point per meter for ten car passes on 30 km of
highway and urban road) and 150,000 for groups no. 2 and 3 (i.e., 1 point per meter for ten
car passes on either 15 km of highway or urban road).

Table 7. ANOVA table for normalized energy divided into road groups and roughness categories.

Group Road Source SS d f MS F p-Value

1 Highway and Urban
Columns 2552.8 4 638.2 4089.0 0

Error 46,821.7 299,996 0.16
Total 49,374.5 300,000

2 Highway
Columns 19.2 4 4.8 91.2 0

Error 7898.6 149,996 0.05
Total 7917.8 150,000

3 Urban
Columns 162.1 4 40.5 163.4 0

Error 37,202.5 149,996 0.25
Total 37,364.6 150,000

Data from individual car passes are evaluated in windows of 100, 250, 500, 1000,
and 2500 m to test the method’s reproducibility and performance for shorter road sections.
The choice of window size is guided by the following: (i) standard road condition parame-
ters are typically reported in 10 to 100-m intervals; (ii) the measured energy consumption is
constant over more extended road sections compared to traditional standard road condition
parameters; and (iii) to ensure overlap between time series data collected from different
sources at different speeds (i.e., GM cars and P79 vehicle).

Figure 11a,b present the results from a single pass utilizing a window size of 1000 m
for the highway road and urban road (respectively). The measured roughness data utilizing
standard methods is shown as a black dashed line, and the measured normalized energy
data from the GM cars as a solid grey line.
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Figure 11. Normalized energy versus road roughness utilizing a 1000-m moving average window:
(a) energy highway road pass no. 2 and (b) urban road pass no 7.

It is observed from Figure 11 that the normalized energy resembles the measured
road roughness. The correlation coefficient is 0.11–0.52 for the highway road and 0.13–0.61
for the urban road. The method performs slightly better for urban roads than highways,
probably due to the more significant variability in road conditions and less variability in
speed between individual passes. There are also lags/delays between the two data series
on some sections of the roads. This may be a result of actual differences in the parameters
measured. However, it could also result from vehicle location errors, e.g., noisy GPS signals
or speed variations. An overview of the correlation coefficients for all passes and window
sizes is summarized in Table 8. The Table also shows the average correlation coefficient,
µ(r), the standard deviation of the correlation coefficient, σ(r), as well as the Coefficient of
Variation (CoV), for each window size.

It is observed from Table 8 that a low to moderate positive correlation coefficient is
obtained for all car passes and all window sizes on both the highway road and urban
road. The magnitude differences between the highway and urban road results are small.
The average correlation coefficients are 0.15–0.37 and 0.16–0.42, and the standard deviations
are 0.06–0.21 and 0.09–0.19 for highway and urban roads (respectively). The mean and stan-
dard deviation of the correlation coefficients increase with the window size. The minimum
CoV is found for the window size of approximately 1000 m. Finally, it is observed that the
results are statistically significant; the p-value is 0.07–0.39 × 10−2 and 0.09–0.95 × 10−2 for
the highway road and urban road (respectively).

The p-values are obtained from a manufactured dataset. First, a synthetic set of
normalized energy consumption data were generated for each car pass. This was done,
assuming a normal distribution of data, with a mean and standard deviation equal to the
corresponding data for the real car pass. Next, the manufactured dataset was utilized to
produce a set of synthetic correlation coefficients. Finally, the p-values were calculated
from an ANOVA test. The null hypothesis, in this case, is that the correlation coefficients
in Table 8 are random, with a mean of zero, and therefore not statistically different from
correlation coefficients produced by the synthetic/manufactured dataset.

The results of the ANOVA test for a window size of 1000 m are visualized in the box
plot in Figure 12a,b for the highway road and urban road (respectively); the correlation
analysis for the proposed method is named ‘model’ and the manufactured randomly
generated correlation coefficient is named ‘random’.
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Table 8. Summary of correlations between normalized energy consumption and road roughness for
individual vehicle passes.

Road Pass Window Size
µ(En

10) σ(En
10)100 m 250 m 500 m 1000 m 2500 m

[No.] Correlation Coefficient (r) [Wh] [Wh]

M3

1 0.04 0.11 0.14 0.15 0.01 0.28 0.24
2 0.25 0.33 0.42 0.52 0.66 0.18 0.14
3 0.20 0.27 0.32 0.35 0.32 0.08 0.18
4 0.17 0.23 0.24 0.25 0.28 -0.02 0.23
5 0.20 0.27 0.36 0.42 0.54 0.09 0.19
6 0.14 0.25 0.34 0.40 0.54 0.18 0.24
7 0.13 0.23 0.28 0.37 0.55 0.18 0.22
8 0.09 0.11 0.18 0.28 0.21 0.09 0.22
9 0.10 0.13 0.17 0.28 0.44 0.10 0.16
10 0.12 0.17 0.18 0.19 0.17 0.13 0.19

µ(r) 0.15 0.21 0.26 0.32 0.37
σ(r) 0.06 0.08 0.09 0.11 0.21
CoV 0.40 0.38 0.35 0.34 0.57

p-value 0.07 × 10−2 0.03 × 10−2 0.04 × 10−2 0.03 × 10−2 0.39 × 10−2

O2

1 0.18 0.30 0.38 0.50 0.62 0.30 0.59
2 0.09 0.22 0.29 0.35 0.39 0.35 0.57
3 0.04 0.12 0.15 0.17 0.36 0.30 0.41
4 0.07 0.16 0.22 0.23 0.17 0.40 0.39
5 0.33 0.40 0.45 0.46 0.39 0.30 0.57
6 0.18 0.25 0.34 0.46 0.67 0.37 0.39
7 0.17 0.29 0.44 0.61 0.72 0.42 0.62
8 0.22 0.29 0.36 0.45 0.49 0.45 0.53
9 0.15 0.22 0.30 0.36 0.30 0.42 0.44
10 0.21 0.24 0.27 0.34 0.21 0.43 0.35

µ(r) 0.16 0.25 0.32 0.39 0.43
σ(r) 0.09 0.08 0.10 0.13 0.19
CoV 0.56 0.32 0.31 0.33 0.44

p-value 0.02 × 10−2 0.01 × 10−2 0.03 × 10−2 0.09 × 10−2 0.95 × 10−2
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Figure 12. Box-plot of measured and randomly generated correlation coefficients for 10 car passes:
(a) highway road and (b) urban road.

Figure 12a,b shows the correlation coefficients produced by the ‘random’ model range
from approximately −0.15 to 0.15 and −0.2 to 0.3 for highways and urban roads (respec-
tively). The means of both ‘random’ correlation coefficients are around zero, whereas the
means of the proposed model are 0.32 and 0.37 for highways and urban roads (respectively).
Thus, the means of the ‘model’ and ‘random’ correlation coefficients differ significantly,
resulting in low p-values (see Table 8).
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6.3. Mapping and Visualization

The outcome of the proposed concept is visualized in Figures 13 and 14. In Figure 13a,b,
the total and normalized energy consumption for the highway and the urban road is
visualized on a map (respectively). The energy map may give users/operators a quick
overview of the total energy consumption on the road network. The information can be
used to identify critical areas of the road infrastructure, e.g., w.r.t the physical condition of
the road, as shown in the example in Figure 13c,d.

Figure 13a shows that the energy consumption for the highway road is relatively
constant over more extended periods compared to the urban road. This is expected
since the speed on highways is relatively constant, whereas the car speed in an urban
environment changes more frequently (e.g., due to congestion and light crossings). It is also
shown that the peak energy consumption is higher on the highway compared to the urban
road. Figure 13b shows that the normalized energy consumption is higher on the urban
road compared to the highway road. Figure 13c,d show a close-up of the same dataset
enabling users to study energy variations on short road sections.
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Figure 13. Mapping and visualization of average energy consumption data from ten car passes on
highway road M3 and urban ring road O2: (a) total traction energy consumption, (b) normalized
energy consumption, (c) normalized energy consumption on the highway road and (d) normalized
energy consumption on the urban road.

Further, the concept allows for more detailed analysis, e.g., analysis of individual
passes and energy components, as exemplified by the bar plot in Figure 14; the total
measured energy consumption is Em, and the predicted energy consumption values from
the road slope, acceleration, aerodynamic drag, and tire rolling are Eβ, Ea, ED, and ER

(respectively). The color bars represent energy data from the ten individual car passes.
Moreover, shown is the mean, µ(v), and standard deviation, σ(v), speed for each car pass.
Figure 14a,b show the total energy consumed and its components over 25 km of highway
and urban road (respectively).



Sensors 2023, 23, 2756 20 of 24

It is observed from Figure 14a that increasing average speed results in increased energy
consumption. This can be explained by the increase in aerodynamic drag and tire rolling.
Comparing Figure 14a,b, it is found that the total energy consumption is higher for the
highway road compared to the urban roads. Moreover, it is observed that the average
speed for the urban roads is almost constant (over longer sections) for all cars. It is also
found that energy consumption is less affected by speed and more affected by acceleration
compared to the highway road. This can be explained by the lower speed in an urban
environment, resulting in significantly decreased aerodynamic drag, while simultaneously,
the frequency of acceleration and deceleration events increases.
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Figure 14. Bar plot of energy consumption data split into car passes and energy components:
(a) highway road M3 and (b) urban ring road O2. Each car pass is shown as a single bar with a
different color.

7. Summary and Conclusions

In this study, a new road energy efficiency monitoring system was proposed. The sys-
tem was based on measurements from in-vehicle sensors collected onboard with an Internet-
of-Things (IoT) device. The data were transmitted periodically before being processed,
normalized, and saved in a database. The normalized energy was then linked to the road
pavement roughness and visualized on a map.

This is the first time such a concept has been utilized to quantify changes in vehicle
energy consumption caused by pavement roughness on highways and urban roads. The ap-
proach has the advantage that it enables analysis of data across vehicle types in a real-scale
setting and is, therefore, superior to other methods.

The new method was first validated utilizing a limited dataset of vehicles driving
on a highway road. The results from this verification effort show that energy data can be
normalized and that the physical models proposed apply to the problem.



Sensors 2023, 23, 2756 21 of 24

Experimental data from ten nominally identical electric cars driven over 25 km of
highways and urban roads were utilized to investigate the relationship between normalized
energy consumption and road pavement roughness.

As a first step, the normalized energy data were aggregated into three road groups/
classes. Within each group, the data were further subdivided into five road roughness
categories, each containing 20% of the group data. The results showed a strong linear
relationship between the normalized energy consumption and road roughness. Then,
the relationship between normalized energy and road roughness for individual passes
and the methods’ reproducibility were assessed. In this context, the data were analyzed in
100- to 2500-m windows. It was found that the normalized energy consumption collected
from individual cars resembled the measured road roughness. The results also showed a
low-to-moderate positive linear relationship for all car passes and window sizes on both
highways and urban roads.

Analysis of Variance (ANOVA) tests showed that the results obtained are statisti-
cally significant for both aggregated data and data from individual passes. Thus, it is
concluded that the normalized energy consumption holds some information about the
physical condition of the road.

The method enables road network mapping of energy data. Such energy consumption
maps give users/operators a quick overview of the total energy consumption on the road
network and help identify critical areas of the road infrastructure. The method also enables
energy data analysis in terms of physical phenomena (e.g., road slope, acceleration, speed,
tire-rolling, or road condition) and source (e.g., vehicle type or pass), as well as how these
parameters evolve.

The main findings from this study can be summarized as follows; (i) a new method for
estimating road energy efficiency was proposed and successfully utilized to analyze energy
data on highways and urban roads; (ii) the average normalized energy consumption is 0.13
and 0.37 Wh per 10 m for highways and urban roads (respectively); (iii) the normalized
energy consumption is positively correlated to surface roughness—the average correlation
coefficient is 0.88 for aggregated data and 0.32 and 0.39 for 1000-m road sections on
highways and urban roads (respectively), and (iv) an increase in IRI of 1 m/km results in a
3.4% increase in normalized energy consumption.

Considering the emergence of connected vehicle technologies, the method seems
promising and can potentially be used as a platform for future large-scale road energy
efficiency monitoring. The normalized energy consumption is a new pavement condition
indicator that supports decision-making and may contribute to improved pavement man-
agement. Additionally, the normalized energy can be applied to initiatives to create labeling
systems for road infrastructure similar to those used in consumer sectors. In this context,
it is envisioned that the proposed concept will be combined with other important factors
affecting vehicle energy consumption, such as road pavement type, road classification,
road geometry, traffic information, and weather conditions. Hence, this issue is of critical
importance and requires further research.
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