
Citation: Salat, L.; Davis, M.; Khan,

N. DNS Tunnelling, Exfiltration and

Detection over Cloud Environments.

Sensors 2023, 23, 2760. https://

doi.org/10.3390/s23052760

Academic Editor: Valderi R. Q.

Leithardt

Received: 30 September 2022

Revised: 16 February 2023

Accepted: 16 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DNS Tunnelling, Exfiltration and Detection over
Cloud Environments
Lehel Salat 1, Mastaneh Davis 1,* and Nabeel Khan 2

1 Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Rd.,
Kingston upon Thames KT1 2EE, UK

2 Department of Computer Science, University of Chester, Chester CH1 4BJ, UK
* Correspondence: mast@kingston.ac.uk

Abstract: The domain name system (DNS) protocol is fundamental to the operation of the internet,
however, in recent years various methodologies have been developed that enable DNS attacks on
organisations. In the last few years, the increased use of cloud services by organisations has created
further security challenges as cyber criminals use numerous methodologies to exploit cloud services,
configurations and the DNS protocol. In this paper, two different DNS tunnelling methods, Iodine
and DNScat, have been conducted in the cloud environment (Google and AWS) and positive results
of exfiltration have been achieved under different firewall configurations. Detection of malicious use
of DNS protocol can be a challenge for organisations with limited cybersecurity support and expertise.
In this study, various DNS tunnelling detection techniques were utilised in a cloud environment to
create an effective monitoring system with a reliable detection rate, low implementation cost, and
ease of use for organisations with limited detection capabilities. The Elastic stack (an open-source
framework) was used to configure a DNS monitoring system and to analyse the collected DNS
logs. Furthermore, payload and traffic analysis techniques were implemented to identify different
tunnelling methods. This cloud-based monitoring system offers various detection techniques that
can be used for monitoring DNS activities of any network especially accessible to small organisations.
Moreover, the Elastic stack is open-source and it has no limitation with regards to the data that can be
uploaded daily.

Keywords: DNS tunnelling; DNS exfiltration; the elastic stack; DNS monitoring; cloud computing;
AWS; GCP; Iodine; DNScat2

1. Introduction

The Domain Name System (DNS) protocol is fundamental to the operation of the
Internet with the primary purpose of translating domain names to IP addresses. This
important service facilitates access to the Internet by using website names or any arbitrary
domain names. The DNS protocol communicates internal requests to external remote
servers and creates a landscape for attackers to perform malicious activities such as stealing
credentials and sensitive data [1–3]. One of the most effective DNS attack types is DNS
tunnelling, where the attacker creates a tunnel between the client’s network and the
attacker’s machine, utilising command and control channels to obscure data and bypass
the firewall and intrusion detection systems [1,4]. Recent research by PaloAlto [5] indicates
that 80% of malware attacks gain access to the command and control channel by leveraging
the DNS protocol. EfficientIP [6] claimed that in 2020, 79% of organisations experienced a
DNS attack, either directly or a DNS communication was part of the attack.

The use of cloud services has become more embedded within businesses, as cloud plat-
forms provide a cost-effective, flexible and scalable environment. This is evidenced by the
continuous growth of cloud services for software or infrastructure in the last 10 years [7–9].
Due to the challenges of the COVID-19 pandemic, organisations continued by working
off-premises and services such as e-mail systems, cloud servers, VPNs and advanced cloud

Sensors 2023, 23, 2760. https://doi.org/10.3390/s23052760 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052760
https://doi.org/10.3390/s23052760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4548-3662
https://doi.org/10.3390/s23052760
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052760?type=check_update&version=2

Sensors 2023, 23, 2760 2 of 18

services facilitated this digital transformation for businesses [10]. However, the flexibility
of cloud services introduces increased complexity for customers, who should not assume
that the security settings are optimised for their particular environment. It is important
to note that the security of a cloud platform follows a shared responsibility model, where
cloud service providers and customers must monitor and respond to threats.

Monitoring DNS queries for unusual data and DNS domains can be an effective
method [11], but this process is commonly overlooked by information technology (IT) and
security administrators [12]. DNS is easy to identify and is a well-defined protocol, typically
operating on standard ports. However, the volume of DNS traffic coupled with unusual
data types can provide a challenge [13]. Some cloud providers use public DNS over HTTPS
(DoH) to preserve user’s private data. The use of this security method is complex and can
make DNS data monitoring more challenging for organisations and users [14,15].

There are numerous methodologies and approaches for DNS data collection, mon-
itoring and detecting DNS tunnelling. The majority of detection approaches are based
on statistical analysis of network traffic and packet content (payload analysis) [12,16], or
machine learning/deep learning techniques [4,17,18]. These detection strategies (specifi-
cally machine and deep learning techniques) may produce false positive results, such as
blocking legitimate domains, as highlighted in [2].

This is a challenging area for businesses and users due to their limited access to
state-of-art systems that are typically proprietary platforms mostly affordable to larger
organisations. The present study proposes a cost effective and accessible solution using an
integrated open-source monitoring system in the cloud environments.

Contributions of the Present Study

In this work, a cloud-based approach has been adopted to generate DNS tunnelling
traffic and statistical analysis of DNS data in cloud environments, where the victim’s
machine and attacker’s server have been implemented in Google and AWS cloud platforms,
respectively. In summary, the contribution of this work is as follows:

• The majority of the research work on DNS tunnelling is conducted over traditional
architecture. One of the main contributions of this work is the demonstration and
detection of DNS tunnelling and exfiltration in cloud environments.

• Simulate DNS tunnelling and detect attack indicators in the cloud environment.
Demonstration of using the Google Cloud platform for setting firewall rules and
blocking all outbound (egress) traffic, the DNS still resolves IP addresses via metadata
server and, as a result, a DNS tunnel can be successfully set.

• To show the importance of monitoring DNS data and to establish a monitoring server
in a cloud environment for real-time detection of DNS tunnelling and exfiltration.
Furthermore, several approaches have been analysed in the monitoring server for
detecting exfiltration of data via DNS. We have demonstrated the most efficient
strategies (in terms of accuracy of detection, ease of implementation and the use of
open-source modules) for the detection of DNS tunnelling and exfiltration.

This paper is organised as follows. Section 2 presents the background and information
about DNS tunnelling approaches and detection techniques. Section 3 reports the adopted
methodology for the demonstration of DNS tunnelling and exfiltration techniques in
the cloud environment. Sections 4 and 5 describe the experiments in the cloud-based
environment and a DNS tunnelling connection between an attacker and a victim under
different firewall constraints using port 53. Section 6 provides details of the monitoring
server implementation and, in Section 7, different detection techniques are explored and
discussed. Finally, Section 8 provides a detailed discussion of the findings and proposes a
direction for future research.

2. Related Work on DNS Tunnelling Detection

A DNS tunnel can be established by using a client-server connection, where resolving
DNS servers on the client side will act as proxies for the tunnel. There are a number of

Sensors 2023, 23, 2760 3 of 18

tools [18] which can be used for setting a DNS tunnel, such as , DNScat2 (https://github.
com/iagox86/dnscat2 (accessed on 20 March 2021)), Iodine (https://code.kryo.se/iodine/
(accessed on 20 March 2021)), etc. The author in [13] designed an experiment where the
client and the malicious server were set as virtual machines and implemented a DNS
tunnel using the Iodine and DNScat2 tools. In this study, live DNS data was investigated
by analysing the payload and traffic data by using the statistics engine of the Splunk
framework. The proposed setup detects malicious domains by deploying statistical analysis
of the payload and traffic data such as length and entropy of the fully qualified domain
name (FQDN), uncommon resource record types and the volume of DNS queries.

The payload assessment can be achieved by analysing several DNS protocol attributes
such as DNS query content, domain name length, specific signatures and the hostname
entropy. Farnham [12] also presented DNS traffic analysis from the properties such as the
geographic location of the DNS server, frequency and volume of DNS requests, and number
of hostnames per domain. According to the analysis, a domain with a large number of
sub-domains as unique hostnames will be considered as an anomaly.

Another feature of the DNS protocol is the resource record type, which presents the
type of correspondence, e.g., type A for IPV4, type AAAA for IPV6, NS (name server) record
of authoritative server for a domain, TXT for text query, null for arbitrary content, etc. The
common record types (such as A, AAAA, MX, CNAME, NS and TXT) are more frequently
transmitted DNS queries, hence, statistical analysis of the records and the frequency of less
common record types such as null can provide an assessment strategy to identify DNS
tunnelling [13,19,20].

The authors in [20] presented a DNS monitoring strategy for unencrypted traffic in
which common records such as A and AAAA are statistically analysed. The authors claim
that recent DNS tunnelling attacks are mainly developed based on A and AAAA records.
They generated DNS data by using tools such as Cobalt strike to create a sample data
with A and AAAA records. After DNS data creation, the authors investigated anomaly
detection strategies based on measuring the amount of information in the DNS traffic and
randomness (entropy) of the traffic data. Their analysis showed that DNS tunnelling attacks
can be accurately detected from A and AAAA records rather than analysing subdomains
and TXT records. However, their proposed approach is unable to identify DNS tunnelling
over encrypted traffic such as DNS over TLS and HTTPS (DOH) protocols. Although the
majority of DNS works through the transmission of plain text, the usefulness of the DOH
protocol, which can protect the privacy of DNS queries and responses, may provide an
opportunity for malicious activities to hide through encryption [21].

The work in [22] developed a detection system where the victim’s server, attacker
server and Elasticsearch have been set in a virtualised environment. Iodine and DNScat2
tools were used to generate DNS tunnel data and collected DNS traffic using packetbeat,
which was then analysed by Elasticsearch and visualised by Kibana. They detected DNS
tunnelling using the number of hostnames per domain, where a domain with large number
of unique hostnames will be considered as an anomaly.

Another important monitoring technique is based on passive DNS data [2]. The pas-
sive data is based on known threats and historical data, which can be used to uncover
potential security incidents or discover malicious domains and networks. This approach
led to several studies [3,23,24] for detecting various DNS attacks. These studies analysed
large passive DNS datasets and identified DNS features which have been used for detect-
ing malicious DNS domains and usage. The usage of passive DNS in identifying DNS
attacks is widely researched by many authors [19,25], however, solely relying on existing
datasets/sources may not be deemed suitable as attackers continue to use novel attack
methodologies. Furthermore, collection of passive DNS data requires a lot of resources such
as open source information gathering (domain, subdomain, IP address etc.), processing
and analysing collected information.

https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2
https://code.kryo.se/iodine/

Sensors 2023, 23, 2760 4 of 18

Table 1 presents a summary of relevant studies on DNS tunnelling monitoring methods
in non-cloud environments including their weaknesses and advantages. The data set
column provides information related to data that was used or built for each study.

Table 1. Summary of the relevant studies for DNS tunnelling detection methods in the
non-cloud environment.

Paper Detection Methods Dataset Weaknesses Advantages

[19,24]

Statistical analysis of
resource records type

and usage of new fully
qualified domain names
on a passive DNS data.

Passive DNS

Collecting passive DNS
data requires resources.

Identifying DNS
tunnelling through

filtering passive DNS
data can be unreliable.

Accurate results when
combined with other

detection strategies (such
as statistical analysis).

[16]
Statistical analysis of

DNS traffic using Snort
IDS.

Malicious data generated
through Iodine.

Relatively challenging to
write a good rule for

detection and can
produce false positive

alerts. Packet processing
can be slow.

Snort IDS is an
open-source tool; flexible,
scalable and easy to set.

[13]

Statistical analysis of
DNS payload and traffic,
analysing the length and
entropy of DNS requests

using Splunk.

Malicious data generated
through Iodine and

DNScat2.

Splunk is a costly
platform.

Built in state-of-the-art
data-analytics tools.

[20] Statistical analysis of A
and AAAA records only.

Malicious data generated
through Dns2tcp,

DNScat, DNScapy,
Cobalt strike, pisloader,

Dnsdelivery and
Glimpse.

The strategy does not
consider other record

types, such as txt,
CNAME, and null

Low processing overhead
because of considering
only two record types.

[22]
Analysis of DNS traffic,
using Elasticsearch in a
virtualise environment.

Malicious data generated
through Iodine and

DNScat2.

The Elastic stack
implementation can be
complex as it requires
setup of multiple open
source tools. The work

only considers number of
hostnames per domain

for detecting DNS
exfiltration.

Use of an open-source
platform, i.e.,

Elasticsearch for DSN
tunnelling detection,

Kibana dashboard for
visualisation and beats

framework for data
export.

[17,18] Machine and deep
learning-based strategies

Malicious data generated
through Iodine, DNScat

and Ozyman.

Implementation of this
method is complex and

availability of bigger
datasets for training can

be a problem.

Automated process with
high detection accuracy.

3. Methodology

To perform DNS tunnelling, two cloud providers were selected as shown in Figure 1.
The DNS tunnel server (attacker) was based on the Amazon Web Service (AWS) cloud and
a Webserver (victim) was hosted in the Google Cloud platform (GCP). A monitoring server
based on the Elastic stack was also hosted in the GCP. It is important to note that a separate
virtual private cloud (VPC) in GCP hosts the monitoring server and the client’s webserver,
where both servers were implemented on two different subnets as shown in Figure 1. Each
VPC has a firewall, and firewall rules are applied to all the VM instances hosted within the
VPC. The VPC network runs a local metadata server https://cloud.google.com/vpc/docs/
firewalls#gcp-metadata-server (accessed on 5 December 2022) alongside each VM instance.
The metadata server provides basic services such as DHCP and DNS name resolution. The

https://cloud.google.com/vpc/docs/firewalls#gcp-metadata-server
https://cloud.google.com/vpc/docs/firewalls#gcp-metadata-server

Sensors 2023, 23, 2760 5 of 18

metadata server resolves both internal and external DNS queries, regardless of any firewall
rules, using Google’s public DNS servers.

AWS instance DNS Tunnel Server (Attacker)

Webserver (Victim or
DNS tunnel client)

Internet

ELK monitoring server

Router

• Allow ssh on both monitoring and webserver
• Allow internal connection on all ports

between the two subnets
• Allow HTTP and HTTPS on the webserver,

and ELK monitoring server.
• Allow ICMP on the webserver, and ELK

monitoring server.
Allow port 5601 on the monitoring server for
Kibana.

GCP cloud firewall

Firewall rules

Admin access to configure
cloud infrastructure via
key-based authentication

Subnet 1 Subnet 2

Google Cloud Platform (GCP)

Amazon Web Service (AWS)

Figure 1. Implementation details of DNS tunnelling and exfiltration of data setup in the cloud environments.

The experiments were conducted over the period of eight days, i.e., the webserver
was accessible from the internet for eight days. The majority of the DNS traffic was
generated from the attacker server and a small proportion of traffic was produced from
non-malicious domains such as security updates from debian.org and browsing google.com.
All information related to the DNS traffic was sent to the monitoring server. The size of the
data ingested by the monitoring server was approximately 3.6 megabytes of DNS queries
and 4 megabytes for responses. The implementation details of the monitoring server are
provided in Section 6, whereas setup of the DNS tunnel server (attacker) is provided below.

To perform exfiltration of data from the webserver via DNS in the cloud environment,
two different tunnelling applications, Iodine and DNScat2, were tested. Iodine tunnels
IPv4 data through the DNS tunnel server. It is specifically used in situations where Internet
access is firewalled but queries via DNS are allowed. On the other hand, DNScat2 creates
an encrypted command and control (C&C) channel over the DNS protocol. To use both
these applications, two actual domains, slehee.com and slehee.uk, were purchased for the
purpose of tunnelling and exfiltration of data from the webserver. It is not in the scope
of this paper to detail how an attacker can gain access to the victim machine. Therefore,
we assume that an attacker has managed to compromise the target system (either via
social engineering or through exploitation of a vulnerability) and deployed the tunnelling
software on the victims machine (webserver hosted in GCP).

DNS Resolution Paths

DNS is a hierarchical system, and exfiltration can be executed if a system DNS server
is configured to allow an external request to upstream DNS servers. For this experiment,
as the victim had never visited the malicious domains, slehee.uk and slehee.com, the IP
addresses of them needed to be determined. Figure 2 demonstrates several steps for this
process which can be summarised as below:

Sensors 2023, 23, 2760 6 of 18

Figure 2. Resolution path of the DNS hierarchical system.

• The tunnelling application on the client-side sends out a DNS query to the local DNS
server to determine the IP address of the domain as shown by Step 1 in Figure 2.

• Since it is not in the local DNS server records, the request will be forwarded to one of
the root DNS servers (Step 2).

• The root servers will forward the request to one of the top-level domain (TLD) servers
that are responsible for the .com and the country domains. In this work these are the
slehee.com and slehee.uk domains, respectively (Step 3).

• The local DNS server queries the TLD server as shown by Step 4 in Figure 2.
• Finally, TLD refers to the authoritative nameserver of slehee.com (Steps 5, 6 and 7),

which has been modified to point to the AWS instance IP address. Hence, the client
query (IP address of slehee.com) is resolved by the local DNS server (Step 8) as shown
in Figure 2.

The following sections demonstrate two experiments with different approaches for tunnel
creation between the webserver and attacker instances hosted in two different cloud providers.

4. Experiment 1: No Firewall Constraints on Port 53

In the first experiment, the domain slehee.com was used to establish a direct connection
from the client machine (webserver in GCP cloud) to the malicious server in the AWS cloud.
The client machine will either establish a connection directly to the malicious server or
query the authoritative DNS server, which will point to the nameserver of the attacker
machine. To start the DNS tunnelling and exfiltration attack, the tunnelling server on the
AWS instance initiates the iodine service as shown in Figure 3. To verify if the system is set
up correctly, Iodine provides a test page. Figure 3 shows the test result and that the Iodine
server side is up and running and is accessible through ss.slehee.com (Step 1 in Figure 3).

Sensors 2023, 23, 2760 7 of 18

Webserver
(GCP)

Attacker at AWS (3.140.111.134)
GCP DNS services

DNS architecture
of the Internet

Name servers
(GoDadddy.com) Iodine connection initiation

Webserver infected with Iodine payload

DNS query received for the
malicious server domain

IP address of the name server
returned by the DNS architecture

DNS lookup by Root, and
TLD.

IP address of the malicious server
received by the GCP DNS server

Malicious server
query received

Data exfiltrated via the tunnel

Passwd file exfiltrated

IP address of the
malicious server

Command and Control centre created
Listening to DNS for domain slehee.com

Connection setup completed

Step 1

Step 3

Step 5

Step 4

Step 2

Figure 3. Sequence diagram showing DNS tunnel initiation and data exfiltration.

For this study, GCP as an infrastructure as a service (IaaS) has been used where
the cloud provider is responsible for providing services such as servers, storage, and
networking resources. Therefore, by default, the GCP firewall allows users to use the DNS
services, and hence port 53 is always open.

Once the webserver was infected by the Iodine application, a DNS query was initiated
by the webserver as shown in Figure 3 (Step 2).

The query was received by the DNS server in GCP, which consulted the DNS architec-
ture of the Internet (root and TLD servers as shown in Figure 2) to resolve the IP address of
the attacker’s domain (Step 3 in Figure 3). The GCP DNS service resolved the query of the
webserver by returning the IP address of the attacker’s server (Step 4 in Figure 3). After
the DNS query was resolved, the attacker’s server was able to establish an SSH connection
through the DNS tunnel and start the exfiltration process. According to Figure 3 (Step 5),
the content of the /etc/passwd file, along with other files, were sent from the client machine
(webserver in the GCP instance) to the AWS instance. Highlighted in red, it can be observed
that the passwd file from the client was successfully sent over to the server at 14:26 pm.

5. Experiment 2: Tunnelling Connection under the Constraint of Firewall Blocking
Port 53

In experiment 2, a DNS tunnelling attack was conducted under the constraint of the
cloud firewall blocking all the traffic from the webserver to the Internet (egress traffic). The
implementation of this experiment was similar to Experiment 1 apart from the firewall
constraint. Figure 4 shows the public and the private IP addresses of the AWS instance
(attacker’s server). The two nameservers, ns1.slehee.uk and ns2.slehee.uk, pointed to the
tunnelling server instance in AWS. The Iodine service started at 3.141.76.210 on the AWS
instance (slehee.uk) as shown in Figure 5. It is important to note that URL to DNS resolving
is active at the webserver in the GCP, even though the firewall configuration is blocking
all egress traffic from the webserver, as shown in Figure 5. The process of tunnelling is
initiated once the webserver gets infected with the Iodine payload. All the steps of tunnel
initiation (DNS look up by the DNS, root and TLD servers) are the same as in Figure 3.
Figure 5 highlights the process of successful data exfiltration via DNS tunnelling under the
limitation of the firewall blocking all the outbound traffic of the client machine hosted in
the GCP.

Sensors 2023, 23, 2760 8 of 18

Figure 4. Experiment 2: AWS instance public and private IP addresses.

Webserver (GCP) Attacker at AWS (3.141.76.210)GCP Firewall

Iodine connection initiation

Connection completed and
Data exfiltrated via the tunnel

Command and Control centre created
Listening to DNS for domain slehee.uk

All egress
traffic blocked
by the firewall

All ports blocked but
DNS still resolving
URLs to IP addresses

Webserver infected
with Iodine payload

Figure 5. Experiment 2: Sequence diagram showing DNS tunnel initiation and data exfiltration under
the constraints of firewall blocking all the ports.

In contrast to this experiment, if the webserver is hosted locally, not in a cloud envi-
ronment, then the firewall restriction of blocking all the egress traffic would have been
sufficient to block the DNS tunnelling attack. To demonstrate this key concept and highlight
the difference between the two environments (cloud vs locally hosted), a webserver with a
pfSense virtual firewall was locally deployed and all the egress traffic was blocked. The
pfSense is also configured as a DNS resolver. The configured firewall blocks DNS requests
from local clients to servers outside the local network. In other words, clients are forced to
send DNS requests to the DNS resolver on pfSense. This is achieved by creating two rules
https://docs.netgate.com/pfsense/en/latest/recipes/dns-block-external.html (accessed
on 15 January 2023). The first rule allows DNS queries to the pfSense firewall (pass rule:
pass DNS to the firewall), whereas the second rule blocks DNS (Deny rule: block DNS to
everything else). Therefore, access to other DNS servers on port 53 will not be possible. This
is shown in Figure 6, where the Iodine connection attempt for DNS tunnel initiation was
unsuccessful mainly because port 53 was blocked by the firewall. However, as shown in
Figure 5, the DNS tunnelling is successful in the cloud environment as Google cloud runs a
local metadata server alongside the webserver instance, which provides basic services such
as DNS, DHCP and network time protocol. This server is fundamental to the webserver’s
functionality; hence it is not possible to block the DNS resolution path through the firewall
configuration. This can be addressed by implementing an alternative DNS name server (or
host-based firewall) combine with the creation of an exclusion and inclusion list of domains.
However, until the domain or the corresponding IP address is blacklisted [26], the DNS
connection will be successful in the cloud environment.

https://docs.netgate.com/pfsense/en/latest/recipes/dns-block-external.html

Sensors 2023, 23, 2760 9 of 18

Figure 6. Webserver hosted in a non-cloud environment: Iodine connection failed because port 53 is
blocked by the virtual firewall.

In the aforementioned experiments, Iodine was used as the tunnelling application.
DNScat2 is another tunnelling application, which creates an encrypted command and con-
trol channel between the attacker and the victim. Figure 7 shows a successfully encrypted
channel (via slehee.uk domain) created by utilising DNScat2. According to the figure, the
server (attacker) and the client machine (victim) present the same secret message which
shows that the connection was successfully established.

After the demonstration of DNS tunnel initiation and exfiltration of data in the cloud
environment as given above, the next section discusses an approach through implementa-
tion of a monitoring server for the detection of malicious DNS activities.

Figure 7. DNS tunnelling connection established by utilising DNScat2.

6. Monitoring Server Implementation

The monitoring server was based on the Elastic stack (https://www.elastic.co/what-
is/elk-stack) (accessed on 23 January 2021) (formerly known as the ELK stack) and deployed
in the GCP. The stack is a collection of open-source tools for managing complex data. The
main parts of the stack are Elasticsearch, Logstash, Kibana and beats.

The monitoring server was set on a different subnet (subnet 2) than the webserver,
which was set on subnet 1 as reported in Figure 1. The internal traffic on the subnets was
not restricted between the instances and were established by the default router. The default
firewall rules were extended for the ELK Kibana application for monitoring purposes
from the admin side only. In this experiment, the DNS traffic was captured by installing
Filebeat and Packetbeat for the DNS tunnel client machine (webserver). The DNS traffic
was stored and analysed on the monitoring server. Suricata is an open-source intrusion
detection system with several sets of public rules that are community maintained and
applied to the data imported from the client machine. Suricata has a separate module for

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack

Sensors 2023, 23, 2760 10 of 18

the Filebeat package, which was enabled, and the log location added to the Filebeat module
in the webserver client. The DNS log files are in the .txt format, however, the Suricata
module parses DNS logs in the JSON format, i.e., the DNS logs are sent and received in the
JSON format. It is important to note that Suricata rules are applied to all the DNS queries
(malicious and non-malicious) imported from the webserver. The malicious DNS queries
and responses, which were detected by Suricata and the Elastic stack, were analysed and
discussed in Section 7.

6.1. Overhead of the Elastic Stack Based Monitoring

The financial overhead of the proposed setup, in terms of processing burden and
implementation cost, is minimal. It is important to note that the beats framework of
the Elastic stack provides light-weight data shipping capabilities. The Packetbeat tool
ingests network data to the Elasticsearch, whereas the Filebeat extracts and ships data
from applications and system logs of the webserver to the Elasticsearch module. Both
beats modules ingest data in real-time, and require minimal computing resources in the
webserver. The monitoring server is equipped with Elasticsearch, Kibana and Suricata.
There is neither licensing cost nor vendor related restrictions associated with the use of these
modules. The Elastic stack along with Suricata provides an accessible, real-time, cloud-
based, and cost-effective solution for adoption by individual users, and businesses [27].

6.2. Elastic Stack Security

To take full advantage of the opportunities of the stack and further secure it, TLS/SSL
was applied on the whole stack to encrypt the communication between the log shippers,
Elasticsearch and Kibana. To enable encryption across the whole stack the following steps
were applied:

• A private key and X.509 certificates generation for each node.
• Nodes in the stack were configured to use the signed certificates for authentication.
• The monitoring server was configured to use an encrypted connection.
• Kibana on the monitoring server was configured to encrypt communication between

the server and the browser and to establish a connection to Elasticsearch via HTTPS.
• All beats were configured to use an encrypted connection.

7. DNS Tunnelling Detection

This section presents the evaluation of the DNS data that was collected from the
experiments described above. The two DNS tunnel servers (Iodine and DNScat2), which
were implemented in the AWS cloud environment and the webserver (set in the Google
cloud environment) browsed the DNS tunnel server, and establish some basic activities
such as updating the server to generate DNS traffic. The DNS traffic was collected at the
webserver, and transported to the monitoring server in the JSON format.

To identify the DNS tunnelling activities, the generated DNS logs were stored and
grouped into payload and traffic data categories. The collected data was examined by
utilising different detection techniques such as statistical analysis of the DNS payload,
and analysis of uncommon record types. In addition, several other techniques such as
assessment of the DNS traffic data from the volume of DNS queries, the volume of DNS
traffic per domain, and number of hostnames per domain were deployed. The details of
these strategies are discussed in the following subsections.

7.1. Statistical Analysis of Domains and Subdomains

Most legitimate domain names tend to have a meaningful human-readable name,
while domain generated algorithm (DGA), malware and tunnelling applications use ran-
domly created domains and subdomains [28,29]. Hence, domains with a higher random-
ness may indicate a DNS attack. The randomness of information can be measured by the
concept of information entropy or Shannon entropy, which was introduced by Claude
Shannon [30]. The Shannon entropy, H, of a discrete set of probabilities pi, is defined as

Sensors 2023, 23, 2760 11 of 18

H = −
n

∑
i=1

pi × log (pi) (1)

where n is the total number of observed events, i.e., i = 1, 2, 3, . . . , n. The Shannon entropy
definition and score can be used for domain and subdomain names of DNS queries where
higher entropy values will indicate a high randomness of a domain.

In this study, the DNS logs gathered by the Elasticsearch and the randomness of
ss.slehee.com and ns.slehee.uk domains have been identified by extending the search
interval to include the DNS tunnelling activities from Iodine and DNScat2. One of the
features in Elasticsearch is statistical analysis of the strings, which can be set to determine
the Shannon entropy of the queries. Shannon entropy measures uncertainty of the given
domain name and it provides fast and accurate results in real-time. If the entropy value
exceeds a defined threshold score, then this may be an indication of DNS tunnelling
activities. The results of this experiment show a high entropy score for ns.slehee.uk, and a
high-level of randomness in the queried domain names, as shown in Figure 8. Generally,
entropy scores of non-malicious DNS queries are less than 4 [12]. According to Figure 8, the
entropy score of more than 4 for all the considered DNS queries highlights the exfiltration
of data via the DNS protocol. Typically, normal and safe domains have a lower entropy
score; for example, the entropy value for the google.com and debian.org domains were
obtained and measured approximately 2.5.

7
8
9
10

1

2
3

4
5
6

DNS Queries

Figure 8. The first part of the figure shows Shannon entropy score of DNS queries. The second part
of the figure lists the DNS queries.

However, this approach may result in false-negative outcomes, as there are some
exceptions, where DNS names are used to represent information, e.g., version names where
numbers and characters are included in the queries or domain name generators that are
often used by large cloud providers. Another benign element which can cause higher than
normal entropy is content delivery network (CDN) assistance and site hosting [31]. In such
scenarios, the character frequency probability may help to identify the nature of a DNS query.
For this study, in order to analyse the probability of each character, the DNS data packets
were monitored using the packetbeat platform, which is integrated into the Elastic stack.

Analysis of the dns.question.subdomain field reveals that some subdomains have a lot
of numerical characters in the DNS queries. To get a more accurate view of the character
distribution, the Elastic developer tools were used to analyse the dns.question.subdomain
field with the Shannon entropy value based on the frequency probability of each character

Sensors 2023, 23, 2760 12 of 18

as shown in Figure 9. This figure also shows the distribution of the characters probability
in descending order, where numerical characters are residing at top of the list. According
to the figure, a higher entropy value coupled with a higher integer frequency probability is
a strong indicator of data exfiltration by exploiting the DNS protocol.

Figure 9. Character frequency probability visibility shown in the Kibana visualisation dashboard.

Another important feature is the length of the DNS queries, which in turn shows the
number of characters (bytes) in the subdomains and can be used to detect DNS tunnelling
and exfiltration activities. It is important to note that the encoding method (base64 or
base16) greatly impacts the amount of exfiltrated data. Base16 encoding can exfiltrate
half bytes of data (per ASCII character), whereas base64 exfiltrates 0.75 bytes of data per
ASCII character in the subdomains. Both encoding methods utilised for data exfiltration
result in longer query length. Therefore, the length of the subdomains employed in the
exfiltration of data is an important indicator. Figure 10 shows the query length for the
ns.slehee.uk subdomain, which was setup for the DNS tunnelling experiment, and the
average subdomain length for all queries. The query length was 122 characters with an
average subdomain length of 46, indicating a high standard deviation which is an indicator
of an anomalous DNS query. In another words, the length of malicious query (used for
data exfiltration) was more than double the length of average queries over the last seven
days of the experiment.

Figure 10. First column shows the DNS query length for the ns.slehee.uk subdomain. The second
column shows the standard deviation between the elements of the first and second columns. The
third column lists the query length averaged over the last seven days.

Sensors 2023, 23, 2760 13 of 18

7.2. DNS Record Type Analysis

The next DNS tunnelling detection strategy is based on analysing DNS record types.
This monitoring technique can be effective as there are only a few DNS record types that
are used for DNS tunnelling. Figure 11 illustrates record types in the DNS queries. Iodine
utilises the null record for data exfiltration via a DNS tunnel. Each DNS reply can contain
over a kilobyte of compressed payload data. The significant percentage of null requests
shown in the bar chart represents the Iodine DNS tunnelling activities. Another important
point to consider is that the null record was deprecated by RFC1035. Therefore, a significant
proportion of null queries is a strong indication of malicious DNS exploitation.

NULL A AAAA TXT CNAME

DNS record types

0

10

20

30

40

50

60

70

80

P
ro

p
o

rt
io

n
 o

f
D

N
S

 r
e

c
o

rd
 t

y
p

e
s

 (
%

)

Figure 11. Proportion (%) of the different record types in the DNS queries.

7.3. DNS Signature Analysis

Another popular detection method is based on analysing the DNS signature, which
can be used to review specific attributes in the DNS header and DNS payload content [12].
The authors in [16] demonstrated a detailed signature analysis in which the DNS response
packet from null records was exported and saved as a binary file by using Wireshark, as
shown in Figure 12. The binary file was then analysed by using the Neo Hex Editor and
detection was implemented by using Snort rules, for instance the Snort rule to identify
malicious network activity is SID-1-27046 (https://www.snort.org/rule_docs/1-27046)
(accessed on 20 March 2021), which is based on the Iodine DNS tunnelling handshake
server ACK. Analysis of the collected null record using Wireshark is shown in Figure 12.

Another important feature of DNS data is time-to-live (TTL), which describes how
long a DNS response for a domain should be cached and can be used for detection of DNS
tunnelling. The recursive resolvers usually cache the information so instead of retrieving
them again from the authoritative server, can simply reply with the cached record. The
duration that the DNS record is required to be kept in the cache of a DNS server is referred
to as TTL, which for a normal DNS record is mostly greater than 300 s. Hence, DNS data
with a TTL value close to zero may indicate DNS tunnelling activity as a malicious user can
use this approach to avoid DNS detection and blacklisting. Figure 12 shows that the DNS
signature has content matches all highlighted in red, where the hex value 0x0001 indicates
a null record and the TTL value of zero indicates no time for the intermediate cache, which
points to the existence of DNS tunnelling [24,32].

https://www.snort.org/rule_docs/1-27046

Sensors 2023, 23, 2760 14 of 18

Figure 12. Handshake (ACK) between Iodine DNS tunnelling server (attacker) and the victim.
Analysis via Wireshark shows the DNS response packet from Null record exported and saved as a
binary. The figure also shows the TTL field in the DNS query response.

The Suricata open-source intrusion detection and prevention system (IPDS) can also
be used in the cloud environment for creating rules to identify a DNS tunnelling attack.
Figure 13 shows the Suricata alerts during DNS exfiltration with Iodine in ELK-stack.
The Suricata IDPS can be combined with other alert rules such as suspicious null request.
Similarly, other alerts can be created to detect increased TXT records. Moreover, the
detection success can be increased by taking advantage of the Elastic stack SIEM, where
new rules can be created alongside the 400 default rules.

Figure 13. Suricata alerts in the Elastic stack during DNS exfiltration with Iodine.

Sensors 2023, 23, 2760 15 of 18

7.4. DNS Traffic Volume and Time Analysis

An effective strategy for traffic analysis is based on the fact that limited data can be
exfiltrated in a DNS tunnel. Therefore, an increase in volume of DNS traffic over time
may indicate malicious DNS activity. This strategy will be effective for networks with
expectations of a lower number of DNS queries. Figure 14 shows high DNS traffic that
was captured from the cloud environment experiments. However, in networks with a high
volume of DNS traffic, this method will most likely give false positive results. Therefore,
in the case of networks where the number of DNS queries is expected to be low, a high
volume of DNS traffic may indicate DNS tunnelling activity.

Figure 14. DNS traffic request volume over time.

Another detection strategy is based on a given domain (suspicious domain) with multiple
subdomains [12], where a suspicious domain with multiple subdomains can be a strong
indicator of DNS tunnelling. In this study the ss or sl and ns subdomains are short, and a
large amount of data was ingested in each of the subdomains. During the exfiltration, the
client–server communication was hidden in the domain or subdomain names and, as result,
a large number of new unique subdomains were generated. Figure 15 shows a significant
number of subdomains for slehee.com and slehee.uk. In addition, the right-hand side table in
Figure 15 shows a large number of bytes that are generated from DNS queries and responses
(bytes in and out). This demonstrates the presence of malicious activities.

Figure 15. Unique subdomains per domain shown in the Kibana visualisation dashboard.

Another interesting observation for exfiltrated traffic via DNS is a higher time interval
between consecutive pairs of queries and responses. This can be seen from Figure 16 where the
average response time during exfiltration is approximately 70 ms (shown using green colour).
The average response time for normal DNS traffic is approximately 20 ms [32]. Therefore, a
higher than normal average response time is a strong indication of DNS tunnelling activities.

Sensors 2023, 23, 2760 16 of 18

Figure 16. Average time interval between DNS query and response.

8. Discussion

This study proposed a cloud-based detection solution, which was tested by analysing
the collected real time DNS data. Two experiments in the cloud environment were conducted
to demonstrate the importance of monitoring DNS traffic to identify DNS tunnelling attacks.

The results of the monitoring strategies tested highlight that without suitable measures
to monitor network traffic, DNS tunnelling applications can quickly establish connections
to the command and control server, bypassing the outbound firewall restrictions. For the
proposed cloud-based detection system, the Elastic stack has been configured successfully
and, in order to evaluate the performance, the following methodologies were utilised:
Shannon entropy of hostnames, character frequency probability, hostname length, number
of subdomains, increased DNS request, unusual records type, TTL and DNS signature. For
analysing DNS traffic data, the ELK-stack beats modules such as packetbeat and filebeat
were implemented to provide meaningful data logs.

The signature analysis results prove that Suricata could be a valuable detection tool
when applying detailed and specific rules. The experiment to determine the randomness
in the domain names and subdomains with Shannon entropy proved successful. The
possibility of obtaining false-positive indicators will increase as more applications move
towards the cloud environment. Therefore, the query for domain-generated algorithm
detection needs to be fine-tuned to filter out trusted domains. For instance, it has been
shown that the use of Shannon entropy along with character frequency probability analysis
can filter out trusted domains. Furthermore, it has also been shown that the calculation of
average response time will improve the DNS data monitoring system as this will enhance
the detection accuracy even for DNS over HTTPS flows.

The demonstrated detection techniques show the effectiveness of the open-source
framework of the Elastic stack. Furthermore, the implementation of such a framework
requires minimal effort, which makes it possible for enterprises with limited resources to
fight against the most common cyber threats. Whilst these approaches have been used
before in non-cloud environments, this work successfully demonstrates that malicious
queries can be accurately identified in a cloud environment by utilising these techniques.
Together, these methods can provide a useful detection strategy which can be contained in
one dashboard.

For future development, the DNS tunnel detection strategy can be enhanced by adding
passive DNS monitoring. Passive DNS monitoring has the potential to identify malicious
domains using multiple IP addresses. This can aid real-time detection, thus uncovering the
IP footprint of the DNS tunnelling attack. Furthermore, there are some Elastic stack SIEM
prebuilt rules that can be implemented to improve the detection of malicious activities as

Sensors 2023, 23, 2760 17 of 18

part of the regular monitoring of the DNS traffic. For example, rules can be configured
to detect DNS activities when an internal network client sends DNS traffic directly to the
Internet, or when it receives abnormally large DNS responses.

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors would like to thank Kingston University for funding the open-access fee.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers for taking the time and effort
necessary to review the manuscript. We sincerely appreciate all valuable comments and sugges-
tions, which helped us to improve the quality of the manuscript. The authors would also like to
acknowledge Kingston University and University of Chester for their valuable support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Zhou, A.; Liao, S.; Zheng, R.; Hu, R.; Zhang, L. A comprehensive survey on DNS tunnel detection. Comput. Netw. 2021,

197, 108322. [CrossRef]
2. Khormali, A.; Park, J.; Alasmary, H.; Anwar, A.; Mohaisen, D. Domain name system security and privacy: A contemporary

survey. Comput. Netw. 2021, 85, 107699. [CrossRef]
3. Dube, I.; Wells, G. An Analysis of the Use of DNS for Malicious Payload Distribution. In Proceedings of the 2020 2nd International

Multidisciplinary Information Technology and Engineering Conference (IMITEC), Sol Plaatje University, Kimberley, South Africa,
25-27 November 2020; pp. 1–12. [CrossRef]

4. Hou, J.; Li, X.; Zhao, K.; Liang, W.; Li, Y.; Jiang, T.; Liu, Z. A Survey of DNS Tunnel Detection. In Proceedings of the 2022 7th
International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 5 June 2022; pp. 338–342. [CrossRef]

5. PaloAlto. White Paper: Stop Attackers from Using DNS Against You; Technical Report; Palo Alto Networks: Santa Clara, CA, USA, 2020.
6. EfficientIP. White Paper: 2020 Global DNS Threat Report; Technical Report; EfficientIP: West Chester, PA, USA, 2020.
7. McHaney, R. Cloud Technologies: An Overview of Cloud Computing Technologies for Managers; Wiley: Hoboken, NJ, USA, 2021.

[CrossRef]
8. Khoda Parast, F.; Sindhav, C.; Nikam, S.; Izadi Yekta, H.; Kent, K.B.; Hakak, S. Cloud computing security: A survey of

service-based models. Comput. Secur. 2022, 114, 102580. [CrossRef]
9. Alhomdy, S.; Thabit, F.; Abdulrazzak, F.H.; Haldorai, A.; Jagtap, S. The role of cloud computing technology: A savior to fight the

lockdown in COVID 19 crisis, the benefits, characteristics and applications. Int. J. Intell. Netw. 2021, 2, 166–174. [CrossRef]
10. DCMS: Cyber Security Breaches Survey 2021. Netw. Secur. 2021, 4, 4. [CrossRef]
11. Wu, K.; Zhang, Y.; Yin, T. FTPB: A Three-Stage DNS Tunnel Detection Method Based on Character Feature Extraction. In

Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), Guangzhou, China, 29 December 2020; pp. 250–258. [CrossRef]

12. Farnham, G. Detecting DNS Tunneling; Technical Report; SANS Institute: Rockville, Maryland, USA, 2013. Available online:
https://www.sans.org/white-papers/34152/ (accessed on 20 November 2020).

13. Jaworski, S. Using Splunk to Detect DNS Tunneling; Technical Report; SANS Institute: Rockville, Maryland, USA, 2016. Available
online: https://www.sans.org/white-papers/37022/ (accessed on 10 January 2021).

14. Ding, S.; Zhang, D.; Ge, J.; Yuan, X.; Du, X. Encrypt DNS Traffic: Automated Feature Learning Method for Detecting DNS Tunnels.
In Proceedings of the 2021 IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Comput-
ing, Sustainable Computing and Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/SustainCom),
New York, NY, USA, 30 September–3 October 2021; pp. 352–359. [CrossRef]

15. Hynek, K.; Vekshin, D.; Luxemburk, J.; Cejka, T.; Wasicek, A. Summary of DNS Over HTTPS Abuse. IEEE Access 2022,
10, 54668–54680. [CrossRef]

16. Al-kasassbeh, M.; Khairallah, T. Winning tactics with DNS tunnelling. Netw. Secur. 2019, 2019, 12–19. [CrossRef]
17. Preston, R. DNS Tunneling Detection with Supervised Learning. In Proceedings of the 2019 IEEE International Symposium on

Technologies for Homeland Security (HST), Woburn, MA, USA, 5–6 November 2019; pp. 1–6. [CrossRef]
18. D’Angelo, G.; Castiglione, A.; Palmieri, F. DNS tunnels detection via DNS-images. Inf. Process. Manag. 2022, 59, 102930.

[CrossRef]

http://doi.org/10.1016/j.comnet.2021.108322
http://dx.doi.org/10.1016/j.comnet.2020.107699
http://dx.doi.org/10.1109/IMITEC50163.2020.9334104
http://dx.doi.org/10.1109/ICSIP55141.2022.9886602
http://dx.doi.org/10.1002/9781119769514.ch2
http://dx.doi.org/10.1016/j.cose.2021.102580
http://dx.doi.org/10.1016/j.ijin.2021.08.001
http://dx.doi.org/10.1016/S1353-4858(21)00036-2
http://dx.doi.org/10.1109/TrustCom50675.2020.00044
https://www.sans.org/white-papers/34152/
https://www.sans.org/white-papers/37022/
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00056
http://dx.doi.org/10.1109/ACCESS.2022.3175497
http://dx.doi.org/10.1016/S1353-4858(19)30144-8
http://dx.doi.org/10.1109/ HST47167.2019.9032913
http://dx.doi.org/10.1016/j.ipm.2022.102930

Sensors 2023, 23, 2760 18 of 18

19. Tatang, D.; Quinkert, F.; Holz, T. Below the Radar: Spotting DNS Tunnels in Newly Observed Hostnames in the Wild. In
Proceedings of the 2019 APWG Symposium on Electronic Crime Research (eCrime), Pittsburgh, PA, USA, 13–15 November 2019;
pp. 1–15. [CrossRef]

20. Luo, M.; Wang, Q.; Yao, Y.; Wang, X.; Yang, P.; Jiang, Z. Towards Comprehensive Detection of DNS Tunnels. In Proceedings of the
2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [CrossRef]

21. Nguyen, A.T.; Park, M. Detection of DoH Tunneling using Semi-supervised Learning method. In Proceedings of the 2022
International Conference on Information Networking (ICOIN), Jeju Island, Korea, 12–15 January 2022; pp. 450–453. [CrossRef]

22. Sani, A.; Setiawan, M. DNS tunneling Detection Using Elasticsearch. IOP Conf. Ser. Mater. Sci. Eng. 2020, 722, 012064. [CrossRef]
23. Kara, A.M.; Binsalleeh, H.; Mannan, M.; Youssef, A.; Debbabi, M. Detection of malicious payload distribution channels in

DNS. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014;
pp. 853–858. [CrossRef]

24. Bilge, L.; Sen, S.; Balzarotti, D.; Kirda, E.; Kruegel, C. EXPOSURE: A passive DNS analysis service to detect and report malicious
domains. ACM Trans. Inf. Syst. Secur. 2014, 16, 1–28. [CrossRef]

25. Xuanzhen, G.; Zulie, P.; Yuanchao, C. Application of Passive DNS in Cyber Security. In Proceedings of the 2020 IEEE International
Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; pp. 257–259. [CrossRef]

26. Kountouras, A.; Kintis, P.; Lever, C.; Chen, Y.; Nadji, Y.; Dagon, D.; Antonakakis, M.; Joffe, R. Enabling Network Security Through
Active DNS Datasets. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses (RAID),
Paris, France, 19–21 September 2016; pp. 188–208. [CrossRef]

27. Stoleriu, R.; Puncioiu, A.; Bica, I. Cyber Attacks Detection Using Open Source ELK Stack. In Proceedings of the 2021 13th
International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–6.
[CrossRef]

28. Yadav, S.; Reddy, A.; Reddy, A.; Ranjan, S. Detecting Algorithmically Generated Malicious Domain Names. In Proceedings of the
ACM SIGCOMM Internet Measurement Conference (IMC), Melbourne, Australia, 1–3 November 2010; pp. 48–61. [CrossRef]

29. Stalmans, E.; Irwin, B. A framework for DNS based detection and mitigation of malware infections on a network. In Proceedings
of the Information Security South Africa (ISSA), Johannesburg, South Africa, 15-17 August 2011; pp. 1–8. [CrossRef]

30. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
31. Bates, S.; Bowers, J.; Greenstein, S.; Weinstock, J.; Xu, Y.; Zittrain, J. Evidence of Decreasing Internet Entropy: The Lack of

Redundancy in DNS Resolution by Major Websites and Services. J. Quant. Descr. Digit. Media 2021, 1, 1–34. [CrossRef]
32. Zhan, M.; Li, Y.; Yu, G.; Li, B.; Wang, W. Detecting DNS over HTTPS based data exfiltration. Comput. Netw. 2022, 209, 108919.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/eCrime47957.2019.9037595
http://dx.doi.org/10.1109/ISCC50000.2020.9219547
http://dx.doi.org/10.1109/ICOIN53446.2022.9687157
http://dx.doi.org/10.1088/1757-899X/722/1/012064
http://dx.doi.org/10.1109/ICC.2014.6883426
http://dx.doi.org/10.1145/2584679
http://dx.doi.org/10.1109/ICPICS50287.2020.9202344
http://dx.doi.org/10.1007/978-3-319-45719-2_9
http://dx.doi.org/10.1109/ECAI52376.2021.9515120
http://dx.doi.org/10.1145/1879141.1879148
http://dx.doi.org/10.1109/ISSA.2011.6027531
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.51685/jqd.2021.011
http://dx.doi.org/10.1016/j.comnet.2022.108919

	Introduction
	Related Work on DNS Tunnelling Detection
	Methodology
	Experiment 1: No Firewall Constraints on Port 53
	Experiment 2: Tunnelling Connection under the Constraint of Firewall Blocking Port 53
	Monitoring Server Implementation
	Overhead of the Elastic Stack Based Monitoring
	Elastic Stack Security

	DNS Tunnelling Detection
	Statistical Analysis of Domains and Subdomains
	DNS Record Type Analysis
	DNS Signature Analysis
	DNS Traffic Volume and Time Analysis

	Discussion
	References

