
Citation: Manriquez-Padilla, C.G.;

Cueva-Perez, I.;

Dominguez-Gonzalez, A.;

Elvira-Ortiz, D.A.; Perez-Cruz, A.;

Saucedo-Dorantes, J.J. State of

Charge Estimation Model Based on

Genetic Algorithms and Multivariate

Linear Regression with Applications

in Electric Vehicles. Sensors 2023, 23,

2924. https://doi.org/10.3390/

s23062924

Academic Editor: Giambattista

Gruosso

Received: 31 January 2023

Revised: 23 February 2023

Accepted: 27 February 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

State of Charge Estimation Model Based on Genetic Algorithms
and Multivariate Linear Regression with Applications in
Electric Vehicles
Carlos Gustavo Manriquez-Padilla , Isaias Cueva-Perez , Aurelio Dominguez-Gonzalez,
David Alejandro Elvira-Ortiz , Angel Perez-Cruz and Juan Jose Saucedo-Dorantes *

Engineering Faculty, Campus San Juan del Río, Universidad Autónoma de Querétaro, Av. Río Moctezuma 249,
San Juan del Río 76807, Querétaro, Mexico
* Correspondence: jsaucedo@hspdigital.org

Abstract: Nowadays, the use of renewable, green/eco-friendly technologies is attracting the attention
of researchers, with a view to overcoming recent challenges that must be faced to guarantee the
availability of Electric Vehicles (EVs). Therefore, this work proposes a methodology based on Genetic
Algorithms (GA) and multivariate regression for estimating and modeling the State of Charge (SOC)
in Electric Vehicles. Indeed, the proposal considers the continuous monitoring of six load-related
variables that have an influence on the SOC (State of Charge), specifically, the vehicle acceleration,
vehicle speed, battery bank temperature, motor RPM, motor current, and motor temperature. Thus,
these measurements are evaluated in a structure comprised of a Genetic Algorithm and a multivariate
regression model in order to find those relevant signals that better model the State of Charge, as well
as the Root Mean Square Error (RMSE). The proposed approach is validated under a real set of data
acquired from a self-assembly Electric Vehicle, and the obtained results show a maximum accuracy of
approximately 95.5%; thus, this proposed method can be applied as a reliable diagnostic tool in the
automotive industry.

Keywords: electric-vehicle; battery; state-of-charge; multivariate linear regression; genetic algorithms;
estimation model

1. Introduction

In recent decades, the demand for green/eco-friendly technologies has increased due
to climate change concerns [1]. However, several issues must be addressed through the
implementation of eco-friendly technology, and Electric Vehicles (EVs) have emerged and
attracted the attention of the scientific community because they represent an alternative so-
lution to those vehicles that work with an Internal Combustion Engine (ICE). In this regard,
EVs are preferred to their counterparts because they offer a zero-emission alternative—such
as in the case of Battery Electric Vehicles (BEVs)—due to the absence of an ICE [2,3]. Most
EVs appear to be similar, but the main differences relate to the different battery technolo-
gies, where Lithium–Ion (Li–Ion) batteries stand out because of their high energy density,
nominal voltage, cost, and long service life [4,5].

However, there are certain drawbacks and potential problems with EVs that automo-
tive industry customers need to consider before considering buying one. For example, one
of the main challenges for the massive adoption of EVs lies in their cost compared to an
ICE vehicle, in particular, the high investment due to the cost of the battery pack, which
represents one of the most expensive and critical components [6]. This is especially chal-
lenging in developing countries, where the commercialization of EVs has not been achieved
on a relatively massive scale, and the electrical infrastructure is not prepared or has not
been considered for modification for the adoption of EVs in comparison with developed
countries such as China, the United States, and European countries [7]. Furthermore, in
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developing countries, factors such as income per capita or quality of life would not make it
easy for a customer to consider acquiring an EV [8].

In the case of developing countries, the initial investment can be substantially reduced
by adopting the vehicle conversion approach [9], which consists of taking a conventional
ICE vehicle and turning it into an EV. This can be achieved with the acquisition, installation,
and integration of components such as an electric motor, a motor controller, a battery
pack, a battery management system (BMS), a charger unit, harnesses, digital foot throttles,
vacuum pumps, and some other complementary modules that replace their conventional
counterparts [10]. Even with the acknowledgment of this approach, other concerns arise
regarding the efficiency and performance of the EV. To cite an example, an issue called
“range anxiety” has appeared because of some problems related to the battery aspects of
the vehicle, such as the distance range that can be covered with a single charge, charging
time, battery replacement cost, and other limitations related to infrastructure [11] that do
not appear in the case of conventional fuel vehicles.

Batteries with Li–Ion technology are widely used in EVs as their power source [12];
however, they are non-linear systems with high complexity. Their behavior has been
reported to be mainly dependent on factors such as the State of Charge (SOC), temperature,
and aging [13]. Therefore, it can be said that knowing or predicting the battery behavior is
a key factor to achieving an efficient performance in electric vehicles, allowing the average
driver’s trust in EVs to increase. However, SOC, being the most important parameter
that describes the energy capacity of the batteries, cannot be measured directly with a
sensor [14,15]. In this regard, Table 1 shows various methods that have been proposed by
researchers for the estimation of the SOC in EVs, and they can be classified into different
categories, such as conventional methods, model-based estimation methods, adaptive
filtering methods, nonlinear observers, and learning algorithms [3].

Table 1. Classification of SOC estimation methods.

SOC Estimation Method Examples References

Conventional methods

Coulomb counting
Open Circuit Voltage (OCV)
Electromotive Force (EMF)

Internal resistance

[16]

Model-based methods

Equivalent Circuit Models (ECM)
Electrochemical Models (EM)

Electrochemical Impedance Spectroscopy Models (EISM)
Reduced-Order Models (ROM)

[17]

Adaptive filter algorithms

Kalman Filters (KF)
Extended Kalman Filters (EKF)

Unscented Kalman Filters (UKF)
Adaptive Unscented Kalman Filters (AUKF)

[18]

Nonlinear observers

Sliding Mode Observers (SMO)
Adaptive Switching Gain Sliding Mode Observer (ASGSMO)

Nonlinear Observer (NLO)
Proportional Integral Observer (PIO)

[1]

Learning algorithms

Neural Networks (NN)
Artificial Neural Networks (ANN)

Feedforward Neural Networks (FNN)
Support Vector Machines (SVM)

Fuzzy Logic (FL)
Genetic Algorithms (GA)

[19]

Researchers have mainly used the pack voltage, current, and temperature in combina-
tion with different techniques that involve Artificial Intelligence (AI) and circuit modeling
in order to estimate SOC. For instance, Liu et al. [1] developed a Thevenin model with
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variable parameters that are affected by the temperature. An Unscented Particle Filter
(UPF) was used to estimate the SOC, where a Lithium battery was used to perform different
charge–discharge tests at different temperatures between −10 ◦C and 45 ◦C under a con-
trolled environment, obtaining good levels of accuracy when evaluating the fit of the battery
model. In another example, He et al. [17] implemented an equivalent circuit model by
means of using an Extended Kalman Filter and a parameter identification algorithm, which
is based on adaptive Recursive Least Squares (RLS). The experiments were performed using
the Dynamic Stress Test (DST) and the Urban Dynamometer Driving Schedule (UDDS)
driving cycles at a fixed temperature of 25 ◦C within a controlled environment. Their
proposed method worked well with both tests, indicating a high SOC estimation accuracy
and robustness. In another work, Xiong et al. [18] used a Genetic Algorithm and Least
Squares (GA-LS) method to perform the parameter identification in a two Lithium–Ion
battery cell, in combination with an Unscented Kalman Filter method for the final SOC
estimation. The experiments were performed under a controller environment using two
temperatures: 10 ◦C and 25 ◦C. The authors performed UDDS and DST tests to simulate
the current excitation to the cells. A maximum Root Mean Square Error (RMSE) of 0.85%
was obtained when estimating the SOC.

In another example, Ali et al. [20] used the pack and voltage current in combination
with the Lagrange multiplier method to identify the battery model parameters. An equiva-
lent circuit model based on a first-order RC model was obtained in order to perform the
SOC estimation. The voltage and current were monitored during charge and discharge
tests performed under constant temperature and constant current conditions to estimate
the circuit parameter values. The proposed technique had a maximum error below 1.5%.
SOC estimation is also relevant in charging control, as miscalculations of this value could
lead to potential failure of the battery. Therefore, Meng et al. implemented an equivalent
circuit model in combination with an Extended Kalman Filter [21] that estimated the state
of the battery and included the SOC value in a Model Predictive Charging Control. Simu-
lation results showed good time performance in comparison with the traditional CC–CV
(Constant Current–Constant Voltage) charging process. On the other hand, AI algorithms
and machine learning techniques have also been considered to estimate the SOC in several
applications; the most used and relevant techniques are stochastic Fuzzy Neural Networks,
Adaptive Neuro-Fuzzy Inference System (ANFIS), Neural Networks such as Recurrent
Neural Networks (RNN) and Fed-Forward Neural Networks (FNN), and Support Vector
Machines (SVM), among others [22,23]. More recently, Deep Learning (DL) techniques have
also been considered during the SOC estimation; in fact, Convolutional Neural Networks
(CNN) [19] and autoencoders [24] are the most preferred. Nevertheless, although DL
techniques can lead to the achievement of accurate results, their implementation can be
associated with a high computational burden because a significant amount of data needs to
be processed (i.e., CNN) and a priori knowledge is also mandatory to set specific values in
the hyperparameters (i.e., autoencoder). For instance, Chitnis et al. [13] used an Artificial
Neural Network (ANN) to obtain the SOC value. The voltage pack, voltage current, and
integral of the current were used to train the ANN. A 144 V/216 Ah battery was used
for the experiments, which consisted of a series of constant current charge and discharge
tests. The neural network was used to estimate the SOC for Delhi Drive Cycles (DDC) as
well as random drive cycles. Some authors have also implemented a combination of two
or more methods to perform the SOC estimation. For instance, Liu et al. [4] used a Deep
Belief Network (DBN) in combination with a Kalman filtering technique to estimate the
SOC under dynamic conditions, where voltage, current, and temperature are used as the
DBN inputs. The method was evaluated using DST and Randomized Battery Usage Data
Set (RBUDS) tests to verify the accuracy of the proposed model. The experiments were
performed on Lithium–Ion cells within a controlled environment chamber. The evaluated
error values indicated that the accuracy of the method was good under dynamic conditions.

Although some of these works have presented improvements in the accuracy to
model the battery or to estimate the SOC value, some limitations in these works have been
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observed: (i) They have not dealt with the fact that the battery discharge will not be the
same with different kind of charges. For instance, the battery will not be discharged in
the same way using an industrial motor or an EV motor. (ii) Some of these developments
were also tested in laboratory environments where the battery banks were under controlled
and fixed temperatures. That is, the batteries were tested by injecting voltage and current
values using a test bench, but they were not validated in dynamic conditions within a field
test. (iii) Little interest has been shown to consider the load-related variables as influential
factors that affect the SOC, such as motor temperature, motor RPMs, vehicle speed, and
vehicle acceleration.

Therefore, the contribution of this work lies in the proposal of a methodology to
estimate and model the SOC based on Genetic Algorithms (GA) and multivariate linear
regression with applications in electric vehicles. The proposed work initially considers
the continuous monitoring of six load-related variables (the vehicle acceleration, vehicle
speed, battery bank temperature, motor RPM, motor current, and motor temperature)
to acquire the battery discharge behavior for posterior analysis. These variables have
been shown to have a significant influence on the behavior of the battery bank discharge
patterns when driving an Electric Vehicle following a defined trajectory. Subsequently, a
GA-based structure is used in conjunction with Multivariate Linear Regression in order
to identify and detect those representative load-related variables that minimize the Root
Mean Squared Error (RMSE) during an optimization procedure where the SOC estimation
model is performed. This proposal is evaluated under a real set of data acquired from a
self-assembly EV, and the obtained results make this proposal feasible to be implemented
as a reliable diagnostic tool in the automotive industry.

The proposed work is organized as follows. In Section 2, the genetic algorithm theory
is explained in order to understand the treatment performed using the data obtained from
the EV sensors. In Section 3, the methodology that is used to obtain the final SOC model
estimation is included, and the experimental data are explained. Section 4 presents the
experimental setup and the description of the material resources used in this present work.
In Section 5, the results are presented and discussed to explain the key parameters selected
to perform the final SOC model estimation, which is followed by the concluding remarks
in Section 6.

2. Genetic Algorithms

This section presents the general aspects to be considered for implementing Genetic
Algorithms (GA); for example, they are well known as stochastic algorithms used to solve
complex, non-linear problems and/or those problems whose solution varies over time [25].
Figure 1 shows the flow chart of the operation of a simple GA structure.

In general terms, the algorithm imitates the mechanism of natural evolution and uses
a set of possible solutions (population); to be concise, the implementation of GA starts with
a randomly generated population, where a Gaussian random distribution allows one to
improve the variability. Then, each solution corresponds to a chromosome representing a
gene; the selection of the best chromosomes is performed by using selection operators such
as Roulette Wheel, Boltzmann, and Tournament, among others [26].

Subsequently, following a fitness function, the GA rates the chromosomes, aiming to
determine the best solution; once the best solution is chosen, crossover and mutation are
performed to generate a new population composed of chromosomes that better fit the final
solution, which solves the problem. The crossover operator imitates biology and leads the
GA to two possible solutions, that are combined (parent solution) and thus there are two
new solutions (children solutions) [27]. Common crossover techniques are single-point
crossover, uniform crossover, cycle crossover, and multi-point crossover, among others [28].
Similarly, the mutation maintains diversity in the solutions by randomly modifying a gene
from a chromosome generated by the crossover operator; thus, it leads the GA to find a
local solution instead of a global solution. In this sense, common mutation techniques
are power mutation, uniform, non-uniform, and Gaussian, among others [29]. Finally, the
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procedure is repeated until the stop criterion is reached; that is, the number of generations
and/or minimization/maximization of the fitness function [30].
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Figure 1. General flow chart of a simple GA structure that is commonly used in engineering applications.

Common applications of GA, as reported in the literature, are those related to the
solution of problems where parameter optimization is carried out, particularly in applica-
tions associated with multiparameter function optimization. This is because the strength of
GA, compared to other optimization strategies, lies in the fact that genetic algorithms can
optimize many parameters simultaneously [31].

3. Methodology

The proposed methodology for estimating the State of Charge (SOC) in Electric Ve-
hicles (EVs) is composed of five stages, as depicted in Figure 2. As observed, the method
includes the following: (i) the Electric Vehicle, (ii) data monitoring, (iii) data modeling,
(iv) optimal predictors selection, and (v) SOC estimation. The overall process is developed
with the aim of obtaining a mathematical model that allows one to predict the SOC of a
battery bank in an electric vehicle in order to provide information regarding the autonomy
of the vehicle. Every step is described in detail next.

Step (i) Electric vehicle: First, it should be highlighted that several tests were performed
on a laboratory self-assembly Electric Vehicle, where two different conditions were studied.
The experimental tests considered the assessment of the battery bank discharge behavior
under two different transmission shifts (second and third).

Step (ii) Data monitoring: The acquisition of six significant physical magnitudes was
carried out to monitor the battery bank behavior during its discharge in driving tests when
the transmission is fixed in two different shifts, second and third. The acquired signals were
vehicle acceleration, vehicle speed, battery bank temperature, motor RPM, motor current,
and motor temperature; these magnitudes are recommended to be used in the estimation
of SOC because they provide significant information. Thus, during the driving test, the
signals were continuously measured, and the data were stored on a removable SD card. In
this way, it was possible to extracting live information from the BMS. The values for the six
physical variables acquired were used without any additional data pre-processing, as the
measurement equipment already delivers the real values for these physical magnitudes.
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Step (iii) Data modeling: Once the data monitoring was performed, it was necessary
to propose a model that describes the discharge behavior of the battery pack. In this work,
it is considered that the battery pack SOC can be described as a linear combination of all or
some of the physical variables acquired in step (ii). Thus, the result is the model presented
in Equation (1):

SOC = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 (1)

where x1, x2, . . . , xn are the physical variables measured at step (ii) and β0, β1, . . . , βn are
the coefficients estimated using multivariate linear regression. In Table 2 are summarized
the collected data and the assigned variable.

Table 2. Collected data for estimating the SOC model.

Physical Magnitude Assigned Variable

Vehicle acceleration x1

Vehicle speed x2

Battery bank temperature x3

Motor RPM x4

Motor current x5

Motor temperature x6

Step (iv) Optimal predictors selection: Although six different measurements were
acquired, it is possible that some of the physical variables measured provide more sig-
nificant information regarding the SOC of the battery pack, otherwise it is also possible
that non-useful information and/or correlated information is depicted by these considered
variables. In this regard, the accuracy during the SOC estimation may be compromised
depending on whether or not the SOC model is based on those non-relevant variables.
Accordingly, the implementation of the GA leads to the optimized selection of the variables,
which can improve the SOC modeling in terms of multivariate regression; thus, the optimal
predictor selection was carried out as follows:
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(1) The first and second steps define whether the original six variables are considered or
not; for example, in the first-round the vehicle speed, vehicle acceleration, and motor
RPMs are selected, which are then evaluated according to a specific model; for this
proposal, the evaluation is achieved through Equation (1). It is important to mention
that this first selection is randomly carried out.

(2) The selection of the best chromosomes, which is accomplished by Roulette Wheel,
leads to the problem solution; in fact, the solution is performed by selecting the
predictors/variables that produce a minimization in the fitness function, which is in
terms of the Root Mean Square Error (RMSE), as shown in Equation (2):

fc = min(RMSE) (2)

where the RMSE value is a standard way to measure the error of a model in predicting
quantitative data. The formula for the RMSE calculation is presented in Equation (3):

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(3)

where n is the number of observations, ŷi represents the predicted values, and yi represents
the observed values.

(3) To prevent stagnation, a mutation probability of 25 is considered; this step is im-
plemented by generating a random number between 0 and 1, and the mutation is
only applied if the result is lower than 0.25. In consequence, the value of one of the
chromosomes is arbitrarily changed.

(4) Finally, the process is repeated until one of the stop criteria is reached, which include
reaching the maximum number of generations or by minimizing the fitness function.

Step (v) SOC estimation: Because the optimal predictors have been previously de-
termined, they are selected to perform a final multivariate linear regression. With this
regression, a linear model is approximated that describes the SOC of the battery pack.

Step (vi) Validation: Finally, another test is performed in order to validate the model
generated in the previous steps. This test is conducted in the second transmission shift.

4. Experimental Setup

This section presents the materials and equipment used in the experimental tests. The
test conditions are also explained.

The self-assembly EV used for the experiments is shown in Figure 3; this vehicle is a
conventional Hyundai Atos that was converted into an Electric Vehicle in the Faculty of En-
gineering of Universidad Autonoma de Queretaro (UAQ). The EV is powered by a battery
bank that consists of 32 Lithium cells (LFMP100AHX) connected in a series configuration
with a nominal capacity of 100 Ah, a LiFeMnPO4 chemistry, and a nominal voltage of 3.3 V.
Therefore, the approximate nominal pack voltage is 105.6 V when completely charged.

The EV conversion was performed by replacing the conventional ICE motor with an
AC-35 26.25 Induction Motor (B-Face. 1 1/8” keyed shaft), which produces 63 hp (46.97 kW)
at 2900 RPM while delivering 129 ft-lbs. of torque at 96 V and 650 A. This motor works
in combination with a Curtis 1238E-7621 induction motor controller. The transmission,
brake, and direction systems were not altered during the vehicle conversion. An Orion
Battery Management System version 2 was also installed to monitor the battery cells and
to coordinate and manage diverse tasks in the EV, such as charging, discharging, and cell-
balancing. This BMS is CAN enabled, and therefore it has the capability to send and receive
information to other modules of the system, such as controllers, loggers, and chargers via
the CAN protocol.
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and multivariate regression.

All the experiments were performed in San Juan del Rio Campus of the Faculty of
Engineering of UAQ on a fixed track within the campus. Five tests were performed for
each transmission shift. Each test consisted of traveling within the track for a total distance
of 15 km. After each test, the batteries were charged up to 95% of SOC to provide a
suitable SOC range to perform the model estimation. During each test, the EV was driven,
maintaining an approximately constant speed. For the second shift tests, a 15 km/h speed
was used, and for the third shift tests, a speed of 25 km/h was used.

The test steps are presented as follows:
Step (i) EV charge: The battery pack was charged using an ELCON HK-J-H132-32

charger controlled via a CAN bus by the Orion BMS to ensure that each test started with a
95% SOC.

Step (ii) Measurement configuration: A 1313 Handheld Programmer for Curtis was
used to acquire five of the six variables: the vehicle acceleration, vehicle speed, motor RPM,
motor current, and motor temperature. The remaining variable (battery bank temperature)
was acquired with an Orion BMS v2. The handheld was connected to the motor controller
via USB before starting each driving cycle and was then configured to acquire those signals
during the complete trip. A similar procedure was carried out for the Orion BMS to
acquire the bank temperature. The BMS was configured to acquire that variable before
each trip. All six variables were acquired during the complete trip. The sample rate for
these measurements was two samples per second for all the variables, except for the bank
temperature, whose sample time was 100 milliseconds.

Step (iii) Trip and data acquisition: The data acquisition was started, and the EV
travelled for 15 km, trying to keep a constant speed, which depended on the shift used for
that specific test.

Step (iv) End of trip: When the EV had traveled for 15 km, the test ended and the data
acquisition was stopped. After this, the data in the handheld programmer was imported to
a PC to perform data curation and processing.

5. Results and Discussion

During the optimization procedure, a Genetic Algorithm (GA) structure is used to find
those variables (inputs) that better fit with a given model response (output); thus, in the
optimization process the GA performs a linear regression to find a model between inputs
and outputs, and the GA fitness function aims to minimize the Root Mean Squared Error
(RMSE). Furthermore, with the predictions obtained from the genetic algorithm, a final
multivariate linear regression model is fed, which allows one to obtain a numerical model
that estimates the SOC value of the battery bank as a function of the selected input variables.
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To apply the previously described methodology, the six input variables listed below
were selected: (i) motor current, (ii) motor RPMs, (iii) vehicle acceleration, (iv) vehicle speed,
(v) motor temperature, and (vi) average battery temperature. The variables mentioned
above were acquired during the 15 km run. As an example of the behavior of the six
variables monitored during the experimental tests, Figure 4 shows the signals acquired
during the first 600 s of one of the tests carried out selecting the second transmission shift.
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The proposed method was evaluated under a series of experimental tests considering
two transmission shifts, where five repetitions were performed for the second and third
shifts, iteratively. Thus, a total of ten experiments were carried out, and nine of these
tests were considered for training purposes (four from the second shift and five from the
third shift), and the remaining were used for testing purposes (the fifth test of the second
shift). Subsequently, the data acquired in the experimental tests were fed into the GA, in
conjunction with a multivariate linear regression in order to obtain an SOC model that best
minimized the Root Mean Square Error (RMSE). The lower the RMSE value, the greater the
influence of the selected input variables on the output variable.

For the experimental test carried out in the second transmission shift, the results matrix
shown in Tables 3 and 4 were obtained; to demonstrate the accuracy and reliability of the
proposed approach, an ANOVA test was performed, and the most significant results are
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also shown in Tables 3 and 4. According to the p-value, the selected variables are those
relevant during the SOC modeling estimation, and the R-squared proves that the accuracy
can reach maximum values of around 95.5%.

Table 3. Variables that best minimize the RMSE for the second transmission shift.

Experimental Test Variables That Better
Minimize the RMSE Achieved RMSE Value R-Squared p-Value

1

Vehicle acceleration,
Vehicle speed,

Motor temperature,
Average battery temperature.

1.2901 0.896 9.52 × 10−8

2

Motor current,
Motor RPM,

Motor temperature,
Average battery temperature.

0.9609 0.944 0

3
Motor RPM,

Motor temperature,
Average battery temperature.

1.1781 0.922 0

4

Motor current,
Motor RPM,

Motor temperature,
Average battery temperature

1.1009 0.925 0

Table 4. Variables that best minimize the RMSE for the third transmission shift.

Experimental Test Variables That Better
Minimize the RMSE Achieved RMSE Value R-Squared p-Value

1

Motor RPM
Vehicle speed

Motor temperature
Average battery temperature

1.2770 0.949 0

2

Motor current
Motor RPM

Vehicle speed
Motor temperature

1.2025 0.948 0

3

Motor current
Vehicle speed

Motor temperature
Average battery temperature

1.1355 0.955 0

4

Motor current
Motor RPM

Vehicle speed
Motor temperature

1.1756 0.946 0

5

Motor current
Motor RPM

Vehicle speed
Motor temperature

1.0744 0.955 0

As can be seen in Table 3, the lowest RMSE value was obtained in experimental test 2,
and the highest value was obtained in experimental test 1. Figure 5 shows the behavior
of the RMSE value through the 50 generations of the GA for the two cases. In a similar
manner, for the tests carried out in the third transmission shift, the results matrix shown in
Table 4 was obtained.
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For this case, the lowest RMSE value was obtained in test 5 and the highest value was
obtained in test 1. The evolution of these values through the GA generations is shown in
Figure 6.
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(a) test 5 (test with the lowest RMSE value) and (b) test 1 (test with the highest RMSE value).

Once the data from the genetic algorithm had been obtained, the mathematical model
that governs the behavior of the output variable was estimated through multivariate linear
regression. For this case, the output variable was the SOC of our vehicle’s battery pack. For
illustrative purposes, Figure 7 shows the estimation of the SOC for the tests described in
Figure 5 corresponding to the tests carried out at the second transmission shift.

On the other hand, the SOC obtained for the third transmission shift tests described in
Figure 6 are shown in Figure 8.

As can be seen in the results obtained, the variables that have the greatest influence in
general on the SOC of a battery pack are motor temperature and motor RPM. Additionally,
it was found that, at low speeds, the monitoring of average battery temperature contributes
to a great extent to determining the SOC; similarly, for high speeds, the variable that
contributes to this is the speed of the vehicle. This is because, at low speeds, due to the
design of the vehicle, the battery bank experiences an increase in temperature because
the air current from the outside of the vehicle is not large enough. In the case of high
speeds, the airflow from outside has an effect on the battery bank and helps to control their
temperature; however, the torque required to move the vehicle at said speeds is greater,
which has an impact on the amount of energy that the electric motor demands from the
battery bank.
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the lowest RMSE value) and (b) test 1 (test with the highest RMSE value).
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Figure 8. Estimated SOC obtained in the test using the third transmission shift results: (a) test 5 (test
with the lowest RMSE value) and (b) test 1 (test with the highest RMSE value).

Figure 9 shows the comparison between the SOC estimated using the previously
described methodology and the SOC monitored in real-time during the experimental tests.
As observed in Figure 9, both values of SOC, real and estimated, have a similar behavior
trend over time; therefore, it can be said that the methodology presented in this paper
is useful to model the real behavior of the SOC of a battery bank corresponding to an
electric vehicle. Although the trend of the SOC is similar to that measured, it can be
seen that there is still an error between them. This error may be reduced by filtering the
signals; however, in the case of online applications, it may be improved by resampling the
estimated SOC. Unlike the methodologies to estimate the SOC reported in the literature,
the methodology presented in this paper considers various non-linear parameters found
while driving an electric vehicle following a path implemented over real traffic patterns
and road characteristics.
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6. Conclusions

Electric mobility seems to be an important factor towards reducing the amount of
greenhouse gas emissions. However, there are some challenges that must be faced to
ensure the robustness and reliability of electric vehicles. One of the most critical factors
is the energy stored in the battery pack, because the autonomy of the EV depends on it.
In this sense, the development of strategies for the accurate estimation of the SOC of the
battery pack is essential in order to achieve these goals of robustness and reliability. Most
of the reported works so far perform SOC estimation using the current and voltage from
the batteries; notwithstanding, there are some other factors, such as temperature, that
may affect the rate of discharge of the batteries. Additionally, the driving conditions may
vary from one use to another; therefore, it is important to consider parameters such as the
motor and vehicle speed, and acceleration. Every EV is always integrated with a BMS that
provides a significant amount of information regarding different physical variables related
to the operating conditions of the vehicle, and specifically of the battery pack. However,
not all the information results are relevant for the estimation of the SOC of the batteries. In
this sense, the proposed methodology proved that a GA is an effective tool to determine
whether or not a parameter is relevant for the SOC estimation. Therefore, the obtained
results prove that motor RPM, motor temperature, battery temperature, and vehicle speed
are parameters that must be included in the models to determine the SOC of the battery
pack in order to obtain a more adequate estimation. With the use of these variables, it is
possible to predict the discharge pattern that will be experienced by the batteries using a
simple approach with a multi-variate linear regression model. This way it is possible to
provide the users with information regarding when it is necessary to recharge the batteries
so it can be scheduled. This method aims to be a tool to cope with the actual BMS to
improve the information that is provided to the final users.
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