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Abstract: The lack of intuitive and active human–robot interaction makes it difficult to use upper-
limb-assistive devices. In this paper, we propose a novel learning-based controller that intuitively
uses onset motion to predict the desired end-point position for an assistive robot. A multi-modal
sensing system comprising inertial measurement units (IMUs), electromyographic (EMG) sensors,
and mechanomyography (MMG) sensors was implemented. This system was used to acquire
kinematic and physiological signals during reaching and placing tasks performed by five healthy
subjects. The onset motion data of each motion trial were extracted to input into traditional regression
models and deep learning models for training and testing. The models can predict the position of the
hand in planar space, which is the reference position for low-level position controllers. The results
show that using IMU sensor with the proposed prediction model is sufficient for motion intention
detection, which can provide almost the same prediction performance compared with adding EMG
or MMG. Additionally, recurrent neural network (RNN)-based models can predict target positions
over a short onset time window for reaching motions and are suitable for predicting targets over
a longer horizon for placing tasks. This study’s detailed analysis can improve the usability of the
assistive/rehabilitation robots.

Keywords: upper limb assistive robots; wearable sensors; motion intention detection; human–robot
interaction; sensory fusion; machine learning

1. Introduction

Motion impairment of the upper limbs, occurring, for example, due to a stroke, or total
lack of motion due to amputation, can seriously affect the performance of activities of daily
living (ADL) [1,2]. Assistive robots such as exoskeletons [3] and intelligent prostheses [4]
are designed to assist patients in daily activities and help to improve their quality of life [5].
However, the current active assistive robots are still not widely accepted by users due to the
lack of a reliable and intuitive controller which can detect the user’s intention and provide
assistive motion in a natural way [6].

Unlike the cyclic motion of the lower limb, the motion of the upper limb has more joint
redundancies and interactive functionalities with environments. Therefore, it is challenging
to intuitively predict the motion intention of the upper limb while simultaneously driving
its multi-DOF joints. In the state of the art, two main approaches of motion intention
detection are explored: human-motion activity recognition [7] and continuously decoding
joint angles in time series [8]. However, the methods covered above could not accurately
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and intuitively recognize the intended reaching goal of humans’ upper limbs in planar
space and thus cannot be used to provide assistance in reaching a specific goal. Therefore,
we propose an intuitive control system that can directly predict the end-effector position in
a planar space from the user’s onset motions (Figure 1), which enables one to encode of a
large amount of information about the trajectory [9]. Then, an inverse kinematics model can
be used to derive the relative reference joint angles. The detection of the final goal based on
onset motion can be useful in achieving the relevant motion assist function without too
much of a mental burden on the patients [10].

State-of-the-art works [10] which can predict the user’s goal in a planar space from
their onset motion use various sensors, such as eye gaze and EMG to learn a prediction
model from user data. However, it is not clear which sensors are necessary to make such
a prediction. Therefore, in this work, we explored combinations of various sensors, such
as EMG, IMU, MMG, and various learning algorithms; and evaluated which sensors and
algorithm combinations provide the best accuracy. Interestingly, our results show that only
the IMUs are sufficient to predict the final position when using learning algorithms such as
LSTM/GRU/RNN, which have an inductive bias for sequential data. This finding could
be useful in improving the usability of assistive robots by simplifying the sensing system.

Onset motion
detection

Cut off time 
stamp

Wearable
sensors

Learning-
based models

Intended 
reaching/placing

location

50ms, 100ms
150ms, 200ms

Dataset

Low level 
position control

Onset motion module

Target prediction

Figure 1. Overview of the proposed learning-based controller. The onset motion data are acquired
from different sensory interfaces. The input features are then computed for four onset time windows
of motion. Then, the processed motion samples are given as input to multiple learning-based intention
prediction models for end-point prediction. Finally, the target end-point positions will be given as a
reference point to the low-level controller for the robot to move.

The main contributions of this paper are the following: (1) A control system is pro-
posed to utilize the onset motion to predict the user’s target reaching or placing location.
The system combines several sensory interfaces and adds a novel motion intention de-
tection module. (2) A motion dataset was constructed which can predict the intended
motion of cross-subjects. Multiple machine learning models were evaluated under certain
onset time windows of motion. RNN-based models provided relatively high prediction
performance of the end-point position. (3) We evaluated the performances of different
combinations of sensors on the reaching and placing motions and discovered that adding
EMG and MMG sensors over IMU sensors does not increase prediction accuracy.

2. Background
2.1. Control Based on Physiological Signals

Physiological signals are widely used as control interfaces for assistive and rehabil-
itation robots, which can detect the potential intention of motion [11,12]. They mainly
measure the electrical activity of muscles, known as EMG signals [13], or the mechanical
response of muscles, known as MMG signals [14]. Myoelectric control interfaces using
EMG signals can provide information about the intention of motion 50–100 ms before
the actual motion happens [15]. One popular method is to recognize the motion pattern,
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in which EMG signals from different areas of muscles can detect the motion pattern, such
as shoulder elevation and abduction [16]. However, the main limitation of this kind of
approach is that only recognizing the movement patterns is not sufficient for assisting in
ADLs accurately. There is no interaction between humans and the environment which
cannot receive particular assistance. In addition, researchers have worked on predicting
kinematic joint angles of the upper limb in time series using learning-based methods [17]
or model-based methods (e.g., musculoskeletal model) [18]. Ref. [17] proposed a neural
network to continuously predict multi-joint angles. Each joint angle’s root means square er-
ror (RMSE) was on average 9.16◦ per selected time window, which could lead to significant
errors between the subject’s intended location and the predicted location.

On the other hand, MMG-based control interfaces are robust to changes in skin
impedance and require simple calibration and placement procedures. Its effectiveness has
been demonstrated in stroke rehabilitation [19], human–robot interaction [20], and pros-
thetic control [21,22]. In order to compensate for the limitations of EMG, some approaches
combined these signals as a hybrid physiological modality. For example, hybrid EMG-
MMG sensing was proposed to classify the motion pattern of the hand [12]. The authors
showed that the classification accuracy was enhanced by 8.8% compared to only using
EMG signals.

2.2. IMU Control Interfaces

IMU signals are used to predict the joint information of the upper limb, such as
joint angles and velocities. Normally, a mapping model can be established to match the
relationship between past movement and intended motion [23]. A common method is to
use human kinematic movement to predict the motion pattern. For example, researchers
investigate the inertial sensing information to classify the reaching or grasping motion for
stroke patients [24]. On the other hand, Huang et al. [25] used two IMUs for predicting
intended joint motion in real-time via deep-recurrent neural networks. The results show
that the model can achieve a prediction error of ±2.93 degrees within a predicted horizon
of 50 ms. However, this work only predicted the motion of the knee joint, which has fewer
motion redundancies than the upper limb.

2.3. Multi-Modal Sensing Interfaces

In these techniques, multiple signals are fused so that the shortcomings associated
with each signal are compensated by complementing the intention prediction [26,27].
The concept of multi-modal sensing interfaces has shown improved accuracy, reliability,
and robustness compared to single-signal methods [28]. Fusing EMG and EEG data pro-
vided a reliable source of data for creating a brain–computer interface able to decode the
motion pattern of elbow flexion (one DOF), even under conditions of muscular fatigue [29].

To date, a commonly used approach is to fuse physiological sensors (e.g., EMG
sensors) and kinematic sensors (e.g., IMU). EMG signals cannot provide direct kinematic
information about limb motion, which can be provided by kinematic sensors such as IMUs.
Little et al. [30] used a multi-modal wearable system, including EMG, IMU, and a stretch
sensor, to predict elbow joint angular trajectory. The different time windows of onset
motion were input to ten machine learning algorithms, showing that combining multiple
features have better performances than single features. Williams et al. [31] proposed a
recurrent convolutional neural network for position-aware myoelectric prosthesis control
strategies, which fused EMG and IMU signals. However, the common limitation of the
mentioned studies is that prediction is limited to a single joint, which does not correspond
to the full movement of the upper limb in ADLs. Ren et al. [8] fused the features from EMG
and IMU as input to predict the upper limb of multi-joints. The fused signals can reduce
the predicted errors and the delay time of movement between the human and the robot
compared with using only IMUs. However, the main limitation of this work is that it only
synchronizes human motion and robot. It still requires humans to provide sufficient control
effort during the motion trajectories
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3. Methods
3.1. Participants

Five healthy participants (four males, one female, 27.8± 1.2 years old) with no previous
history of musculoskeletal problems participated in this experiment. All were right-handed
and used their dominant hands in the experiment. This experiment was approved by the
Institutional Review Board of Nanyang Technological University (IRB-2020-10-006). All
the subjects read and signed a consent form before the experiment. The subjects were not
physically constrained but instructed to perform the motions according to the experimental
protocol. There is not much variance in the sensor signals from different humans [32].
Hence, we recruited five individuals for the data analysis and the testing of algorithms.

3.2. Experimental Setup and Protocol

The participants were asked to sit in front of a table covered by a 110× 70 cm rectan-
gular magnetic soft pasteboard, divided into a 55× 35 grid composed of 2× 2 cm squares
(Figure 2). The participants were then instructed to move a cup between 12 different
positions located on the board (Figure 3). The positions were randomly generated and
marked on the board by circular magnetic stickers. Each of these numbers will be repeated
in groups of ten. To aid in this, a Cartesian coordinate system with its origin at the bottom
left corner of the board was considered. All positions were within the maximum reach-
able radius of each subject. Each position was assigned a number, and the subject was
informed of the sequence of positions by following instructions on a PC. Each experimental
session included 120 position numbers. The same position cannot be moved twice in a row.
An analog button, named the "home" button, was placed in front of the participant and was
used to signal the beginning and end of each cyclic motion. Another button was placed
under the cup, such that it was pressed when the cup was on the table, for later aiding in
data segmentation.

The protocol for each motion was as follows: (1) push the “home” button, signaling
the beginning of the motion; (2) place the cup on the instructed location; (3) move the hand
back to the starting point and push the “home” button, signaling the end of the motion.
The main reason for selecting the reaching and placing motion types as the motions for
experimental analysis was that these two motions are the two most basic and most used
movements in daily life. Each cycle was repeated 240 times, divided over two sessions
(120 each). Each session took approximately 15 min, and there was a 5 min rest in between.
There were no physical constraints on the upper limb throughout the performance of
the experiments.

Figure 2. Experimental setup: The subject sat in front of the experimental table. Then, he moved the
cup according to the number of the positions indicated on the screen of a laptop.



Sensors 2023, 23, 2998 5 of 15

X axis

Y axis

2 5

8

9
4

7
11

103

1 6
12

Figure 3. Schematic of the experimental table: Each red position is made up of a 4 cm radius circular.
Twelve magnetic stickers are placed in different locations.

3.3. Data Collection

The data collection setup was established as shown in Figure 4. Four EMG sensors (Del-
sys Trigno) were placed on the muscle belly of the biceps brachii (BB), triceps brachii (TB),
anterior deltoid (AD), and pectoralis major (PM) following the SENIAM guidelines [33].

Figure 4. Data acquisition flow: The IMUs and the EMG and MMG sensors were placed on the
upper limb of the participant. The EMG and IMU data were transmitted wirelessly, and the MMG
data were captured via a wired connection. A DAQ acquires the data (Quanser PIDe) connected to
a PC.

Two wireless IMU sensors (ST Microelectronics STEVAL-STLKT01V1) were attached
with elastic hook-and-loop tape to the dorsal side of the forearm and the dorsal side of the
upper arm. The sensors communicate via low-energy Bluetooth (BLE) with a development
board (STM32 Nucleo-64) equipped with an expansion board (X-NUCLEO-IDB05A1) to
allow Bluetooth communication. In addition, the single self-designed mechanomyography
(MMG) sensor was attached to the BB using the Velcro strap. The MMG sensor used in this
experiment included two components: one was a microphone, and the other part was a
conical acoustic chamber that can be attached to the microphone. It enables one to measure
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the low-frequency mechanical vibrations generated by the contractions or oscillations of
muscles [34]. All three types of wearable sensors connected to a data acquisition board
(Quanser PIDe) to trigger the synchronization at 100 Hz.

3.4. Data Processing
3.4.1. Segmentation

All data from the three types of sensors were segmented into three motion patterns:
reaching, placing, and homing. Specifically, reaching refers to the subject’s hand mov-
ing from the home position to the instructed target location; placing corresponds to the
participant lifting up the cup and moving it to the next instructed location; moving back
corresponds to moving the hand back to the initial position. Each motion pattern contains
the motion trajectories of participants, which cover 1200 independent, unique trajectories.

Segmentation was performed based on the streamed binary data from the “home”
button and the button under the cup. The “home” button separates each repetition of the
cyclic motions. The cup button transmits either “0” when the cup is not on the table or “1”
when the cup is placed down. A signal of “0” corresponds to placing movements, whereas
a signal of “1” corresponds either to reaching or moving back. The distinction between the
latter two movements is done through the signal of the “home” button: reaching occurs
between a triggering of the home button and the start of a signal of 1 in the cup button;
placing occurs between the end of a signal of 1 in the cup button and the triggering of the
home button.

3.4.2. Feature Extraction

The input features used for model training were extracted from the processed and
segmented EMG, IMU, and MMG data. The objective of this experiment was to use the
onset movement to predict the task goal in the planar space. In a sense, it can be classified
as an inference of the task goal by a short-term motion [35]. Therefore, the input dataset
was extracted on the four onset time windows (OTW), listed as 50, 100, 150, and 200 ms.

The former normally requires feature engineering to enhance the model’s accuracy.
Here, the filtered sensory data were subsequently calculated within the sequential input
time window, shown in Figure 5. The onset motion data of each subject can be reformed as a
single vector. The extracted features can be divided into the statistical domain, the temporal
domain, and the time-frequency domain. There were three selected statistical-domain
features consisting of mean absolute value (MAV), root-mean-square (RMS), and variance
(VAR), and one temporal feature, waveform length (WL), [36–38], are calculated as follows:

MAV =
1
n

n

∑
i=1
|xi| (1)

RMS =

√
1
n

n

∑
i=1

(
xi

)2
(2)

VAR =

√
1
n

n

∑
i=1

(xi − x̄)2 (3)

WL =
n−1

∑
i=1
|xi+1 − xi| (4)

where x represents the values of specific signals (IMU, EMG, and MMG), n refers to the
number of onset motion samples, and i is the time steps. Here, i + 1 refers to a 10 ms
increment. Concerning physiological features, there are five channels for the EMG and
MMG sensors. Based on the four selected statistical features, there are 4 ∗ 5 = 20 features
extracted from EMG and MMG in the statistical domain In contrast, the signals of IMUs are
all kinematic data related to upper-limb motion. Two IMUs can output eight quaternions,
where each generates four numbers (x, y, z, and w). In addition, the relative angles of the
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elbow joint and shoulder joint are derived from quaternions, which include five joint angles
in total. For all the above-mentioned values, including physiological features and kinematic
features, we averaged each of them and used them as features. Overall, the total number
of features was 20 + 8 + 10 = 38 features, where 20 refers to all physiological features;
8 refers to features of quaternion generated from two IMUs; and 10 refers to kinematic
data generated from positions, velocities, and accelerations of joint angles. Regarding
the time-frequency domain, the short-time Fourier transform (STFT) was applied to the
physiological signals. The window function was chosen as the “Hanning window”; the
window segment length was set to 5, and the overlapping window length was set to 2.
Hence, the numbers of sEMG and MMG features were 5 ∗ notw, where 5 refers to four EMG
sensors and one MMG sensor. notw was the length of each onset motion time window.

RNN methods are normally end-to-end approaches which can input raw data to train
and test the model. Therefore, extraction of features is not necessary for this type of model,
allowing for the filtered sensor data of each subject to be directly input to the RNN models.

Figure 5. The input features are calculated within the whole time window of onset movement. The
motion data of each subject can be reformed as a single vector.

3.4.3. Standardization

The input samples were standardized by removing the mean and scaling to unit variance.

3.5. Models

In this study, we designed and compared 5 machine learning regression algorithms
and three recurrent neural networks. Training and testing were done on a computer
with an NVIDIA Quadro P5000, an Intel Xeon processor, and 32 GB RAM. We used the
Sklearn 1.0.1 and Pytorch 1.12 libraries to design the model. As discussed in our previous
work [30], multiple algorithms based on four different working principles were selected for
performance comparison. All the models were used to predict hand position. The details
of the models are further described in the following subsections.

3.5.1. Tree-Based Models

Tree-based regression models enable one to build a tree-like structure for predicting
the output [39]. In this study, the decision tree model, extra trees model, and the random
forest model (RF) were selected for training and testing the dataset. However, the RF
model showed quite low prediction accuracy compared to other algorithms during cross-
validation. Hence, RF was discarded during the testing.

3.5.2. Support Vector Regression

A grid search was performed on both x and y axes to find the best hyperparameters of
each SVR. The mean test error was used to evaluate the results, which provide the lowest
value corresponding to the best combination of the parameter. The RBF kernel was selected
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because of the non-linearity of the dataset. The γ was set to 0.001, and the soft margin
parameter C was 1000.

3.5.3. Feedforward Neural Networks

A multi-layer perceptron (MLP) is a fully connected feed-forward neural network.
The grid search was used to determine the best hyperparameters on two MLPs (x and
y axis). The activation function was tanh function, and the hidden layer size was 50.
In addition, the learning rate was set to adaptive mode, and the alpha was equal to 0.0001.

3.5.4. Recurrent Neural Networks

Three different RNN models were designed in this study, including RNN, long short-
term memory (LSTM) networks, and gated recurrent unit (GRU) networks [40]. All the
RNNs consisted of three hidden layers, including two recurrent layers and one fully-
connected linear layer. The recurrent layers were set as RNN, LSTM, or GRU, respectively.

The groups of hyper-parameters are listed as the following content for searching for
the best combinations. The list of hidden units was {24, 28, 64, 128}. The learning rate
was set to 0.001. The decay rate of weight was set to 0. Moreover, the adaptive moment
estimation (Adam) was used in this study, which can speed up the convergence of the
neural networks. The batch size represents the number of samples input simultaneously
into the training models before updating weights, which was set as 32. The list of epoch
numbers was {300, 350, 400}.

All groups of hyper-parameters were tuned to acquire the best combination of the
parameter on the validation set.

3.6. Output

The reaching and placing tasks were the two categories of movement patterns that
were analyzed in this study. The outputs of the prediction models were two values of the x
axis and y axis in the 2D position table. The unit of coordinates is one grid represented as
2 cm.

3.7. Cross-Validation

A typical approach of 80% of the dataset for training and 20% for testing was randomly
selected. Within the training dataset, 5-fold cross-validation was used to validate the perfor-
mance of the models and find the best hyperparameters of each model [41]. In the training
dataset, 10% of the data were used for validation. Twenty-percent were used as testing
data and not involved in cross-validation. The cross-validation was only applied to the
remaining 80% of the data. This procedure enabled us to avoid data leakage and overfitting.

3.8. Evaluation Metric

The performance of the prediction model was evaluated by comparing the predicted
coordinates with the real location of the object. The prediction accuracy was calculated as

Accuracy =
Ncorrect

Ntest
· 100% (5)

In this context, Ncorrect refers to the number of positions accurately predicted in the
testing set, and Ntest refers to the total number of positions in the testing set. Hence, this
represents the overall testing result. Four different error ranges were investigated as four
circles, illustrated in Figure 6. The radius of each circle is increased by ∆R = {2, 4, 6, 8},
respectively, based on the absolute position (red circle). Since this study only considered
joint movements of the elbow and shoulder, the choice of ∆R was dependent on the working
range of the wrist. The largest ∆R was chosen to be coincident with the palm-to-wrist
length of the 99% of adults, corresponding to 8 cm [42].
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Figure 6. The settled margin of radius error for object’s location. The largest range was chosen to be
coincident with the palm-to-wrist length of the 99% of adults, corresponding to 8 cm [42].

4. Results

In this section, the selected and proposed learning-based models are compared using
the proposed evaluation metric that was introduced in (5). In each subsection, the perfor-
mances for the four selected onset time windows and working ranges R were analyzed and
compared when computed with different models. In addition, we compare the prediction
accuracy using different sensors as inputs.

4.1. Reaching Task

Table 1 shows the prediction accuracy of the selected ML techniques when input
features from all sensors were used, for the reaching task test set. It can be observed
that RNN variant models significantly outperform other ML models. Under the con-
dition of ∆R ≤ 2 cm, the LSTM prediction model can achieve the highest accuracy rate
of 81% with 50 ms OTW. A Wilcoxon signed-rank test was performed and showed that
the RNN variant models achieved better prediction performance than the ML models
(p = 0.00003). However, the RNN model was not significantly different from LSTM and
GRU (p = 0.203, 0.085).

Table 1. Comparison of prediction accuracy for reaching task using different models, with all sensor data.

Error Distance [cm] OTW [ms]
Model

SVR DecisionTree AdaBoost ExtraTrees MLP RNN GRU LSTM

∆R ≤ 2

50 3% 28% 57% 5% 14% 80% 80% 81%
100 4% 21% 62% 6% 17% 71% 75% 76%
150 4% 29% 65% 7% 18% 75% 75% 75%
200 11% 30% 71% 6% 24% 72% 73% 75%

∆R ≤ 4

50 7% 31% 61% 16% 38% 80% 81% 81%
100 14% 26% 66% 15% 46% 76% 75% 76%
150 21% 34% 71% 20% 44% 75% 75% 76%
200 26% 33% 74% 26% 52% 77% 76% 76%

∆R ≤ 6

50 14% 34% 64% 30% 59% 81% 82% 82%
100 21% 29% 70% 30% 64% 76% 75% 76%
150 32% 38% 72% 31% 67% 76% 77% 78%
200 38% 38% 80% 44% 71% 79% 77% 78%

∆R ≤ 8

50 20% 42% 71% 42% 76% 81% 82% 84%
100 25% 33% 72% 44% 74% 76% 78% 76%
150 44% 46% 77% 51% 77% 80% 80% 79%
200 42% 42% 84% 54% 77% 82% 79% 79%

Furthermore, we also analyzed the prediction performance based on different input fea-
tures, which include the features extracted from physiological information (EMG + MMG only),
kinematic information (IMU only), and fused information (all features). Based on the previ-
ous results, the RNN-based model has higher prediction accuracy than other models with
all input features. In addition, the statistical result does not show a significant difference
among the three RNN-based models (RNN/GRU/LSTM). Therefore, the LSTM was chosen
to analyze the feature importance. Figure 7 shows the prediction accuracy of end-point
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position based on different input features, which considered the selected four OTWs and
radius of constrains. Only using IMU sensors as the input signal can achieve 80% prediction
accuracy with 50ms OTW under the condition of ∆R ≤ 2 cm, which is only 1% less than the
input of all features. In addition, the prediction accuracy decreased with the incrementation
of OTW. When only EMG + MMG were considered as the input signal, the performance
was worse than the other groups of input features.

Prediction accuracy for the reaching task using LSTM

50 100 150 200
OTW [ms]

50

60

70

80

90

A
cc

ur
ac

y 
[%

]

R < 2 cm

50 100 150 200
OTW [ms]

R < 4 cm

50 100 150 200
OTW [ms]

R < 6 cm

50 100 150 200
OTW [ms]

R < 8 cm

IMU EMG+MMG ALL

Figure 7. Prediction accuracy of the “reaching” task for different combinations of input features
considering all subjects. The performance of the analysis mainly targets the LSTM model. The blue
bars represent the results that only use kinematic input features labeled as IMU. The orange bars
refer to the physiological features input only, labeled as EMG + MMG. Results with the combinations
of input features are shown in green (labeled as all).

4.2. Placing Task

Table 2 shows the prediction performance on the selected models when features from
all sensors are used, for the placing task test set. The GRU and LSTM models both reach
the highest prediction accuracy (83%) for ∆R ≤ 2 cm when the OTW is 200 ms. As the
error distances increase, the accuracy of the GRU model can reach 88%. A Wilcoxon test is
performed and shows that the RNN variant models are significantly different from the ML
models (p = 0.00003). However, the RNN model is not significantly different from LSTM
and GRU (p = 0.857, 0.364).

Table 2. Comparison of prediction accuracy for placing task using different models, with all sensor data.

Error Distance [cm] OTW [ms]
Model

SVR DecisionTree AdaBoost ExtraTrees MLP RNN GRU LSTM

∆R ≤ 2

50 2% 23% 48% 4% 8% 80% 80% 80%
100 5% 27% 41% 2% 13% 73% 75% 75%
150 4% 16% 38% 1% 8% 74% 60% 75%
200 5% 14% 37% 2% 5% 82% 83% 83%

∆R ≤ 4

50 6% 26% 52% 14% 28% 80% 80% 80%
100 11% 28% 49% 7% 35% 75% 75% 76%
150 11% 18% 43% 9% 25% 76% 73% 76%
200 13% 17% 44% 8% 26% 83% 84% 83%

∆R ≤ 6

50 9% 30% 55% 25% 43% 80% 81% 81%
100 16% 32% 54% 21% 56% 75% 75% 77%
150 19% 21% 46% 26% 45% 75% 74% 76%
200 21% 17% 50% 19% 51% 83% 88% 83%

∆R ≤ 8

50 16% 38% 64% 40% 58% 80% 81% 82%
100 26% 38% 63% 33% 70% 75% 75% 79%
150 26% 24% 52% 35% 62% 79% 77% 78%
200 31% 20% 54% 33% 61% 84% 88% 83%
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We also analyzed the effect of different input features on the prediction results of
the LSTM model, which accessed the same procedures as the “Reaching task”. Figure 8
shows that the accuracy using IMU alone is similar when using all sensors. Both of them
can reach 83% under 200 ms OTW and the condition of ∆R ≤ 2 cm. With the increase in
error distance, the prediction accuracy of IMU will continue to improve to 85%, but the
performances of all features as input remained at 83%.

Prediction accuracy for placing task using LSTM
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Figure 8. Prediction accuracy of the “placing task” for different combinations of input features for
all participants subjects. The LSTM model is the main model to be analyzed in this section. The blue
bars represent the results that only use kinematic input features labeled as IMU. The orange bars
refer to the physiological features input only, labeled as EMG + MMG. Results with the combinations
of input features are shown in green (labeled as all).

5. Discussion

The main objective of this study was to validate the performance of the proposed
wearable sensing system for detecting human upper limb motion intentions while reaching
and placing tasks.

We want to develop a learning-based high-level controller, including the selection of
sensory interfaces, prediction algorithms, and onset detection of motion. This high-level
controller can be used to control multi-DOF upper-limb-assistive devices, which could help
patients to finish daily reaching and placing tasks in planar space. The analysis was done
offline but could be performed online in future experiments.

Firstly, multiple prediction algorithms were evaluated on the same testing set. The se-
quential models outperformed the other selected models in both reaching and placing tasks.
The results of the Wilcoxon test showed that the performance of the RNN variant was
significantly high among all selected models. Additionally, the training dataset randomly
involved motion samples from all subjects, which suggests that this model is subject-
independent and enables one to generalize on different subjects. RNN-based models enable
one to use their memory states to process temporal sequences of inputs [43]. Therefore,
the LSTM model achieves higher prediction performance for reaching and placing motions.

The second hypothesis is that the length of OTW has an impact on the prediction
performance of the LSTM model, as shown in Tables 1 and 2. For reaching tasks, the accu-
racy of the prediction achieved the highest prediction accuracy (80%) with a 50 ms input
feature for RNN-based models. However, the prediction accuracy gradually decreased
with the increment in OTW. The potential reason is that the input features mainly refer to
the information on the human’s upper limb, which does not include the information on the
environmental position. The result suggests that using 50 ms of onset motion data is enough
to predict the final reaching position of the upper limb. For placing tasks, OTW with 200 ms
onset motion data input to the GRU and LSTM model, which enabled us to achieve 83%
prediction accuracy under 2 cm error distance. Therefore, the comparative analysis can
suggest that the 200 ms OTW is suitable for the prediction of placing tasks. However, 19%
and 17% error rates are still too high for the practical control system. The performance
might be improved by proposing a new model for prediction, such as a mixture density
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network (MDN), which can model confidence in the prediction so that the assistive robot
assists only when confidence in prediction is high.

The third hypothesis is that the kinematic features extracted from IMU (mentioned
in Section 3.4.2) are sufficient for predicting the desired end-point position of the upper
limb. Figures 7 and 8 show that the prediction based on IMU inputs can achieve up to
80% accuracy for reaching tasks and 83% for placing tasks, which can be roughly equal to
the prediction accuracy after fusing EMG and MMG input signals. Thus, additional input
signals from EMG + MMG do not significantly increase prediction accuracy. In addition,
the whole system can become complex after adding EMG and MMG sensors. In practical
scenarios, the EMG and MMG signals of stroke patients are different compare with healthy
people, so it is tough to generalize the prediction model on stroke patients. Hence, IMU
sensors with selected algorithms are possibly a good starting point for stroke patients.
In addition, a less complicated wearable sensing system can increase the comfort and
convenience of the patient.

6. Future Work

There are still some limitations that need to be addressed in future work. Firstly,
the prediction accuracy needs to be further improved for online testing. We aim to propose
new prediction models, such as the mixture density network (MDN), which might model
the uncertainty level of motion based on the IMU input features or the hidden markov
model (HMM) [44,45], which enables one to apply sequential modeling to further improve
the prediction performance. For instance, the exoskeleton or intelligent prosthesis might
execute the assistance when the confidence in prediction is high. Moreover, this strategy
is more suitable for doing online testing. Secondly, the different combinations of input
features extracted from sensors can result in better performance of prediction accuracy.
Hence, we want to approach more types of input features (such as from the time series
feature extraction library [36]) to compare the performances of alternatives. In addition,
the Time Series Subsequence Search Library (TSSEARCH) also can be implemented to
extract features [46]. Thirdly, we intend to implement the whole system in different types
of upper-limb-assistive robots (exoskeleton or assistive robotic arm extender) for online
testing. The online performance will be evaluated on both healthy subjects and patients.
A high-level control system will use our proposed framework to predict the desired end-
point position, and the low-level controller will command each actuated joint to position
the end-effector to the desired target position using inverse kinematics. Finally, the whole
system will be evaluated in an assistive robot with stroke patients.

7. Conclusions

In this paper, we proposed a novel human–robot interaction strategy for upper-limb-
assistive robots, which can predict the end-point position using human intention in planar
space. The proposed multi-modal wearable sensing system was used to extract physio-
logical from EMGs and MMG and kinematic features from IMUs. We analyzed combined
methods, including four onset time windows and multiple machine learning models.
The results showed that the RNN-based model has better prediction accuracy than other
traditional regression models. Moreover, the time-window selection of the proper onset
motion can enhance the prediction performance. Most importantly, only using IMUs as
a human–robot interface is sufficient to detect human motion intention in this scenario.
Therefore, it enables one to simplify the whole control system and be used clinically.
The proposed method can improve the usability of assistive robots. While detecting the
intended motion of patients, the assistive robots enable helping the user to finish the desired
motions smoothly and safely.
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