
Citation: Panda, P.; C U, O.K.;

Marappan, S.; Ma, S.; S, M.; Veesani

Nandi, D. Transfer Learning for

Image-Based Malware Detection for

IoT. Sensors 2023, 23, 3253. https://

doi.org/10.3390/s23063253

Academic Editor: Alessandra

Rizzardi

Received: 10 February 2023

Revised: 22 February 2023

Accepted: 1 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Transfer Learning for Image-Based Malware Detection for IoT
Pratyush Panda 1 , Om Kumar C U 1,* , Suguna Marappan 1 , Suresh Ma 2 , Manimurugan S 3

and Deeksha Veesani Nandi 4

1 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
2 Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
3 Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia
4 Technical Lead, Virtusa Consulting Services, Chennai 603103, India
* Correspondence: omkumar.cu@vit.ac.in

Abstract: The tremendous growth in online activity and the Internet of Things (IoT) led to an increase
in cyberattacks. Malware infiltrated at least one device in almost every household. Various malware
detection methods that use shallow or deep IoT techniques were discovered in recent years. Deep
learning models with a visualization method are the most commonly and popularly used strategy
in most works. This method has the benefit of automatically extracting features, requiring less
technical expertise, and using fewer resources during data processing. Training deep learning models
that generalize effectively without overfitting is not feasible or appropriate with large datasets and
complex architectures. In this paper, a novel ensemble model, Stacked Ensemble—autoencoder,
GRU, and MLP or SE-AGM, composed of three light-weight neural network models—autoencoder,
GRU, and MLP—that is trained on the 25 essential and encoded extracted features of the benchmark
MalImg dataset for classification was proposed. The GRU model was tested for its suitability in
malware detection due to its lesser usage in this domain. The proposed model used a concise
set of malware features for training and classifying the malware classes, which reduced the time
and resource consumption in comparison to other existing models. The novelty lies in the stacked
ensemble method where the output of one intermediate model works as input for the next model,
thereby refining the features as compared to the general notion of an ensemble approach. Inspiration
was drawn from earlier image-based malware detection works and transfer learning ideas. To extract
features from the MalImg dataset, a CNN-based transfer learning model that was trained from scratch
on domain data was used. Data augmentation was an important step in the image processing stage
to investigate its effect on classifying grayscale malware images in the MalImg dataset. SE-AGM
outperformed existing approaches on the benchmark MalImg dataset with an average accuracy of
99.43%, demonstrating that our method was on par with or even surpassed them.

Keywords: malware detection; CNN; transfer learning; ensemble; autoencoder; GRU; MLP; MalImg

1. Introduction

The relevance of cybersecurity has grown significantly as a result of the increased
reliance on computer systems, the Internet, wireless networks, and the expansion of smart
devices that make up the IoT. The term “cybersecurity” [1] describes the process of defend-
ing our computer networks and systems against unauthorized access, theft, and damage to
electronic data, hardware, or software, as well as against service interruption or rerouting.
Cybersecurity is a serious worry due to the complexity of information systems today. The
major goal is to ensure that the system is trustworthy and that all its components are intact.
Numerous cyber-attacks, such as denial of service (DoS), distributed denial of service
(DDoS), direct-access attacks, phishing, eavesdropping, reverse engineering, side-channel
attacks, malware attacks, etc., occur every second.

With the shift of focus to cloud computing, there is a major concern regarding the
privacy of its users [2,3]. A distributed cloud storage approach using an encryption

Sensors 2023, 23, 3253. https://doi.org/10.3390/s23063253 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063253
https://doi.org/10.3390/s23063253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-9812-3055
https://orcid.org/0000-0003-2866-0281
https://orcid.org/0000-0002-0830-1110
https://orcid.org/0000-0002-3796-3623
https://orcid.org/0000-0003-1837-6797
https://doi.org/10.3390/s23063253
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063253?type=check_update&version=1

Sensors 2023, 23, 3253 2 of 30

technique to prevent the data mining attacks launched on a single cloud storage system
was proposed in [4], which increased the workload of an attacker, thereby increasing
privacy and ensuring reliability. A spike in IoT botnet flash attacks on social networking
sites and IT industries were observed, which were addressed with the use of machine and
deep learning techniques ([5–8]). Even though IoT paved our way in development, it also
opened up an opportunity for attackers to use botnets from remote locations to invade our
privacy and snatch our data. Any kind of attack mentioned previously is possible using
these botnets. Different types of IDS, or intrusion detection systems, were developed to
investigate any suspicious activity or network traffic to alert us. Many authors implemented
IDS using machine and deep learning algorithms with the objective of not only identifying
suspicious activities but also taking the appropriate measures to reduce or eliminate those
attacks [9–13].

Malware assaults have recently dominated all other attacks in terms of frequency and
severity. Malicious programs or pieces of code that disrupt computer networks, allow illegal
access, deny access to information, reveal private information, etc., as well as interfere with
security and privacy, fall under the general term ‘malware’ [14], often known as ‘malicious
software’. Trojan-horse, worms, viruses, spyware, ransomware, etc. are some examples
of well-known malware. Every home practically has at least one gadget that might be
infected by malware, and the number of malware and their varieties is growing daily. By
the end of 2020, 5.22 billion people worldwide—or 66% of the world’s population—were
smartphone users (DataReportal, 2021) [15]. A 1.8% rise over the year-end total for 2019 was
achieved in 2020 with the addition of 93 million users. The most common OS for mobile
devices was found to be Android [16]; in fact, it was used in many devices, including
smartphones, tablets, wearables such as smartwatches and augmented reality headsets,
and mobile devices such as smartphones and wearables. Given the widespread use of the
Android OS and the fact that it is open-source, along with the sensitive data we constantly
keep on our mobile devices, rogue code authors create ever more aggressive codes every
day intending to steal our data [17–19].

Malware has become a dynamic ecology because of the ongoing tension between
security experts and hackers. Despite the long-term tendencies that can be seen in the
reports comparing year over year, changes in the malware ecosystem occur every year.
Although there are many anti-virus mechanisms in place, hackers and cybercriminals
never give up easily, particularly if there is profit from infection. As hackers adapt their
strategies to target fresh or seldom-used vulnerabilities, certain formerly well-liked varieties
of malware seemed to be losing ground in 2022 [20]. Indications suggest that hackers are
turning to discrete infections via email and the Internet of Things. Particularly in the case
of ransomware infections, there is a persistent focus on big enterprises and governments as
opposed to regular online users.

In 61% of the organizations in 2020, there was employee-to-employee malware activity.
That percentage increased to 74% in 2021 and 75% in 2022. A total of 97% of firms experi-
enced mobile risks, as noted by the security specialists at Check Point in the Mobile Security
Report [21] in 2020. Additionally, 46% of businesses had a minimum of one individual who
accessed a harmful mobile application. As of 7 August 2022, individuals attempting to
access websites flagged as harmful by Safe Browsing saw almost four million browser warn-
ings, according to Google’s Transparency Report [22]. The Statista Research Department
published a report on 3 August 2022 [23] concerning the increased ransomware assaults
which stated that there were about 236.1 million attacks globally in the first half of 2022.
Five billion dollars USD in damage costs were reported in 2017, as well as eight billion
dollars USD in 2018, eleven-and-a-half billion dollars USD in 2019, twenty billion dollars
USD in 2021, and two-hundred-and-sixty-five billion dollars USD of damage costs by 2031
were reported and forecasted, respectively (Cybersecurity Ventures [24] for Ransomware).
Some of the main effects of a malware assault include network failure, loss of important
data, a rise in outgoing traffic, a slow computer, insufficient storage, unwelcome programs,
DoS, DDoS, etc. Based on these reports, considering that malware created such chaos,

Sensors 2023, 23, 3253 3 of 30

finding quick and trustworthy methods to recognize malware and minimize their impact is
urgently needed.

Over time, malicious software evolved and became more sophisticated. The use
of anti-virus software is a part of the traditional method. The detection approach used
by antivirus is frequently signature-based. A specific type of malicious software can
be identified exceptionally well using signature-based identification, which searches for
predetermined byte groups within an object. Since the new software signatures are not
kept in the database, the biggest drawback is that it cannot detect malicious software that is
zero-day in nature [25]. The anti-virus software, hence, is unable to obtain a fresh malware
signature in time to detect new malware variants.

To fundamentally overcome the drawback of the signature-based approach, behavior-
based recognition was developed. Instead of searching for the malware’s signature, it
filters the framework’s behavior to identify any anomalous behaviors. The behavior-based
process is limited by how long it takes the system to execute and how much more storage is
needed. The program’s behavior during execution is the main emphasis of this approach. If
a program runs normally, it is designated as benign; if not, malware is designated as the file.
By dissecting the behavior-based method, we can particularly assume that its drawback is
the production of a large number of misclassifications, given the ease with which a genuine
application may be identified as malware or may run as a regular program.

Static analysis and dynamic analysis are the two main divisions used to classify mal-
ware analysis technology in the research community [26]. Malware can be rapidly identified
using static analysis, but it can be concealed using packaging and other obfuscation tech-
niques. Though it is susceptible to virus evasion, dynamic analysis successfully addressed
the limitations of static analysis technologies. When solving the malware evasion issue
in dynamic analysis, it is possible to circumnavigate software feature constraints by em-
ploying hardware features. It was demonstrated in [27] that malware may be effectively
categorized by utilizing performance counters (such as IPC, cache behavior, memory be-
havior, etc.) to extract hardware attributes. In [28], hardware performance counters (HPC)
were employed in conjunction with unsupervised techniques to detect malware based on
the aforementioned studies. The classification accuracy of the aforementioned method,
however, was not sufficient to accurately explain the behavior of malware using HPC.

The ability to deconstruct and analyze software in various ways is often heavily
restricted in contemporary malicious software. Malware is often modified using obfuscation
techniques, which involve altering the syntax of the code to make it more difficult to analyze
while still preserving its functionality. Reverse engineering malware is more challenging
when obfuscations are combined with the code optimization mechanisms often built into
compilers. Obfuscations bring the task of malware classification into the scenario. The
classification of malware is carried out using a variety of ML techniques, from models that
need human feature engineering before training to DL models that can work directly with
raw data.

Deep learning methods are inclined to overfit when they are trained on small-sized
datasets, which is one of its disadvantages when compared to shallower models [29]. This
can be an issue in disciplines such as program analysis, particularly in the categorization
of malware, because it consumes much time and many resources for acquiring adequate
instances with the actual information. Other industries, such as image identification and
categorization, also frequently experience this issue [30]. The problem of not having enough
training data can be readily solved in the domain of vision because new instances can
be produced from previous knowledge by using some algorithmic modifications to the
malware images, that do not change their semantics. This whole process is termed data
augmentation and is an essential component of DL. It was first introduced in [31].

The visualization approach rose through the ranks of malware detection. Malware
binaries present in the datasets or extracted from the opcodes are converted into grayscale or
color images for examination and detection. Different types of image processing techniques
were used for feature extraction and maintaining image uniformity. The combination

Sensors 2023, 23, 3253 4 of 30

of deep learning algorithms and visualization techniques was widely utilized and was
proven to be beneficial. Deep learning models learn malware properties more accurately
when trained on malware images. Deep learning models based on CNN are most utilized.
Transfer learning [32] is yet another idea in malware analysis. It is the use of knowledge
gained from accomplishing one activity to assist in the resolution of a separate, but related,
challenge. In the context of machine learning (ML), this means that the layers’ learned
parameters and weights from deep learning models trained over one collection can be
applied to the analysis of some other collection. Transfer learning reduces training time by
a significant amount for large datasets.

Transfer learning can be used to perform two types of tasks: classification and feature
extraction. Pre-trained models in general are used mainly for two purposes, either for
classification or feature extraction. ResNet34, ResNet50, VGG-16, ResNet101, and so on are
a few examples. Pre-trained models are models that have already been trained to address
a particular issue. As opposed to building a new model from scratch to address a similar
problem, we start with the model that has been trained on another problem [33]. They are
mostly CNN-based models.

The manuscript is structured as follows: Recent methods are elaborately discussed
in Section 1.1, followed by the current study in Section 1.2. The proposed method and its
mathematical expressions along with the datasets used are discussed in Section 2. The
classification output results obtained by the proposed technique are specified in Section 3,
following its detailed analysis through benchmarking in Section 4. Finally, the complete
work is concluded in Section 5.

1.1. Literature Survey

Marastoni et al. [34] presented a custom-trained transfer learning approach for mal-
ware detection. They used a custom OBF dataset prepared using obfuscation techniques
for training the CNN model as a transfer-learned model. Another CNN and LSTM model
were trained using the MalImg and MsM2015 dataset to verify prediction accuracy and
used these models to predict each other’s malware dataset. They proposed the use of
bicubic interpolation for image size uniformity and achieved on-par accuracy for LSTM.
However, transfer learning demonstrated average accuracy without data balancing, the
obfuscation techniques required improvement, and the models required fixed-size images,
which increased the time needed for data pre-processing.

Casolare et al. [35] focused on the work of malware detection in Android applications.
They employed a bespoke dataset of Android APK files from the Android malware repos-
itory, which were transformed into images, and then trained on well-known supervised
machine-learning models such as J48, LMT, RF, RT, and REP Tree. The models achieved an
accuracy of over 90% on the training data without using any benchmark datasets or data
augmentation techniques. Their proposed approach identified whether the samples were
malicious or benign, rather than detecting the specific malware classes. The difference in
the datasets was based on the time difference during the creation of the obfuscated malware
samples. This led to a decline in the model’s performance.

Kim et al. [36] proposed the use of CNN and MLP models for the analysis and detection
of malware samples. They used the widely available Microsoft Malware dataset for their
approach. To identify the group in which malware resides, portions of the dataset’s data
were removed and transformed into an abstract visual graph. The degree of similarity
between this malware was found using comparative analysis. Artificial intelligence deep
learning was found to be an effective tool for quickly and accurately detecting malware
through imaging. This method surpassed the traditional signature-based approach and
could detect newly emerging malware. However, the MLP classifier was found to be
unreliable and needed to be improved.

Khan et al. [25] proposed the use of EXE files for malware samples that were changed
into opcodes and then into images for training and validation of two types of pre-trained
models available—GoogleNet and ResNet. Their approach could convert the vindictive

Sensors 2023, 23, 3253 5 of 30

code into images. A small change in the image showed that there could be a large impact
on the classification. This method outperformed existing dynamic and static methods.
However, the pre-trained models are complex and require a great deal of expertise. It took
more execution time and had a large validation loss.

Dai et al. [26] employed a hardware feature method in which a storage dump file’s
contents were retrieved, turned to grayscale images, and then converted again into fixed-
size images. Using the histogram of gradient, the image feature was retrieved. They used
machine learning models such as MLP, KNN (K = 3 and 5), and Random Forest for malware
classification. This method proved to be superior to dynamic methods and hardware
features. The proposed system was unable to detect malware across the entire system and
may have missed certain hardware components. The shallow models used resulted in
sub-optimal accuracy without data balancing.

Singh et al. [37] proposed the method of converting the executables into image rep-
resentation to eliminate the difficulties faced during static and dynamic analysis of the
custom dataset created by collecting malware samples from the MalShare, VirusShare, and
VirusTotal repositories. These data, along with images from the MalImg dataset, were uti-
lized for validating the CNN and CNN-based ResNet-50 models. A visualization approach
was used for the converted RGB images. The results were compared to the accuracy results
of publicly available datasets. The performance was low for packed or previously unseen
malware. The obfuscation technique evaded the visualization approach. The heavy-weight
models used require extensive knowledge.

Venkatraman et al. [38] developed a brand-new, coherent hybrid neural network-based
visualization technique. It described how to identify malware using image-based methods.
The hybrid model was based on CNN BiLSTM and CNN BiGRU. The proposed models
were validated on the BIG2015 and MalImg datasets. The performance was measured using
various similarity measures. The scalability was noted by comparing it with available large
malware datasets. This method employed similarity extraction, had a low processing cost,
allowed for immediate training, and had comparable results. However, these were complex
processing methods and require extensive knowledge of kernels and fine-tuning.

Vasan et al. [39] focused on the use of a novel ensemble CNN model for the efficient
identification of packed as well as unpacked malware. They hypothesized that a deeper
convolutional neural network (CNN) architecture would yield higher-quality features than
traditional methods. They used an ensemble of ResNet-50 and VGG16 along with SVM
on the MalImg and packed malware dataset obtained from VirusShare. Their method was
resistant to obfuscation attacks, adapted to different datasets, could identify the benign
samples, and reduced the count of misclassifications. However, constructing an ensemble
model with complex and heavy-weight neural networks requires a deep understanding of
the parameters to ensure compatibility with the other models in the ensemble.

Sharma et al. [40] employed a classification model for malware classification that made
use of CNN and other machine learning classifiers in tandem with deep learning models to
maximize their potential. With the aid of mathematical functions, these models enabled
the detection of recently published malware. CNN alone performed best on the MalImg
dataset in terms of method. The CNN-SVM model needed to be improved architecturally.
This would involve using multiple SVMs for multi-class problems, which would increase
the size of the model and, consequently, the computation time.

Naeem et al. [41] developed a novel classifier utilizing deep learning architecture
based on CNN for multiclass classification. The malware binaries were converted into color
images using a specific technique, which was then used to train a CNN tailored to ImageNet.
Data augmentation was used during the fine-tuning process. It was observed that the
RGB images outperformed grayscale images. They used the MalImg and IoT-Android
malware datasets. Their approach was resilient to straightforward obfuscation techniques.
The proposed CNN model was compared to ResNet50, VGG16, and InceptionV3 and was
found to be more efficient, with lower computational costs, better evaluation of unbalanced
data, and higher accuracy with colored images. It was also superior to other texture-based

Sensors 2023, 23, 3253 6 of 30

methods. However, this approach requires expert domain knowledge for fine-tuning
through backpropagation.

Bakour and Unver 2021 [42] proposed a generic image-based classification approach
for any file type (Manifest.xml, DEX, Manifest-ARSC-DEX, Manifest-Resources.arsc,
Manifest-ARSC-DEX-Native_jar-based image dataset) that used grayscale images from
the Android malware samples. For training classifiers such as RF, KNN, DT, Bagging,
AdaBoost, and others, the local and global features were retrieved. Both the global and
local characteristics were additionally classified using an ensemble voting classifier. They
also compared the performance of their models with ResNet and InceptionV3 models.
Their approach resulted in reduced computation time for individual classifiers and demon-
strated that global features were more precise for malware categorization. The hybrid
ensemble voting model was the most successful among all the models employed. Their
approach followed the static analysis methods and could be affected by code obfuscation
and manipulation. The model was vulnerable to injection attacks, and the ensemble model
had a longer processing time.

Kumar [43] suggested a refined CNN model called MCFT-CNN that could identify
unidentified malware without the knowledge of feature engineering, binary code evalua-
tion or reverse engineering, or even the most advanced dodging strategies. They employed
transfer-learned fine-tuned CNN (trained on ImageNet) for the identification of malware
present in the MalImg and BIG2015 datasets. The ResNet-50 model was used for compar-
ison purposes. This approach was superior to traditional and existing transfer learning
methods due to its low prediction time for unseen malware, high generalizability, and
lack of need for feature engineering. Data augmentation was not taken into consideration
here. This approach necessitates specialized knowledge of the domain and the models used
necessitate uniform image size as input for categorization.

Anandhi et al. [44] transformed the malware into Markov images along with the use
of a Gabor filter to preserve the semantic information stored in them. The VGG3 and
finely-tuned DenseNet201 models were then developed and trained on MalImg, BIG2015,
and some benign samples that were collected, using this approach. The combination of
Markov images and the Gabor filter proved to be more accurate for malware detection with
less detection and execution time. The DenseNet201 model is a heavy-weight model with
201 layers and both models require uniform image size as input. Data augmentation could
have been used in this approach for testing its effect on accuracy.

Pant et al. [45] focused on detecting the malware in grayscale image form. The VGG16
model, which was pre-trained, was used for transfer learning. Custom CNN achieved
higher accuracy than VGG16, ResNet-18, and InceptionV3 when tested on the MalImg
dataset. The custom CNN model outperformed the pre-trained models due to its ability to
process non-uniform and limited data for malware classification.

Kumar et al. [46] leveraged the deep CNN architecture previously trained on ImageNet
for classification. A CNN model was trained using grayscale images generated from
Windows Portable Executable files as input. Early stopping was employed to prevent
overfitting. The models were validated on two benchmark datasets—MalImg and BIG2015.
The results obtained were comparable with other pre-trained models (VGG16, VGG19,
ResNet50, and InceptionV3). The custom CNN was resilient to packed and encrypted
malware. The models used were heavy-weight and the CNN was not trained on domain
data. Fine-tuning the models proved to be challenging, and data balancing was not taken
into account.

Kalash et al. [47] presented a general DCNN architecture for identifying malware.
This method did not use manually created feature descriptors; instead, it learned the
distinguishing representation from the data itself. The experiments were conducted on the
MalImg and Microsoft benchmark datasets. When compared with the winning answer
for the Microsoft Kaggle challenge, it incorrectly classified only three malware samples
rather than fifteen. Though misclassification was less, it could not be compared to the

Sensors 2023, 23, 3253 7 of 30

winner’s solution as it used only ‘.bytes’ files instead of both ‘.bytes’ and ‘.asm’ files. The
GIST + SVM approach was not very effective and needed improvement.

Unver and Bakour 2020 [48] generated three grayscale image datasets based on the file
types (Manifest file-based image dataset, DEX code-based image dataset, Manifest-DEX-
ARSC image dataset) which contained both malware and benign samples. They extracted
both the local and global features and trained six different machine learning classifiers
including RF, KNN, DT, Bagging, and Gradient Boost. They proposed a generic method that
could be used for any type of app when converted into images. This approach demonstrated
superior accuracy and faster computation time compared to previous dynamic and static
analysis methods. The AdaBoost model turned out to be superior among all the classifiers.
Their approach used static analysis techniques, which could be circumvented by code
obfuscation and manipulation. It was not secure against injection attacks.

Jin et al. [49] divided the gathered malware data into various malware classes, then
transformed them into image-type data. By retrieving the local features, they created
an algorithm to uniformize training image size. Their proposed design was a set of
autoencoders that incorporated CNNs for malware detection within their internal layers.
They experimented on the dataset obtained from the Andro-Dumpsys study carried out by
a Korean university to demonstrate the feasibility of their method. Autoencoders used an
unsupervised detection method by observing the error value in malware reconstruction.
With only a limited amount of data, the model was able to identify the relationship between
malware data. It demonstrated superior performance and was able to withstand attempts
to manipulate it. There was a separate encoder for each malware which increased the
complexity and redundancy and decreased its scalability. It identified uncollected malware
as benign and requires more resources and time.

Bakour and Unver 2021 [50] suggested a unique model in the field of malware classi-
fication called as DeepVisDroid, which focused on fusing deep learning techniques with
image-based attributes. Four datasets of grayscale images were created by extracting ma-
licious and benign datasets from the APK archives. DeepVisDroid was a 1D CNN-based
model trained on local and global features. They also proposed 2D CNN and CNN inspired
by VGG16 models. ResNet and Inception-V3 models were used for comparison purposes.
Less computation time was observed for the global features-based DeepVisDroid model.
DeepVisDroid based on ORB and KAZE features had less computation time than the other
two features—SIFT and SURF. When compared to other models, DeepVisDroid proved to
be more accurate and cost-effective. However, it was unable to detect obfuscation and code
camouflage techniques such as injection attacks.

Lo et al. [51] employed a novel technique utilizing deep CNN and the Xception model
to categorize the malware types. The Xception model was pre-trained on ImageNet, in-
dicating that transfer learning was employed for the classification task. The evaluation
was conducted using the MalImg and Microsoft malware datasets. This method was more
flexible and effective in adapting the malware evolution. The Xception model took less
time and did not require domain expertise. This reduced the problem of overfitting and
produced similar results. To optimize these heavy-weight models, a thorough understand-
ing of them is necessary. Additionally, knowledge of the conversion process of ‘bytes’ and
‘asm’ files into images is necessary. Data augmentation was not taken into consideration.

Parihar et al. [52] proposed the S-DCNN model to tackle the malware detection
problem by utilizing the ideas of ensemble learning and TL. The S-DCNN model comprised
three CNN models, namely Xception, ResNet50, and EfficientNet-B4. The heterogeneous
information of each intermediate model was combined through the ensemble technique,
producing models with high generalizability and low variance. It did away with the older
usage of reverse and feature engineering, deconstruction, as well as other domain-specific
techniques. The model was tested using MalImg [53] and data obtained from VirusShare.
The ensemble model contained three highly heavy-weight pre-trained models and data
augmentation was not taken into consideration. Such models could be complex to handle
and understand.

Sensors 2023, 23, 3253 8 of 30

Darem et al. [54] focused on the work of malware classification or identification by
using the obfuscated malware opcodes present as ASM files that were converted into
grayscale images during the processing stage. The images were generated based on the
features extracted during the feature engineering stage. Opcode, segment, and pixel count
were the three primary features, whereas the number of lines and characters were the
secondary features that were extracted and analyzed with the help of Random Forest. An
ensemble semi-supervised approach combining CNN and XGBoost models was used for
the classification purpose. The proposed model fared well with a 99.12% accuracy score
when compared with other approaches. In this approach, no such benchmark dataset was
utilized and it required extensive pre-processing tasks and knowledge. A small dataset
containing only nine types of malware was used in this approach.

Roseline et al. [55] employed an ensemble Deep Forest algorithm which was similar to
deep learning techniques along with the vision-based approach. The model used fewer
hyper-parameters and, hence, did not require too much tuning. Different types of forests
and random sampling were carried out for the high dimensional data. The ensemble model
was used along with three benchmark datasets—MalImg, BIG2015, and Malevis. Their
model demonstrated superior generalizability, accuracy, precision, and reduced compu-
tational overhead. The proposed approach learned patterns from the data itself, rather
than relying on specially extracted features, resulting in a simpler model, and avoiding
overfitting. Multiple experiments were conducted based on different forest combinations.
The efficiency of the approach was tested by classifying an unseen benchmark dataset,
Malicia. It surpassed other deep learning and shallow machine learning models in terms
of accuracy, precision, and f1-score. Data augmentation was not considered while the
experiments were conducted.

Ding et al. [56] used the bytecode image of malware APKs to focus on the work of An-
droid malware detection. They employed a general CNN model for classification purposes.
Multiple experiments were conducted based on the number of convolutional layers present
in the CNN model. They suggested utilizing simpler data processing and categorization
methods, as well as creating higher-order feature maps based on CNN maps to enhance the
learning capacity of the models. For their purpose, they used a malware dataset provided
by the DRE-BIN project conducted by the University of Gottingen along with 1000 benign
samples. The malware dataset used was of small size, with only 14 malware families. This
approach was able to detect encrypted malware that evaded traditional detection methods,
without the use of a benchmark dataset or data augmentation. They achieved a satisfactory
accuracy score but did not outperform other existing deep learning approaches.

Ngo et al. [57] performed a complete experimentation on the existing approaches based
on static analysis for IoT malware detection. The static characteristics included CFGs, strings,
opcodes, grayscale images, file headers, etc. For the grayscale image-based approach, they
employed a CNN model. For other characteristics, shallow ML models such as KNN,
DT, SVM, RF, etc. were used. All the experiments were conducted on an IoT malware
dataset provided by the IoTPOT team and VirusShare. Some benign samples obtained from
IoT SOHO were combined along with the malware dataset. The ELF-header, String-based,
Opcode-based, and PSI-graph approaches fared well when compared to the grayscale image-
based approach. The accuracy of the image-based approach was reduced when obfuscation
or encryption techniques were applied. Despite this, it demonstrated impressive scalability
due to its ability to protect against node failures and its straightforward design. In this
approach, the benchmark dataset was not utilized for any of the experiments.

Huang et al. [58] focused on the work of detecting malware present in Windows
OS. They proposed a hybrid visualization approach along with deep learning models for
malware classification. Both static and dynamic analysis methods were used to obtain the
hybrid technique. In this approach, they utilized a Cuckoo Sandbox to perform the dynamic
analysis. If the dynamic visualization was for malware, the hybrid visualization would
also not work. In the visualization process, they obtained RGB images instead of grayscale
images. No such benchmark dataset was used. A collection of malware and benign samples

Sensors 2023, 23, 3253 9 of 30

obtained from ‘virussign.com’ was obtained. The hybrid images were trained on a VGG16-
based neural network model. The model trained on hybrid images outperformed the model
trained only on static visualized images. Overall, the proposed approach outperformed a
few of the existing approaches by achieving a satisfactory accuracy score. The proposed
model was not trained sufficiently on old malware types and required a continuous update
to increase its ability to identify unknown malware. The whole implementation was carried
out on a VM with limited installed applications; thus, the actual behavior of the malware
could be found during the dynamic analysis method.

Naeem et al. [59] proposed a hybrid architecture that combined the knowledge of im-
age visualization and deep learning models for malware detection in the field of industrial
IoT. This research focused on the utilization of color images. To evaluate their approach,
two datasets were employed: the Leopard Mobile dataset and the MalImg dataset. These
datasets were used to compare the results with other methods. Initially, the APK files were
converted into color images during the processing stage. Then, the images were directly
sent as input to deep CNN models for training and classification. The experiments were
conducted for two different image dimensions, i.e., 224 × 224 and 229 × 229. The proposed
model achieved better and higher accuracy for the benchmark MalImg dataset when com-
pared to the Leopard Mobile dataset. The images with dimensions 229 × 229 returned
better results when compared to the images with 224 × 224 dimensions. This approach was
widely adopted by many authors recently and no data balancing was conducted during
the data pre-processing stage. The classification time for the proposed method was longer
than other algorithms that had been used before.

He et al. [60] also focused on CNN-based models to classify malware by using image
representations. The primary objective of the study was to assess the efficacy of the
proposed model in combating superfluous API injections. To this end, they proposed the
use of spatial pyramid pooling (SPP) layers to address the issue of varying input image
sizes. The notion was to reduce the data loss because of fixed input image size. They used
both color and grayscale images in their implementation. The dataset used was obtained
from the Andro-Dumpsys study conducted by Korea University. The results obtained
implied that RGB images worked better with the ResNet model, whereas the grayscale
images worked better with the simple CNN model. RGB images were not as effective as
grayscale images when it came to detecting redundant API injection. Additionally, the use
of the SPP layer in the classification task was not successful due to memory limitations.
The models used were not optimized properly to achieve the author’s goal. Redundant
instructions were injected at the binary level as compared to the source code level because
of dataset constraints which might have been altered by the compiler, resulting in a different
type of outcome.

Su et al. [61] proposed a CNN-based approach to mitigate the risks of DDoS attacks in
the IoT environment. They used a two-layered light-weight CNN model to classify the mal-
ware dataset which was prepared by using benign samples collected from their Ubuntu’s
System files and malware samples from the IoTPOT dataset. In the pre-processing stage,
the malware binaries were converted into image representation and data balancing was
carried out. Two different types of experiments were conducted—two-class classification,
where samples were classified as benign or malware, and another three-class classification,
where classification was carried out between two malware classes and a benign class. The
two-class classification yielded a better result than the three-class classification experiment.
No advanced image processing techniques or complex models were employed in this
model, which made it susceptible to obfuscation techniques.

Asam et al. [62] designed a CNN-based malware detection architecture in IoT called
iMDA. Edge exploration and smoothing, multi-path expanded convolutional operations,
and channel compressing and boosting in CNN were just a few of the feature learning
schemes that were included in the proposed iMDA’s modular design and were used to
learn a variety of features. Edge and smoothing operations that were implemented in the
split-transform-merge (STM) blocked learn the variations in the malware classes. The multi-

Sensors 2023, 23, 3253 10 of 30

path expanded convolutional procedure was employed to identify the overall malware
pattern structure. Concurrently, channel compressing and merging assisted in controlling
complexity and obtaining a variety of feature maps. Data augmentation was carried out in
the initial processing stage. On a benchmark IoT Malware dataset, the proposed iMDA’s
performance was assessed and contrasted with several state-of-the-art CNN architectures
such as AlexNet, VGG16, ResNet50, Xception, GoogleNet, etc. The proposed model
demonstrated superior performance compared to existing models when applied to the IoT
Malware dataset. Its impressive ability to distinguish between malicious and benign files
suggested that it could be extended to include both IoT Elf files and malware detection for
Android-based devices.

Makandar and Patrot [63] used machine learning models such as SVM and KNN
(K = 3) for malware classification. The Gabor Wavelet, GIST, Discrete wavelet Transform,
and other features were employed to construct an efficient texture feature vector using
multi-resolution and wavelets. These feature vectors were used to train the models. Feature
selection was carried out using Principal Component Analysis (PCA). The Malheur and
MalImg datasets were used for classification purposes. The SVM model achieved an
average accuracy of 98.88% over all the malware families, whereas the KNN (K = 3) model
achieved an average accuracy of 98.84%. The KNN model achieved the best results with
the Euclidian distance metrics. Overall, the SVM model was better than the KNN approach.
The classification error obtained was much less compared to the existing methods. Data
balancing was not performed in this approach. Table 1 presents a comprehensive overview
of the literature review, including information on the techniques employed, datasets used,
objectives, and limitations.

Table 1. Literature Review Summary.

Author Publication
Year

Technique Dataset Used Objectives Limitations

Marastoni
et al. [34]

2021 CNN, LSTM OBF dataset (Custom
dataset), MalImg, MsM2015

Effect of bicubic
interpolation and

custom-trained TL on
malware detection.

TL average, Fixed size,
obfuscation techniques,

data balancing.

Casolare
et al. [35]

2022 J48, LMT, RF, RT, REP
Tree

Custom dataset on Android
APK from Android

malware repo.

Malware detection in
Android applications.

No benchmark data, data
balancing, not detect malware

family, time diff. leads
to decline.

Kim et al.
[36]

2017 CNN, MLP Microsoft Malware Identify groups in which
malware resides and

detect emerging malware.

Unstable MLP, model
enhancement,

and data balancing.

Khan et al.
[25]

2018 GoogleNet, ResNet18,
34, 50, 101, 152

Microsoft Malware, Benign
software opcodes converted

to images.

Use .EXE files as images
for malware

identification.

Heavy-weight, extensive
knowledge, more execution
time, large validation loss,

data balancing.

Dai et al.
[27]

2018 MLP, KNN, RF VirusTotal Malware detection using
storage dump file’s
content as images.

Unable to find malware in full
system, hardware feature
overlooked, shallow ML

models, data balancing, below
par accuracy.

Singh et al.
[37]

2019 CNN, ResNet-50 Custom Dataset—Malshare,
VirusShare, VirusTotal.

MalImg

Eliminate difficulties
during static and

dynamic analysis by
using image

representation of
executables.

Low for packed or unseen,
obfuscation evades

visualization, heavy-weight,
data balancing, and undetected

evasive malware.

Venkatraman
et al. [38]

2019 CNN, CNN BiLSTM,
CNN BiGRU

BIG 2015, MalImg Identify malware using
image-based methods

and hybrid models.

Complex processing, extensive
knowledge of kernels, and

fine-tuning.

Sensors 2023, 23, 3253 11 of 30

Table 1. Cont.

Author Publication
Year

Technique Dataset Used Objectives Limitations

Vasan et al.
[39]

2020 Ensemble of
ResNet-50 and
VGG16, SVM

MalImg, Packed malware
data from VirusShare

Identification of packed
and unpacked malwares.

Complex ensemble, requires
extensive NN knowledge,

heavy-weight,
and data balancing.

Sharma
et al. [40]

2020 CNN, CNN-SVM MalImg Maximize potential of
CNN and other ML
models for malware

classification.

Architectural improvement,
multiple SVMs for multiclass,

increased model size,
and data balancing.

Naeem
et al. [41]

2020 Fine-tuned CNN
trained on ImageNet,
VGG-16, ResNet-50,

Inception

MalImg, IoT-Android
Mobile dataset

Develop a novel
CNN-based classifier for

multiclass malware
classification.

Requires expert domain
knowledge for fine-tuning
through backpropagation.

Bakour, K.,
and Unver,
H. M. [42]

2021 RF, KNN, DT,
Bagging, AdaBoost,

Gradient Boost,
Ensemble Voting
Classifier, ResNet,

Inception-V3

Manifest.xml, DEX,
Manifest-ARSC-DEX,

Manifest-Resources.arsc,
Manifest-ARSC-DEX-

Native_jar-based
image dataset.

A generic image-based
classification for any file
type that uses grayscale
images from Android

malware samples.

Static analysis, impacted by
tampering and code

obfuscation, injection attacks,
hybrid classifier higher time.

Kumar, S.
[43]

2021 TL fine-tuned CNN
trained on ImageNet,

ResNet-50

MalImg, BIG 2015 Refined CNN to identify
unidentified malware

without extensive
processing and

evading strategies.

Requires expert knowledge,
data balancing, Uniform image

size, and Common
CNN-based models.

Anandhi
et al. [44]

2021 DenseNet201, VGG3 MalImg, BIG 2015, Some
benign samples.

To preserve the semantic
information by

converting malware into
Markov images using

Gabor filter.

Uniform image size,
heavy-weight, data balancing.

Pant et al.
[45]

2021 Custom CNN,
VGG16, Resnet-18,

Inception-V3

MalImg To detect malware in
grayscale image form.

Insufficient data, non-uniform
data, pre-trained model inferior.

Kumar
et al. [46]

2022 CNN trained on
ImageNet, VGG16,
VGG19, ResNet50,

Inception V3

MalImg, Microsoft BIG Detect malware from files
obtained by converting
Windows PE files into

grayscale images.

Heavy-weight, data balancing,
difficult fine-tuning, CNN

trained on general data.

Kalash
et al. [47]

2018 GIST-SVM, CNN MalImg, Microsoft Malware Develop a deep CNN
model for malware

identification using a
self-learning approach.

Approach not comparable to
existing solution-based on the

file types, GIST-SVM not
effective needs improvement.

Unver, H.
M., and

Bakour, K.
[48]

2020 Random Forest,
KNN, DT, Bagging,
AdaBoost, Gradient

Boost

Manifest file-based image
dataset, DEX code-based

image dataset,
Manifest-DEX-ARSC image

dataset and Android
Malware Dataset.

A generic method for any
type of app when

converted into images for
malware detection.

Static analysis methods,
impacted by tampering and
code obfuscation, not detect

injection attacks,
no data balancing.

Jin et al.
[49]

2020 CNN based
Autoencoders

Dataset obtained from
Andro-Dumpsys study

conducted by Korea
University.

Detect malware using
CNN-based autoencoders
using uniform image size.

Uses small dataset, identifies
uncollected malware as benign,
separate encoder for malware,

high complexity and
redundancy, more resources

and time.

Bakour, K.,
and Unver,
H. M. [50]

2021 DeepVisDroid (1D
CNN) trained on
local and global

features, 2D CNN,
CNN inspired by

VGG16, ResNet ad
Inception-V3.

Manifest.xml file-based
dataset, DEX code
files-based dataset,

Manifest and
Resources.arsc files-based

dataset, and Manifest,
Resources.arsc and Dex

files-based image dataset.

To detect malware by
fusing deep learning

techniques with
image-based attributes.

High computation time, fail to
acknowledge the obfuscation
and camouflage used in code

and commonly used
pre-trained models.

Sensors 2023, 23, 3253 12 of 30

Table 1. Cont.

Author Publication
Year

Technique Dataset Used Objectives Limitations

Lo et al.
[51]

2019 Xception model
pre-trained on

ImageNet, Ensemble
of Xception.

MalImg, Microsoft Malware Convert ‘bytes’ and ‘asm’
into images for malware

detection using
DL models.

Heavy-weight models, requires
extensive knowledge,

no data balancing.

Parihar
et al. [52]

2022 S-DCNN
(Comprising

ResNet50, Xception,
EfficientNet-B4) ad

MLP

MalImg
VirusShare

Tackle the malware
detection problem using
ensemble and transfer

learning.

Heavy-weight ensemble model,
no data augmentation.

Darem
et al. [54]

2021 Ensemble—CNN and
XGBoost

Small custom dataset with 9
malware types.

Detect malware using
grayscale images of
obfuscated opcodes

present as ASM files.

No benchmark dataset, requires
extensive knowledge,

time-consuming.

Roseline
et al. [55]

2020 Ensemble Deep
Forest

MalImg
BIG2015
Malevis

Malicia (for validation)

Use ensemble deep forest
algorithm along with a

vision-based approach for
high dimensional

malware data.

No data augmentation.

Ding et al.
[56]

2020 CNN Dataset provided by
DRE-BIN project.

Use bytecode images of
malware APKs for
Android malware

detection.

No benchmark dataset, small
data, no data augmentation,

and average results.

Ngo et al.
[57]

2020 Grayscale
image—CNN

Other
features—KNN, DT,

SVM, RF, etc.

IoT malware dataset by
IoTPOT, IoT SOHO and

VirusShare

Experimentation on
existing methods of static

analysis for IoT
malware detection.

Average results with
obfuscation and encryption,

no benchmark data.

Huang
et al. [58]

2021 VGG16 Malware + benign samples
from ‘virussign.com’

To detect malware
present in Windows OS

using hybrid
visualization technique.

No benchmark data, unable to
identify unknown samples,

average results.

Naeem
et al. [59]

2020 CNN Leopard Mobile
MalImg

Using image
visualization and DL
models for malware

detection in
industrial IoT.

No data balancing, more
classification time.

He et al.
[60]

2019 CNN with SPP layers
ResNet

Data from Andro-Dumpsys
study

Assess efficacy of
CNN-based model in

combating superfluous
API injections in malware

detection domain.

SPP led to memory limitations,
dataset constraints, and models

not optimized.

Su et al.
[61]

2018 2-layered CNN Data from Ubuntu System
files and IoTPOT dataset.

Using CNN-based
approach to mitigate

risks of DDoS attacks in
IoT environment.

Susceptible to obfuscation,
time-consuming data

pre-processing.

Asam et al.
[62]

2022 CNN
AlexNet
VGG16

ResNet50
Xception

GoogleNet

IoT Malware Dataset Develop a CNN-based
model to detect malware

in IoT.

Complex CNN design,
time-consuming process.

Makandar,
A., and

Patrot, A.
[63]

2017 SVM
KNN

Malheur
MalImg

Malware classification by
using an efficient texture

feature vector.

No data balancing, complex
feature vector construction.

Sensors 2023, 23, 3253 13 of 30

1.2. Current Study

For malware classification, features extracted from pre-trained models were trained
and categorized using models such as Logistic Regression, SVM, Random Forest, Decision
Tree, and so on. Although pre-trained models offer the advantage of faster training and
good accuracy, they also have certain drawbacks. Pre-trained models are heavy-weight
complex models that require more resources and knowledge to implement. It can be
challenging to adjust the parameters of these models to suit our requirements, as they have
not been trained on data from our specific domain.

Work carried out in the field of malware detection involves excessive dependency
on widely available pre-trained models such as GoogleNet, ResNet, VGG, Xception, and
Inception. The most-used neural network model is CNN. Shallow machine learning models
which are directly fed with features for classification include SVM, KNN, Random Forest,
Decision Tree, Bagging, AdaBoost, Gradient Boost, ensemble voting classifier, LMT, J48, etc.
The most general procedure involves the conversion of executable files such as Windows
PE files, Android APKs, bytes, .asm, etc., into images and then the application of image
recognition using deep learning algorithms. The use of pre-trained models brings the
concept of transfer learning into this scenario. Comparative work between pre-trained
and simple machine learning models such as KNN [64] has been carried out already.
The benchmark datasets that were used in this field include Microsoft BIG, MalImg, and
MsM2015. Research was also conducted on an IoT Android mobile malware dataset to
monitor malicious activity on mobile devices [41].

In this paper, two malware image datasets—Malevis [65] and MalImg [53]—were
used. Both malware image datasets underwent pre-processing, and each image was resized
to 224 × 224. Since both datasets were small, the oversampling technique was used to
increase the data. The MalImg dataset served as the baseline for evaluating the precision
of our proposed model. The Malevis dataset was used to build a CNN-based model for
transfer learning. The features of the images in the MalImg dataset were extracted using
this CNN-based model. Utilizing a transfer learning model that was developed from
scratch is what this method entailed. The proposed model was applied to the retrieved
features, which consisted of three neural network architectures that were not commonly
used for malware classification: the autoencoder, the gated recurrent unit, and the multi-
layer perceptron. The autoencoder model encodes the extracted features of each malware
image into a sequence of features that are equivalent to the types of malware present
in the dataset. To evaluate the viability of the GRU model for malware detection when
employed separately, the feature sequence obtained as output from the autoencoder model
for each instance is re-generated using the GRU model. The MLP model performs the
final classification by taking the output from the GRU model as its input. Through an
examination of the classification errors, the strengths and drawbacks of the trained models
were brought to light.

The major contributions of this work are:

• Transfer learned model trained from scratch on domain data;
• The design of a light-weight system for malware classification which consumes less

time and resources;
• No specialized domain expertise is necessary for understanding and fine-tuning

the model;
• Comprehensive comparison of methods;
• Effect of the use of data augmentation in malware detection;
• Use of a benchmark malware dataset to validate the model’s

Validation of least used DL models in the task of malware classification.

Sensors 2023, 23, 3253 14 of 30

2. Materials and Methods

Numerous proposed systems were used to identify malware, and these systems used
a variety of data processing techniques, feature extraction techniques, transfer learning
techniques, and algorithms. Previous studies used time and resource-intensive complicated
feature extraction and data processing techniques, which many attempted to make up for
by employing freely accessible pre-trained classification models or using shallow machine
learning models. These heavy-weight pre-trained models, which require expert expertise
to fine-tune the parameters, were typically learned on big image datasets that did not
correspond to the malware domain. Hence, in this paper, a straightforward data processing
method using Python 3.10.1 released by Python Software Foundation located in Wilmington,
DE, USA and a compact, basic, and easily adjustable ensemble neural network model that
leverages transfer learning for feature extraction was proposed. Figure 1 depicts our
suggested system’s fundamental architecture or workflow.

Sensors 2023, 22, x FOR PEER REVIEW 16 of 33

Figure 1. Basic architecture/work flow of the proposed system.

2.1. Datasets Used
This section details the malware datasets that were utilized in our work. Two datasets

were used—MalImg and Malevis datasets. The Malevis dataset that was used for transfer
learning is discussed below, followed by the benchmark MalImg dataset.

2.1.1. Malevis
The Multimedia Information Lab of Hacettepe University’s Department of Computer

Engineering, in partnership with COMODO Inc., Clifton, NJ, USA, compiled the open-
source Malevis dataset. There are byte pictures from 26 different classes in this corpus.
First, using the bin2png script, which was created by Sultanik, binary images in 3-channel
RGB form were extracted from malware files (provided by COMODO Inc.) to create this
corpus. The vertically long images were then resized into 2 square dimensions (224 × 224
and 300 × 300 pixels). This dataset is accessible in [66] as well as in Kaggle headquartered
at San Francisco, CA, USA.

The total RGB images in the Malevis dataset were 9100 training and 5126 validation
images. While each class in the testing dataset held a different number of images, all the
training classes had 350 image samples. The dataset’s directory structure was created so
that it could be used later without additional work. In this sense, we could use it in a
variety of deep learning frameworks, including Caffe, PyTorch, Tensorflow, and Keras.
This dataset was utilized for training the CNN-based transfer learning model for the sole
purpose of feature extraction.

Figure 1. Basic architecture/work flow of the proposed system.

2.1. Datasets Used

This section details the malware datasets that were utilized in our work. Two datasets
were used—MalImg and Malevis datasets. The Malevis dataset that was used for transfer
learning is discussed below, followed by the benchmark MalImg dataset.

2.1.1. Malevis

The Multimedia Information Lab of Hacettepe University’s Department of Computer
Engineering, in partnership with COMODO Inc., Clifton, NJ, USA, compiled the open-
source Malevis dataset. There are byte pictures from 26 different classes in this corpus.
First, using the bin2png script, which was created by Sultanik, binary images in 3-channel

Sensors 2023, 23, 3253 15 of 30

RGB form were extracted from malware files (provided by COMODO Inc.) to create this
corpus. The vertically long images were then resized into 2 square dimensions (224 × 224
and 300 × 300 pixels). This dataset is accessible in [66] as well as in Kaggle headquartered
at San Francisco, CA, USA.

The total RGB images in the Malevis dataset were 9100 training and 5126 validation
images. While each class in the testing dataset held a different number of images, all the
training classes had 350 image samples. The dataset’s directory structure was created so
that it could be used later without additional work. In this sense, we could use it in a
variety of deep learning frameworks, including Caffe, PyTorch, Tensorflow, and Keras.
This dataset was utilized for training the CNN-based transfer learning model for the sole
purpose of feature extraction.

2.1.2. MalImg

The benchmark MalImg dataset that was used in many existing works in the field
of image-based malware detection contains around 9458 malware instances distributed
among 25 different classes. This dataset contains the malware instances directly in the form
of grayscale images instead of their corresponding malware programs. This reduced the
time duration of the data processing stage by a significant amount. The executable file
bytes were quickly converted to floating-point numbers, which were then used to represent
the image’s grayscale pixel values. A severe imbalance existed between the categories in
the dataset. The largest class, (‘Allaple.A’), had 2949 instances, while (‘Skintrim.N’), had
only 80 instances.

In Figure 2, 5 malware samples of 5 different classes are shown. Images belonging to
different classes possessed distinct characteristics that made it easier to distinguish between
them. This factor drove the work in [67]. However, there were also a few classes that had
minimal differences between their patterns making it difficult to differentiate. In Figure 3,
we observed that the images of the two classes ‘Swizzor.gen!E’ and ‘Swizzor.gen!I’ were
very similar to each other. Classifying them 100% accurately was a problem even after
using many existing systems.

Sensors 2023, 22, x FOR PEER REVIEW 17 of 33

2.1.2. MalImg
The benchmark MalImg dataset that was used in many existing works in the field of

image-based malware detection contains around 9458 malware instances distributed
among 25 different classes. This dataset contains the malware instances directly in the
form of grayscale images instead of their corresponding malware programs. This reduced
the time duration of the data processing stage by a significant amount. The executable file
bytes were quickly converted to floating-point numbers, which were then used to
represent the image’s grayscale pixel values. A severe imbalance existed between the
categories in the dataset. The largest class, (‘Allaple.A’), had 2949 instances, while
(‘Skintrim.N’), had only 80 instances.

In Figure 2, 5 malware samples of 5 different classes are shown. Images belonging to
different classes possessed distinct characteristics that made it easier to distinguish
between them. This factor drove the work in [67]. However, there were also a few classes
that had minimal differences between their patterns making it difficult to differentiate. In
Figure 3, we observed that the images of the two classes ‘Swizzor.gen!E’ and
‘Swizzor.gen!I’ were very similar to each other. Classifying them 100% accurately was a
problem even after using many existing systems.

(a) (b) (c)

(d) (e)

Figure 2. Samples of malware classes from MalImg dataset: (a) Adialer.C; (b) VB.AT; (c)
Lolyda.AA3; (d) Fakerean; (e) Dontovo.A.

(a) (b)

Figure 3. Instances of Swizzor.gen!E (a) and Swizzor.gen!I (b) class in the MalImg dataset.

2.2. System Requirements
The complete implementation of the proposed model for malware detection was

carried out on a system which had Windows 11 64-bit OS with 16 GB RAM and Python
3.10.1 released by Python Software Foundation located in Wilmington, DE, USA, installed.

Figure 2. Samples of malware classes from MalImg dataset: (a) Adialer.C; (b) VB.AT; (c) Lolyda.AA3;
(d) Fakerean; (e) Dontovo.A.

2.2. System Requirements

The complete implementation of the proposed model for malware detection was
carried out on a system which had Windows 11 64-bit OS with 16 GB RAM and Python 3.10.1
released by Python Software Foundation located in Wilmington, DE, USA, installed. The
widely used and open-source Visual Studio Code was used for implementation purposes.

Sensors 2023, 23, 3253 16 of 30

The libraries Numpy 1.23.4, TensorFlow 2.10.0, Pandas 1.5.1, PIL 9.2.0, and Sklearn 1.1.2
were installed and used along with the Jupyter extension in it.

Sensors 2023, 22, x FOR PEER REVIEW 17 of 33

2.1.2. MalImg
The benchmark MalImg dataset that was used in many existing works in the field of

image-based malware detection contains around 9458 malware instances distributed
among 25 different classes. This dataset contains the malware instances directly in the
form of grayscale images instead of their corresponding malware programs. This reduced
the time duration of the data processing stage by a significant amount. The executable file
bytes were quickly converted to floating-point numbers, which were then used to
represent the image’s grayscale pixel values. A severe imbalance existed between the
categories in the dataset. The largest class, (‘Allaple.A’), had 2949 instances, while
(‘Skintrim.N’), had only 80 instances.

In Figure 2, 5 malware samples of 5 different classes are shown. Images belonging to
different classes possessed distinct characteristics that made it easier to distinguish
between them. This factor drove the work in [67]. However, there were also a few classes
that had minimal differences between their patterns making it difficult to differentiate. In
Figure 3, we observed that the images of the two classes ‘Swizzor.gen!E’ and
‘Swizzor.gen!I’ were very similar to each other. Classifying them 100% accurately was a
problem even after using many existing systems.

(a) (b) (c)

(d) (e)

Figure 2. Samples of malware classes from MalImg dataset: (a) Adialer.C; (b) VB.AT; (c)
Lolyda.AA3; (d) Fakerean; (e) Dontovo.A.

(a) (b)

Figure 3. Instances of Swizzor.gen!E (a) and Swizzor.gen!I (b) class in the MalImg dataset.

2.2. System Requirements
The complete implementation of the proposed model for malware detection was

carried out on a system which had Windows 11 64-bit OS with 16 GB RAM and Python
3.10.1 released by Python Software Foundation located in Wilmington, DE, USA, installed.

Figure 3. Instances of Swizzor.gen!E (a) and Swizzor.gen!I (b) class in the MalImg dataset.

2.3. Data Pre-Processing

Bicubic interpolation [34], conversion of APK files, .EXE files, and malware binaries
into images, conversion of the dataset into abstract visual graph [36], using hardware
features [26], visualizing malware as Markov images along with Gabor filter [44], etc.,
are some of the widely used image pre-processing techniques that have been used in
the field of malware detection. These methods require precision, time, resources, and a
good amount of knowledge before carrying them out. To conserve time and resources,
employing straightforward methods of altering the size, shape, and format of our image
data was proposed.

Both datasets contained images of malware which saved us the process of conversion
of executable malware files into images. To assess the impact of data balancing on malware
identification and classification, the oversampling technique for data augmentation was
employed. This was accomplished without the use of any Python programming techniques.
A total of 73,725 images belonging to 25 malware classes were obtained for the MalImg
dataset after data augmentation. For our purposes in this work, using images that were
224 × 224 in size was proposed. Since the Malevis dataset was available in two square
dimensions, directly the 224 × 224 sized images were used, whereas the MalImg dataset
contained images of different dimensions which were resized into 224 × 224, using the
‘resize ()’ of the Image library in Python.

Images from only one virus class at a time were processed and saved individually.
Using the ImageOps library’s ‘grayscale ()’ function, the images in the Malevis dataset
were transformed into grayscale images to achieve the efficiency of grayscale images in
malware detection as compared to RGB images. The ‘asarray ()’ function was then used
to break down the images into their pixel data. The resulting array, which contained the
pixel values of each image, was first reshaped into a 3D array of dimensions (224,224,1) so
that they could be used as input to the models. The ‘1′ here represents only 1 channel for
grayscale images. (If RGB images had been used then the value 3 would have been used).
Next, they were converted into float data type for normalization, and finally, they were
saved as “.npy” array files.

Normalization function = (Pixel Value)/(255.0) (1)

2.4. Transfer Learning

Malware detection made substantial use of the concept of transfer learning. By employ-
ing the readily accessible pre-trained models such as VGG16 [39,41,45,46], Inception-V3 [46],
Xception [51,52,62], ResNet [24,37,39,43,46,52], and others, existing works exploited trans-
fer learning in the form of feature extraction or classification. These pre-trained models
were typically developed using sizable image datasets outside the domain of our actual
work. Although these models produced positive results, it can occasionally be challenging
and complex to fine-tune these models to meet our goals for malware detection. Following

Sensors 2023, 23, 3253 17 of 30

a similar approach to [34], employing a CNN model for transfer learning trained from
scratch on the Malevis dataset was proposed.

The pre-processed data of the images in the Malevis dataset were used for training a
CNN model. The CNN-based model was built with only 12 layers, which were much fewer
than other pre-trained models such as ResNet-50, ResNet-34, ResNet-101, DenseNet-201,
Xception, etc., considering the goal of building a light-weight model. As a result, training
can take less time and use fewer resources. The CNN model contained 3 convolutional
2D layers, each of which was followed by two other layers, namely Max Pooling 2D and
Dropout layers. It then had two dense layers immediately following a Flatten layer. The
model was sequential.

The convolution kernel of the convolutional 2D layer, which was combined with the
layer’s input, yielded a tensor of outputs. When the convolutional layer was used as the
initial layer, the parameter ‘input_shape’ was set as a combination of integers or none, but
without mentioning the sample axis; for example, ‘input_shape’ = (224, 224, 1) for 224 × 224
grayscale images used in our case. The number of filters, kernel size, and activation function
was set as 32, (3,3), and ‘relu’, respectively, for each of the convolutional 2D layers with
an additional ‘input_shape’ attribute set for the first layer only. The MaxPooling 2D layer
used each input channel’s maximum value throughout an intake window of a size given by
‘pool_size’ to downsample the intake along its axes (height and breadth). A dropout layer
during the training period randomly set input units to 0 at each step to avoid overfitting.
Using a Flattening layer, the resulting 2D arrays of pooled feature maps were compressed
into a unique long continuous linear vector. A dense layer’s neurons were given one output
from the layer above, which was received by each neuron in that layer. The dense layer
applied the formula:

Output = activation (dot (input, kernel) + bias) (2)

where the following parameters describe the dense quality:

• Activation—refers to the activation function for each element;
• Kernel—refers to a weight matrix that was generated by the layer;
• Bias—is a layer-generated bias vector (applicable if using bias = True).

Figure 4 shows the detailed architecture and parameter values of our model. The
architecture of the model was plotted using Model Plotting Utilities [68] and Graphviz [69].
Only the necessary parameters were specified as values in each layer, with the remaining
parameters set to their default values. In comparison to the default parameters, the key
parameters were simpler to comprehend and alter. The 26 neurons in the last dense layer
corresponded to the count of malware families present in the Malevis dataset. Because
the Malevis dataset had multiple categories, the loss parameter for the model was set to
be “sparse categorical cross-entropy”. The accuracy measures were chosen to show the
training and testing accuracy and loss values for each epoch.

Sensors 2023, 22, x FOR PEER REVIEW 19 of 33

Pooling 2D and Dropout layers. It then had two dense layers immediately following a
Flatten layer. The model was sequential.

The convolution kernel of the convolutional 2D layer, which was combined with the
layer’s input, yielded a tensor of outputs. When the convolutional layer was used as the
initial layer, the parameter ‘input_shape’ was set as a combination of integers or none, but
without mentioning the sample axis; for example, ‘input_shape’ = (224, 224, 1) for 224 ×
224 grayscale images used in our case. The number of filters, kernel size, and activation
function was set as 32, (3,3), and ‘relu’, respectively, for each of the convolutional 2D layers
with an additional ‘input_shape’ attribute set for the first layer only. The MaxPooling 2D
layer used each input channel’s maximum value throughout an intake window of a size
given by ‘pool_size’ to downsample the intake along its axes (height and breadth). A
dropout layer during the training period randomly set input units to 0 at each step to
avoid overfitting. Using a Flattening layer, the resulting 2D arrays of pooled feature maps
were compressed into a unique long continuous linear vector. A dense layer’s neurons
were given one output from the layer above, which was received by each neuron in that
layer. The dense layer applied the formula:

Output = activation (dot (input, kernel) + bias) (2)

where the following parameters describe the dense quality:
• Activation—refers to the activation function for each element;
• Kernel—refers to a weight matrix that was generated by the layer;
• Bias—is a layer-generated bias vector (applicable if using bias = True).

Figure 4 shows the detailed architecture and parameter values of our model. The
architecture of the model was plotted using Model Plotting Utilities [68] and Graphviz
[69]. Only the necessary parameters were specified as values in each layer, with the
remaining parameters set to their default values. In comparison to the default parameters,
the key parameters were simpler to comprehend and alter. The 26 neurons in the last
dense layer corresponded to the count of malware families present in the Malevis dataset.
Because the Malevis dataset had multiple categories, the loss parameter for the model was
set to be “sparse categorical cross-entropy”. The accuracy measures were chosen to show
the training and testing accuracy and loss values for each epoch.

(a)

Figure 4. Cont.

Sensors 2023, 23, 3253 18 of 30
Sensors 2023, 22, x FOR PEER REVIEW 20 of 33

(b)

Figure 4. (a) Python code for CNN model for transfer learning; (b) Architecture of CNN model
used for transfer learning.

Figure 4. (a) Python code for CNN model for transfer learning; (b) Architecture of CNN model used
for transfer learning.

The CNN model trained on the Malevis dataset was used for feature extraction of the
malware instances present in the MalImg dataset. The last dense layer with 26 neurons
was removed, and the trainable parameter was set to False for all other layers. A second
compilation of the model was performed. For extracting the features from the malware
images, the pre-processed MalImg dataset was fed to this recently assembled model. Each
malware was represented as a sequence of 64 features, as the output layer of the trained
CNN model had 64 values. To extort the features from the images in the MalImg dataset,
the model employed previously learned weights from the Malevis malware dataset. The
weights were based on malware images instead of some random images, ensuring more

Sensors 2023, 23, 3253 19 of 30

accuracy in the feature extraction process. This method of extracting features from malware
images in the MalImg dataset using a pre-trained CNN model represents the idea of transfer
learning for feature extraction.

2.5. Ensemble Model

Our proposed ensemble approach comprised three neural network models, namely au-
toencoder, gated recurrent unit (GRU), and multi-layer perceptron (MLP). Such a combination
of NN was not previously utilized in the domain of malware detection. Previous works in-
cluded extensive usage of CNN, CNN-based pre-trained models [25,37,39,41,43–46,50,52,62],
shallow models such as Logistic Regression, Random Forest, Decision Tree, Bagging, SVM,
etc., or an ensemble of these shallow models [35,42,48,57].

2.5.1. Autoencoder

Feedforward neural networks called autoencoders have inputs and outputs that are
identical [70]. It is an unsupervised learning technique. From this representation, they
recreate the output after compressing the input into a reduced code. The code often referred
to as the latent-space representation is an “abridged” or “compressed” version of the input.
An autoencoder is made up of three components: first, an encoder is followed by a code
which in turn is followed by a decoder. The encoder creates the code by compressing the
inputs, and the decoder then uses that code to reconstruct the input. The architecture of
the decoder and the encoder are mirror images of each other. The 4 hyper-parameters that
need to be handled before we start training the autoencoders are code size, no. of layers,
no. of nodes per layer, and loss function. Code size refers to the node count in the middle
layer. Since the layers are piled one on top of the other, the autoencoder design that was
proposed is known as a stacked autoencoder. With each additional layer of the encoder,
there are fewer nodes per layer, which increases in a similar order in the decoder.

Jin et al. [49] employed the use of a collection of CNN-based autoencoders for malware
detection. They observed the error value in malware reconstruction to classify the samples.
They used separate encoders for each malware, thereby increasing the complexity of the
model. Our approach was distinct from theirs as there was no attempt to categorize mali-
cious software using autoencoders. Our aim was to reduce the size of the extracted feature
sequence so that it contained all the necessary information. Dimensionality reduction
leads to smaller datasets, which require less time and resources to train. Therefore, what
is required is a model with intermediate coding levels and an encoder. However, first, to
determine the encoding effectiveness, a complete autoencoder is needed.

Figure 5 shows the architecture of our proposed autoencoder model. The encoding and
decoding layers of the model were made up of dense, batch normalization, and LeakyReLU
layers instead of CNN, as used in [49]. This ensured that the training time was reduced
much more when compared to CNN. The code size was determined to be the same as the
count of classes in the MalImg dataset, i.e., 25, and a dense layer was used to create the
middle layer. The model was configured with an input size of (64,) units and an output size
of 64 units, where 64 represents the length of the extracted feature sequence. The general
architecture of our autoencoder model consisted of 2 encodings, 1 bottleneck or middle
code layer, and 2 decoding layers. The loss and activation functions were set as ‘mean
squared error (mse)’ and ‘linear’, respectively. All other parameters in each layer were
set to their default values. During model compilation, the ‘metrics’ parameter was set to
‘accuracy’ to view the accuracy scores and loss values. After training the autoencoder with
the MalImg feature dataset, a new model named Encoder was extracted from it, which
comprised the trained encoding and middle code layers. Then, the compiled Encoder
model was used to encode the MalImg features into a 25-unit long sequence. The encoded
features were sent to the gated recurrent unit (GRU) model for further processing.

Sensors 2023, 23, 3253 20 of 30

Sensors 2023, 22, x FOR PEER REVIEW 23 of 34

(a) (b)

Figure 5. (a) Complete autoencoder model; (b) Extracted Encoder model.

2.5.2. Gated Recurrent Unit
Cho et al. presented the GRU [71] to handle the vanishing gradient concern that

emerged in a typical RNN. It is a different kind of LSTM model. For the gradient problem,
an update and reset gate was used. These two vectors became factors for determining
what should be output. They can be educated to remember data accumulated in the past

Figure 5. (a) Complete autoencoder model; (b) Extracted Encoder model.

2.5.2. Gated Recurrent Unit

Cho et al. presented the GRU [71] to handle the vanishing gradient concern that
emerged in a typical RNN. It is a different kind of LSTM model. For the gradient problem,
an update and reset gate was used. These two vectors became factors for determining what
should be output. They can be educated to remember data accumulated in the past without
letting it fade out over time or to dismiss details that are irrelevant to the prediction.

Sensors 2023, 23, 3253 21 of 30

The model used the update gate to determine whether it could duplicate the data
accumulated earlier and, therefore, completely avoid the vanishing gradient concern [47].
This was found out using the formula:

zt = σ(W(z)xt + U(z)ht−1) (3)

When xt is connected to a network entity, it is multiplied by its weight W(z). Similarly,
multiply by U(z) for ht−1, which contains t − 1 units of data in the past. To produce an
outcome in the range of (0,1), a sigmoid function is used over the sum of these two values.

The reset gate helps to decide what amount of prior data needs to be retained. The
formula to calculate that is similar to the update gate formula [72]. The weights and how
the gate was used made a difference.

rt = σ(W(r)xt + U(r)ht−1) (4)

The reset gate was used to create new memory content that would retain relevant
historical information and was computed by:

ht
′ = tanh (Wxt + rt � Uht−1), (5)

where ht−1 multiplied by its weight U is element-wise multiplied with rt and then added
to xt multiplied by its weight W. Finally, tanh is used to obtain the result.

The network computes the ht vector, which contains information about the current
unit and is transmitted to the network via the update gate. To identify what needs to be
gathered, it looks at the contents of the present memory (ht

′) and ht−1.

ht = zt � ht−1 + (1 − zt) � ht
′ (6)

In this field of malware detection, GRU is one of the least frequently employed neural
network models, yielding average accuracy values. On benchmark datasets, Venkatraman
et al. [38] classified malware using a CNN-based BiGRU (bidirectional GRU) model. For
analyzing the performance, they employed similarity measures. These models call for a
deep understanding of kernels, layers, and parameters for fine-tuning. In more recent
work using GRU for malware identification [73], the behavioral characteristics of CPU, disk
consumption, and memory of programs running in cloud-based platforms without restric-
tion were collected to categorize malicious apps. The primary reason for incorporating
GRU into our proposed ensemble model was its shorter training time, which reduced the
overall training time of the ensemble model. It was also planned to assess its effectiveness
in detecting malware if it was supplied with enhanced malware characteristics instead of
raw features. A many-to-many prediction GRU model based on the malware labels was
implemented. The GRU model can take the encoded features obtained from the Encoder
model and use them for educating the model along with the malware classes. The trained
model can be used to predict the sequences learned, and to determine its efficiency in
learning the relation and differences between various malware classes. Figure 6 shows the
proposed GRU architecture and its working. No specialized layers were utilized. GRU
layers with varying units and default parameter values were used. The ‘return_sequences’
parameter was set to True, to forward the sequence to the following GRU layer. For each
GRU layer, the activation parameter was set as ‘tanh’ (as implied in the above formulas).
The dense layer was the final layer with 25 units that gave the resultant sequence. The
‘softmax’ activation function was used. During compilation, the loss function was set as
‘sparse_categorical_crossentropy’ because of multi-class classification, and the ‘metrics’
parameter was set as ‘accuracy’.

Sensors 2023, 23, 3253 22 of 30

Sensors 2023, 22, x FOR PEER REVIEW 24 of 33

following GRU layer. For each GRU layer, the activation parameter was set as ‘tanh’ (as
implied in the above formulas). The dense layer was the final layer with 25 units that gave
the resultant sequence. The ‘softmax’ activation function was used. During compilation,
the loss function was set as ‘sparse_categorical_crossentropy’ because of multi-class
classification, and the ‘metrics’ parameter was set as ‘accuracy’.

(a)

(b)

Figure 6. (a) Python code for constructing GRU model; (b) proposed GRU architecture.

The GRU-predicted sequences were then forwarded to the next model in the
ensemble architecture for final classification, namely the MLP model.

2.5.3. Multi-Layer Perceptron
The next and final model in the ensemble approach was the multi-layer perceptron

or MLP model. The MLPClassifier model available in the sklearn library was used.
MLPClassifier evaluates the partial derivatives of the loss function of the parameters at
each time interval as part of its iterative training procedure to adjust the parameters. To
avoid overfitting, the loss function might additionally have a regularization term added
that reduces the model parameters. Floating point data arrays in the form of dense NumPy
or sparse scipy arrays are supported by this implementation [74].

The MLP classifier employed in [36] outperformed the traditional malware detection
technique; however, it was found to be unreliable and in need of improvement. In [26],
the MLP classifier was found to be more effective than dynamic methods and hardware

Figure 6. (a) Python code for constructing GRU model; (b) proposed GRU architecture.

The GRU-predicted sequences were then forwarded to the next model in the ensemble
architecture for final classification, namely the MLP model.

2.5.3. Multi-Layer Perceptron

The next and final model in the ensemble approach was the multi-layer perceptron
or MLP model. The MLPClassifier model available in the sklearn library was used. MLP-
Classifier evaluates the partial derivatives of the loss function of the parameters at each
time interval as part of its iterative training procedure to adjust the parameters. To avoid
overfitting, the loss function might additionally have a regularization term added that
reduces the model parameters. Floating point data arrays in the form of dense NumPy or
sparse scipy arrays are supported by this implementation [74].

The MLP classifier employed in [36] outperformed the traditional malware detection
technique; however, it was found to be unreliable and in need of improvement. In [26],
the MLP classifier was found to be more effective than dynamic methods and hardware
features, but its accuracy was unsatisfactory without data balancing. One of our goals was
to assess the effectiveness of models when data augmentation is used, thus eliminating
one potential cause of low accuracy. The idea is to achieve a better and more stable MLP
classifier for malware detection when refined and restructured features are provided for
training. The previous two models—autoencoder and GRU—refined the information
contained in the features and the MLP classifier was used to verify if these changes had a
positive response on the classification accuracy.

Sensors 2023, 23, 3253 23 of 30

The MLP classifier used contains 3 hidden layers, each with 100 neurons. The activa-
tion function, max iterations, and solver were set as ‘relu’, 1000, and ‘adam’, respectively.
Except for the ‘max_iterations’ and ‘random_state’ parameters, all the parameters were set
with default values. In terms of learning time as well as validation score, the default solver
‘adam’ performed admirably on somewhat sizable datasets (with tens of thousands or more
training samples). When solver = ‘sgd’ or ‘adam’ was used, batch sampling and train-test
splitting were determined by the ‘random state’ parameter, as well as the creation of ran-
dom numbers for initializing bias and weights. In our case, the ‘random_state’ parameter
was randomly chosen as 42. The proposed MLP classifier is a very basic model. This will
help in creating a model that is light-weight, straightforward, and easy to comprehend.

3. Results

The efficiency of the SE-AGM model is discussed in this segment. Two types of exper-
iments were carried out for the proposed model. Experiment 1 used the extracted features
of the MalImg dataset in an 80:20 ratio for training and testing data, whereas Experiment 2
used the 70:30 ratio for the same purpose. Within the ensemble model, the autoencoder model
and GRU model were trained for 10 epochs and 500 epochs, respectively, with a default batch
size of 32. The MLP classifier with three hidden layers each of 100 neurons was trained for
1000 iterations, as mentioned earlier in Section 2.5.3. In each experiment, the MLP training
and classification were carried out five times to obtain an average accuracy value.

To evaluate our SE-AGM model’s effectiveness in classification, some metrics were
required. In this paper, four metrics were calculated to give an insight into our model,
namely accuracy, recall, f1-score, and precision. These metrics were calculated based on
four values—True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). TP signified a test outcome that accurately identified the existence of a condition or
trait. TN signified a test outcome that accurately demonstrated the absence of a condition or
trait. FP indicated an inaccurate test result that claimed the presence of a certain condition
or quality, whereas FN indicated an inaccurate test result that claimed the absence of a
certain ailment or quality.

Table 2 displays the average training as well as testing accuracy of SE-AGM for both
Experiments 1 and 2 performed on the MalImg dataset. The accuracy values were rounded
off to two decimal places for approximation. The average accuracy achieved in Experiment 1
for training and testing was 99.37% and 99.30%, respectively, while in Experiment 2, it was
99.45% and 99.43%, respectively. The results obtained demonstrate the effectiveness of our
proposed model in both experiments on the MalImg dataset, thus validating our ensemble
model approach for malware detection. When the train-to-test ratio was taken as 80:20 instead
of 70:30, the proposed SE-AGM model performed slightly better.

Table 2. An average accuracy of SE-AGM model on MalImg dataset.

Experiments (Train: Test) Average Training Accuracy Average Testing Accuracy

Experiment 1—70:30 99.37% approx 99.30% approx
Experiment 2—80:20 99.45% approx 99.43% approx

Tables 3 and 4 show the average recall, precision, and f1-score computed for both
Experiments 1 and 2 using the sklearn’s ‘classification_report()’ function [75]. From these
tables, it is evident that our proposed ensemble model had difficulty in accurately identify-
ing four malware classes, namely ‘Allaple.A’, ‘Allaple.L’, ‘C2LOP.gen!g’, and ‘C2LOP.P’,
whereas it was 100% efficient in identifying the remaining 21 malware classes. The malware
classes ‘Allaple,A’ and ‘Allaple.l’ were slight modifications of one another, as was the case
for ‘C2LOP.gen!g’ and ‘C2LOP.P’. This suggests that identifying similar malware classes is
challenging for the proposed model. In both the experiments, ‘C2LOP.gen!g’ and ‘C2LOP.P’
has the least F1-score. Maximization of this metric value would improve our proposed
model’s performance.

Sensors 2023, 23, 3253 24 of 30

Table 3. Average metrics value computed for Experiment 1 (70:30).

Malware
Classes

Average Precision Average Recall Average F1-Score

Train Test Train Test Train Test

Adialer.C 1.00 1.00 1.00 1.00 1.00 1.00
Agent.FYI 1.00 1.00 1.00 1.00 1.00 1.00
Allaple.A 0.978 0.968 0.98 0.972 0.978 0.97
Allaple.L 0.98 0.974 0.976 0.968 0.978 0.97

Alueron.gen!J 1.00 1.00 1.00 1.00 1.00 1.00
Autorun.K 1.00 1.00 1.00 1.00 1.00 1.00

C2LOP.gen!g 1.00 0.998 0.896 0.896 0.944 0.942
C2LOP.P 0.906 0.906 0.99 0.984 0.95 0.944

Dialplatform.B 1.00 1.00 1.00 1.00 1.00 1.00
Dontovo.A 1.00 1.00 1.00 1.00 1.00 1.00
Fakerean 1.00 1.00 1.00 1.00 1.00 1.00

Instantaccess 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA1 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA2 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA3 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AT 1.00 1.00 1.00 1.00 1.00 1.00
Malex.gen!j 1.00 1.00 1.00 1.00 1.00 1.00

Obfuscator.AD 1.00 1.00 1.00 1.00 1.00 1.00
Rbot!gen 1.00 1.00 1.00 1.00 1.00 1.00

Skintrim.N 1.00 1.00 1.00 1.00 1.00 1.00
Swizzor.gen!E 1.00 1.00 1.00 1.00 1.00 1.00
Swizzor.gen!I 1.00 1.00 1.00 1.00 1.00 1.00

VB.AT 1.00 0.99 1.00 1.00 1.00 1.00
Wintrim.BX 1.00 1.00 1.00 1.00 1.00 1.00

Yuner.A 1.00 1.00 1.00 1.00 1.00 1.00

Table 4. Average metrics value computed for Experiment 2 (80:20).

Malware
Classes

Average Precision Average Recall Average F1-Score

Train Test Train Test Train Test

Adialer.C 1.00 1.00 1.00 1.00 1.00 1.00
Agent.FYI 1.00 1.00 1.00 1.00 1.00 1.00
Allaple.A 0.99 0.994 0.98 0.976 0.986 0.986
Allaple.L 0.98 0.978 0.99 0.992 0.99 0.986

Alueron.gen!J 1.00 1.00 1.00 1.00 1.00 1.00
Autorun.K 1.00 1.00 1.00 1.00 1.00 1.00

C2LOP.gen!g 1.00 0.998 0.896 0.9 0.942 0.946
C2LOP.P 0.906 0.904 0.99 0.99 0.95 0.948

Dialplatform.B 1.00 1.00 1.00 1.00 1.00 1.00
Dontovo.A 1.00 1.00 1.00 1.00 1.00 1.00
Fakerean 1.00 1.00 1.00 1.00 1.00 1.00

Instantaccess 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA1 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA2 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AA3 1.00 1.00 1.00 1.00 1.00 1.00
Lolyda.AT 1.00 0.998 1.00 1.00 1.00 1.00
Malex.gen!j 1.00 1.00 1.00 1.00 1.00 1.00

Obfuscator.AD 1.00 1.00 1.00 1.00 1.00 1.00
Rbot!gen 1.00 1.00 1.00 1.00 1.00 1.00

Skintrim.N 1.00 1.00 1.00 1.00 1.00 1.00
Swizzor.gen!E 1.00 1.00 1.00 1.00 1.00 1.00
Swizzor.gen!I 1.00 1.00 1.00 1.00 1.00 1.00

VB.AT 1.00 1.00 1.00 1.00 1.00 1.00
Wintrim.BX 1.00 1.00 1.00 1.00 1.00 1.00

Yuner.A 1.00 1.00 1.00 1.00 1.00 1.00

Sensors 2023, 23, 3253 25 of 30

It is evident from Tables 3 and 4 that Experiment 2, when compared to Experiment 1,
had equal or higher metrics value for the four classes ‘Allaple.A’, ‘Allaple.L’, ‘C2LOP.gen!g’,
and ‘C2LOP.P’, thereby again implying that Experiment 2, with 80:20 train to test ratio, had
a better performance with our proposed ensemble method.

4. Discussion

Our proposed model’s accuracy was compared with existing works that focused
on the benchmark MalImg dataset such as IMCEC by Vasan et al. [39], S-DCNN by Lo
et al. [51], and layered Random Forest ensemble by Roseline et al. [55]. Both IMCEC
and S-DCNN employed ensemble techniques, similar to the one used in our malware
classification system, albeit with slight differences in the models used in the ensemble
approach. In contrast to S-DCNN, which employed a combination of ResNet-50, Xception,
and EfficientNet-B4, IMCEC used an ensemble of pre-trained Xception models.

On comparing the efficiency of our SE-AGM model with existing ensemble approaches,
it was observed that our model achieved comparable and equivalent accuracy values
compared to existing works. The S-DCNN model used in [51] and Experiment 2 (80:20)
with our SE-AGM model had the same accuracy value of 99.43% for the MalImg dataset.
The IMCEC model proposed in [43] with an accuracy value of 99.50% was superior to
S-DCNN and our proposed model by a small margin of 0.07%. Our model outperformed
the Random Forest ensemble approach by a margin of 0.78%, indicating its superiority.
Hence, our model stood second in the case of classification accuracy. Experiment 1 of our
proposed model yielded the least accuracy of 99.30% among other models, indicating that
more training data were needed to improve the accuracy of malware detection. This further
reinforced the need for models to be trained with extensive malware datasets containing a
wide range of classes to effectively detect modern malware attacks. Table 5 and Figure 7
show the comparison between the accuracy levels of our proposed model and other existing
ensemble models.

Table 5. Comparing the SE-AGM model with existing ensemble models on the MalImg dataset.

Models Accuracy

IMCEC [39] 99.50%
S-DCNN [51] 99.43%

Random Forest (Ensemble) [55] 98.65%
SE-AGM (Expt. 1) 99.30%
SE-AGM (Expt. 2) 99.43%

Sensors 2023, 22, x FOR PEER REVIEW 28 of 33

SE-AGM (Expt. 2) 99.43%

Figure 7. Accuracy % comparison of SE-AGM with existing models.

Our proposed ensemble model, SE-AGM, had the advantage of achieving 100%
recall, f1-score, and precision in identifying and distinguishing between malware classes
‘Swizzor.gen!E’ and ‘Swizzor.gen!I’, whereas other proposed models such as transfer
learned CNN and LSTM model in [34], CNN and ResNet-50 in [37], IMCFN in [41], and
MCFT-CNN in [43] struggled to achieve this. All these models had precision, recall, and
f1-score values lower than 90% when attempting to identify the two malware classes
mentioned above. Some models even had these metrics below 50%. Although our
proposed model had some difficulty in distinguishing between certain classes, the metrics
obtained were still comparable to those of existing methods. When compared in terms of
accuracy (Table 6), our proposed ensemble approach outperformed all the other non-
ensemble approaches in malware classification on the MalImg dataset; thus, making our
model more reliable than others.

Table 6. Comparison of SE-AGM with non-ensemble approaches.

Models Accuracy
CNN [32] 98.30%
LSTM [32] 98.50%
CNN [35] 96.08%

ResNet-50 [35] 98.10%
IMCFN [39] 98.27%

MCFT-CNN [41] 99.18%
SE-AGM (Expt. 1) 99.30%
SE-AGM (Expt. 2) 99.43%

Further investigation could involve training the model with a larger dataset that
encompasses a range of malware categories to enable the recognition of different types of
malwares. To address the rapid growth in malware attacks, enhancements could be made
to enable real-time training and malware detection. To confirm the efficacy of the
suggested transfer learning-based ensemble approach, this study could also be evaluated
on other benchmark malware image datasets. Researchers could benefit from using this
methodology to create a more dependable security solution.

The proposed SE-AGM model has certain drawbacks, such as its incapability of
handling malware images of different sizes and recognizing obfuscated malware.
Additionally, the classification process was prolonged due to the need for pre-processing

99.50% 99.43%

98.65%

99.30%
99.43%

98.20%
98.40%
98.60%
98.80%
99.00%
99.20%
99.40%
99.60%

IMCEC S-DCNN Ensemble RF SE-AGM
(Expt.1)

SE-AGM
(Expt.2)

AC
CU

RA
CY

 %

MODELS

Comparison of Models in terms of Accuracy

Figure 7. Accuracy % comparison of SE-AGM with existing models.

Sensors 2023, 23, 3253 26 of 30

Our proposed ensemble model, SE-AGM, had the advantage of achieving 100% recall,
f1-score, and precision in identifying and distinguishing between malware classes ‘Swiz-
zor.gen!E’ and ‘Swizzor.gen!I’, whereas other proposed models such as transfer learned
CNN and LSTM model in [34], CNN and ResNet-50 in [37], IMCFN in [41], and MCFT-
CNN in [43] struggled to achieve this. All these models had precision, recall, and f1-score
values lower than 90% when attempting to identify the two malware classes mentioned
above. Some models even had these metrics below 50%. Although our proposed model
had some difficulty in distinguishing between certain classes, the metrics obtained were
still comparable to those of existing methods. When compared in terms of accuracy
(Table 6), our proposed ensemble approach outperformed all the other non-ensemble
approaches in malware classification on the MalImg dataset; thus, making our model more
reliable than others.

Table 6. Comparison of SE-AGM with non-ensemble approaches.

Models Accuracy

CNN [32] 98.30%
LSTM [32] 98.50%
CNN [35] 96.08%

ResNet-50 [35] 98.10%
IMCFN [39] 98.27%

MCFT-CNN [41] 99.18%
SE-AGM (Expt. 1) 99.30%
SE-AGM (Expt. 2) 99.43%

Further investigation could involve training the model with a larger dataset that
encompasses a range of malware categories to enable the recognition of different types
of malwares. To address the rapid growth in malware attacks, enhancements could be
made to enable real-time training and malware detection. To confirm the efficacy of the
suggested transfer learning-based ensemble approach, this study could also be evaluated
on other benchmark malware image datasets. Researchers could benefit from using this
methodology to create a more dependable security solution.

The proposed SE-AGM model has certain drawbacks, such as its incapability of han-
dling malware images of different sizes and recognizing obfuscated malware. Additionally,
the classification process was prolonged due to the need for pre-processing the unknown
malware image before classification. If the model encountered a malware sample that it
had not been trained on, it would be difficult to determine whether it was a benign sample
or a different type of malware. This challenge is also present in current research in this field,
as well as the inability to effectively handle real-time encounters with disguised malware.
This fact is the driving force behind the increased study in this field.

5. Conclusions

An ensemble of neural network models, SE-AGM, which consisted of an autoencoder,
a GRU, and an MLP, was proposed, with the output of one model serving as the input
for the next. During the data pre-processing stage, no special techniques were utilized.
During the pre-processing stage, important tasks such as data augmentation, image resizing
and reshaping, conversion of an image into pixel data, and normalization were carried
out. The ensemble model was trained with malware features obtained from the MalImg
dataset extracted using the concept of transfer learning for malware classification. For
transfer learning, a CNN model was educated using another malware image dataset, the
Malevis dataset. The last dense layer in the trained CNN model was removed and the new
model was again compiled. This new model was then used for feature extraction. The
autoencoder, an unsupervised model, was used to encode the long feature sequences into
short sequences retaining the essential information about the malware. The GRU model
was chosen because of its capability to develop with less training time and popularity in the

Sensors 2023, 23, 3253 27 of 30

field of malware detection. It was intended to check its feasibility in malware classification
compared to other neural network models, especially CNN. It was trained on the encoded
feature sequence obtained from the autoencoder model. The MLP model acted as the final
classifier in the ensemble model which trained on the output generated by the GRU model.

The proposed ensemble model, SE-AGM, was compared with other existing ensemble
approaches based on the accuracy measures. The experimental outcome proved the effec-
tiveness of our proposed architecture and showed that our approach was second to the best
(IMCEC in [39] with 99.50% accuracy) with an accuracy of 99.43% on the MalImg dataset.
Our proposed method was unique compared to other approaches as it combined different
neural network models in an ensemble approach, which has not been carried out before.
The existing works involved the excessive usage of widely available CNN-based pre-trained
models. These pre-trained models were heavy-weight models which required more resources
and expert knowledge for fine-tuning. Though our proposed ensemble model contained three
neural network models, each of them had a simple and basic architecture, with most layer
parameters set to their default values. Achieving high accuracy values with such architecture
suggests that light-weight models can also be a way forward for malware detection with less
resource usage, training time, and domain knowledge for fine-tuning.

The classification report for the proposed ensemble model revealed that our model
had trouble classifying four types of malwares, specifically ‘Allaple.A’ and ‘Allaple.L’ as
well as ‘C2LOP.gen! g’ and ‘C2LOP.P’ (especially the latter two). The similarities between
different types of malwares may be the cause. According to this, to marginally boost the
efficiency of our ensemble model (SE-AGM), maximizing the value of the metrics is needed.
Regarding recognizing the malware classes ‘Swizzor.gen!E’ and ‘Swizzor.gen!I’, our model
showed 100% precision, f1-score, and recall, whereas other neural network models had
difficulty doing so.

Our suggested system performed an exceptional job of achieving all our target
objectives—using a CNN-based transfer learned model trained from scratch for feature
extraction, building simpler models with reduced complexity for faster training and lower
resource utilization without sacrificing performance, requiring no expertise in neural net-
works for fine-tuning, better classification results with grayscale malware images, and
a positive impact of data augmentation on malware. It outperformed many existing ap-
proaches, thereby validating our approach.

Author Contributions: Conceptualization, P.P. and O.K.C.U.; methodology, S.M. (Suguna Marappan);
software, P.P. and S.M. (Suresh Ma); Data curation, D.V.N. and P.P.; validation, P.P., S.M. (Suresh
Ma), M.S and O.K.C.U.; formal analysis, O.K.C.U. and S.M. (Suresh Ma); investigation, P.P. and
D.V.N.; resources, P.P., M.S. and D.V.N.; Visuvalization, M.S. and O.K.C.U.; writing—original draft
preparation, P.P., O.K.C.U. and S.M.; writing—review and editing, O.K.C.U. and S.M. (Suguna
Marappan). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the output data have been available in the manuscript in the form
of figures and tables.

Acknowledgments: The authors would like to take this opportunity to thank the management of
Vellore Institute of Technology for providing the APC and encouragement to carry out this work.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 3253 28 of 30

References
1. Wikipedia. Computer Security. Available online: https://en.wikipedia.org/wiki/Computer_security (accessed on 6 December

2022).
2. SpringerLink. Fuzzy Mathematics: An Introduction for Engineers and Scientists. Available online: https://link.springer.com/

book/10.1007/978-3-7908-1808-6 (accessed on 23 February 2023).
3. Debnath, P.; Mohiuddine, S.A. Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences, 1st ed.; CRC Press:

Boca Raton, FL, USA, 2021.
4. Kumar, C.O.; Tejaswi, K.; Bhargavi, P. A distributed cloud-prevents attacks and preserves user privacy. In Proceedings of the

2013 15th International Conference on Advanced Computing Technologies (ICACT), Rajampet, India, 21–22 September 2013.
[CrossRef]

5. Om Kumar, C.U.; Sathia Bhama, P.R. Detecting and confronting flash attacks from IoT botnets. J. Supercomput. 2019, 75, 8312–8338.
[CrossRef]

6. Singh, N.K.; Kumar, C.O.; Sridhar, R. Flash crowd prediction in Twitter. In Proceedings of the 2017 4th International Conference
on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017. [CrossRef]

7. CU, O.K.; Sathia Bhama, P.R. Efficient ensemble to combat flash attacks. Comput. Intell. 2021. online version of record. [CrossRef]
8. Om Kumar, C.U.; Durairaj, J.; Ahamed Ali, S.A.; Justindhas, Y.; Marappan, S. Effective intrusion detection system for IoT using

optimized capsule auto encoder model. Concurr. Comput. Pract. Exp. 2022, 34, e6918. [CrossRef]
9. Om Kumar, C.U.; Sathia Bhama, P.R. Proficient Detection of Flash Attacks Using a Predictive Strategy. In Emerging Research

in Computing, Information, Communication and Applications; Lecture Notes in Electrical Engineering; Shetty, N.R., Patnaik, L.M.,
Nagaraj, H.C., Hamsavath, P.N., Nalini, N., Eds.; Springer: Singapore, 2022; Volume 789, pp. 367–379. [CrossRef]

10. Om Kumar, C.U.; Marappan, S.; Murugeshan, B.; Beaulah, V. Intrusion Detection Model for IoT Using Recurrent Kernel
Convolutional Neural Network. Wirel. Pers. Commun. 2022, 1–30. [CrossRef]

11. Rawat, R.; Gupta, S.; Sivaranjani, S.; CU, O.K.; Kuliha, M.; Sankaran, K.S. Malevolent Information Crawling Mechanism for
Forming Structured Illegal Organisations in Hidden Networks. Int. J. Cyber Warf. Terror. 2022, 12, 1–14. [CrossRef]

12. Kumar, C.U.; Bhama, P.R. Efficacious intrusion detection on cloud using improved BES and HYBRID SKINET-EKNN. In Emerging
Research in Computing, Information, Communication and Applications; Lecture Notes in Electrical Engineering; Shetty, N.R., Patnaik,
L.M., Prasad, N.H., Eds.; Springer: Singapore, 2023; Volume 928, pp. 61–72. [CrossRef]

13. CU, O.K.; Pranavi, D.; Laxmi, B.A.; Devasena, R. Variational Autoencoder for IoT Botnet Detection. In Using Computational
Intelligence for the Dark Web and Illicit Behavior Detection; IGI Global: Hershey, PA, USA, 2022; pp. 74–88. [CrossRef]

14. Wikipedia. Malware. Available online: https://en.wikipedia.org/wiki/Malware (accessed on 6 December 2022).
15. Financesonline.com. Number of Smartphone and Mobile Phone Users Worldwide in 2022/2023: Demographics, Statistics,

Predictions. Available online: https://financesonline.com/number-of-smartphone-users-worldwide/ (accessed on 11 December
2022).

16. Lee, H.; Park, J.; Lee, U. A systematic survey on android api usage for data-driven analytics with smartphones. ACM Comput.
Surv. 2021, 55, 1–38. [CrossRef]

17. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Ransomware steals your phone. In Formal methods rescue it. In Proceedings
of the International Conference on Formal Techniques for Distributed Objects, Components, and Systems, Crete, Greece, 6–9 June
2016; Abert, E., Lanese, I., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2016; Volume 9688, pp. 212–221.
[CrossRef]

18. Marulli, F.; Visaggio, C.A. Adversarial deep learning for energy management in buildings. In Proceedings of the SummerSim ‘19:
2019 Summer Simulation Conference, Berlin, Germany, 22–24 July 2019; pp. 1–11.

19. Campanile, L.; Iacono, M.; Levis, A.H.; Marulli, F.; Mastroianni, M. Privacy regulations, smart roads, blockchain, and liability
insurance: Putting technologies to work. IEEE Secur. Priv. 2020, 19, 34–43. [CrossRef]

20. Malware Statistics in 2023: Frequency, Impact, Cost & More. Available online: https://www.comparitech.com/antivirus/
malware-statistics-facts/ (accessed on 10 December 2022).

21. April 12, 2021—Check Point Software. Available online: https://blog.checkpoint.com/2021/04/12/ (accessed on 11 December
2022).

22. Google Safe Browsing—Google Transparency Report. Available online: https://transparencyreport.google.com/safe-browsing/
overview?hl=en_GB&unsafe=dataset:1;series:malwareDetected,phishingDetected;start:1148194800000;end:1612080000000&
lu=unsafe (accessed on 7 December 2022).

23. Statista. Our Research and Content Philosophy. Available online: https://www.statista.com/aboutus/our-research-commitment
(accessed on 7 December 2022).

24. Global Ransomware Damage Costs Predicted to Exceed $265 Billion By 2031. Available online: https://cybersecurityventures.
com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/#:~:text=2022%20Ransomware%20
Market%20Report%20is%20sponsored%20by%20KnowBe4&text=The%20damages%20for%202018%20were,than%20it%20
was%20in%202015. (accessed on 7 December 2022).

25. Khan, R.U.; Zhang, X.; Kumar, R. Analysis of ResNet and GoogleNet models for malware detection. J. Comput. Virol. Hacking Tech.
2019, 15, 29–37. [CrossRef]

https://en.wikipedia.org/wiki/Computer_security
https://link.springer.com/book/10.1007/978-3-7908-1808-6
https://link.springer.com/book/10.1007/978-3-7908-1808-6
http://doi.org/10.1109/ICACT.2013.6710509
http://doi.org/10.1007/s11227-019-03005-2
http://doi.org/10.1109/ICACCS.2017.8014676
http://doi.org/10.1111/coin.12488
http://doi.org/10.1002/cpe.6918
http://doi.org/10.1007/978-981-16-1338-8_32
http://doi.org/10.1007/s11277-022-10155-9
http://doi.org/10.4018/IJCWT.311422
http://doi.org/10.1007/978-981-19-5482-5_6
http://doi.org/10.4018/978-1-6684-6444-1.ch005
https://en.wikipedia.org/wiki/Malware
https://financesonline.com/number-of-smartphone-users-worldwide/
http://doi.org/10.1145/3530814
http://doi.org/10.1007/978-3-319-39570-8_14
http://doi.org/10.1109/MSEC.2020.3012059
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://blog.checkpoint.com/2021/04/12/
https://transparencyreport.google.com/safe-browsing/overview?hl=en_GB&unsafe=dataset:1;series:malwareDetected,phishingDetected;start:1148194800000;end:1612080000000&lu=unsafe
https://transparencyreport.google.com/safe-browsing/overview?hl=en_GB&unsafe=dataset:1;series:malwareDetected,phishingDetected;start:1148194800000;end:1612080000000&lu=unsafe
https://transparencyreport.google.com/safe-browsing/overview?hl=en_GB&unsafe=dataset:1;series:malwareDetected,phishingDetected;start:1148194800000;end:1612080000000&lu=unsafe
https://www.statista.com/aboutus/our-research-commitment
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/#:~:text=2022%20Ransomware%20Market%20Report%20is%20sponsored%20by%20KnowBe4&text=The%20damages%20for%202018%20were,than%20it%20was%20in%202015.
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/#:~:text=2022%20Ransomware%20Market%20Report%20is%20sponsored%20by%20KnowBe4&text=The%20damages%20for%202018%20were,than%20it%20was%20in%202015.
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/#:~:text=2022%20Ransomware%20Market%20Report%20is%20sponsored%20by%20KnowBe4&text=The%20damages%20for%202018%20were,than%20it%20was%20in%202015.
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/#:~:text=2022%20Ransomware%20Market%20Report%20is%20sponsored%20by%20KnowBe4&text=The%20damages%20for%202018%20were,than%20it%20was%20in%202015.
http://doi.org/10.1007/s11416-018-0324-z

Sensors 2023, 23, 3253 29 of 30

26. Dai, Y.; Li, H.; Qian, Y.; Lu, X. A malware classification method based on memory dump grayscale image. Digit. Investig. 2018, 27,
30–37. [CrossRef]

27. Demme, J.; Maycock, M.; Schmitz, J.; Tang, A.; Waksman, A.; Sethumadhavan, S.; Stolfo, S. On the feasibility of online malware
detection with performance counters. ACM SIGARCH Comput. Archit. News 2013, 41, 559–570. [CrossRef]

28. Tang, A.; Sethumadhavan, S.; Stolfo, S.J. Unsupervised anomaly-based malware detection using hardware features. In International
Workshop on Recent Advances in Intrusion Detection; Springer: Cham, Switzerland, 2014; pp. 109–129.

29. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
30. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621.

[CrossRef]
31. Marastoni, N.; Giacobazzi, R.; Dalla Preda, M. A deep learning approach to program similarity. In Proceedings of the 1st

International Workshop on Machine Learning and Software Engineering in Symbiosis, Montpellier, France, 3 September 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 26–35. [CrossRef]

32. Wikipedia. Transfer Learning. Available online: https://en.wikipedia.org/wiki/Transfer_learning (accessed on 7 December
2022).

33. Transfer Learning. Pretrained Models in Deep Learning. Available online: https://www.analyticsvidhya.com/blog/2017/06/
transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/ (accessed on 11 December 2022).

34. Marastoni, N.; Giacobazzi, R.; Dalla Preda, M. Data augmentation and transfer learning to classify malware images in a deep
learning context. J. Comput. Virol. Hacking Tech. 2021, 17, 279–297. [CrossRef]

35. Casolare, R.; Ciaramella, G.; Iadarola, G.; Martinelli, F.; Mercaldo, F.; Santone, A.; Tommasone, M. On the Resilience of Shallow
Machine Learning Classification in Image-based Malware Detection. Procedia Comput. Sci. 2022, 207, 145–157. [CrossRef]

36. Kim, H.J. Image-based malware classification using convolutional neural network. In Advances in Computer Science and Ubiquitous
Computing. CUTE CSA 2017 2017; Lecture Notes in Electrical Engineering; Park, J., Loia, V., Yi, G., Sung, Y., Eds.; Springer:
Singapore, 2017; Volume 474, pp. 1352–1357. [CrossRef]

37. Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In International Symposium on
Cyber Security Cryptography and Machine Learning. CSCML 2019; Lecture Notes in Computer Science; Dolev, S., Hendler, D., Lodha,
S., Yung, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 11527, pp. 75–92. [CrossRef]

38. Venkatraman, S.; Alazab, M.; Vinayakumar, R. A hybrid deep learning image-based analysis for effective malware detection.
J. Inf. Secur. Appl. 2019, 47, 377–389. [CrossRef]

39. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble of CNN architectures
(IMCEC). Comput. Secur. 2020, 92, 101748. [CrossRef]

40. Sharma, G.A.; Singh, K.J.; Singh, M.D. A deep learning approach to image-based malware analysis. In Progress in Computing,
Analytics and Networking; Advances in Intelligent Systems and Computing; Das, H., Pattnaik, P., Rautaray, S., Li, K.C., Eds.;
Springer: Singapore, 2020; Volume 1119, pp. 327–339. [CrossRef]

41. Vasan, D.; Alazab, M.; Wassan, S.; Naeem, H.; Safaei, B.; Zheng, Q. IMCFN: Image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 2020, 171, 107138. [CrossRef]

42. Bakour, K.; Ünver, H.M. VisDroid: Android malware classification based on local and global image features, bag of visual words
and machine learning techniques. Neural Comput. Appl. 2021, 33, 3133–3153. [CrossRef]

43. Kumar, S. MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning
in Internet of Things. Future Gener. Comput. Syst. 2021, 125, 334–351. [CrossRef]

44. Anandhi, V.; Vinod, P.; Menon, V.G. Malware visualization and detection using DenseNets. Pers. Ubiquitous Comput. 2021, 1–17.
[CrossRef]

45. Pant, D.; Bista, R. Image-based Malware Classification using Deep Convolutional Neural Network and Transfer Learning. In
Proceedings of the 2021 3rd International Conference on Advanced Information Science and System (AISS 2021), Sanya, China,
26–28 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–6. [CrossRef]

46. Kumar, S.; Janet, B. DTMIC: Deep transfer learning for malware image classification. J. Inf. Secur. Appl. 2022, 64, 103063.
[CrossRef]

47. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware classification with deep convolutional neural
networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 26–28 February 2018. [CrossRef]

48. Ünver, H.M.; Bakour, K. Android malware detection based on image-based features and machine learning techniques. SN Appl.
Sci. 2020, 2, 1299. [CrossRef]

49. Jin, X.; Xing, X.; Elahi, H.; Wang, G.; Jiang, H. A malware detection approach using malware images and autoencoders. In
Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13
December 2020. [CrossRef]

50. Bakour, K.; Ünver, H.M. DeepVisDroid: Android malware detection by hybridizing image-based features with deep learning
techniques. Neural Comput. Appl. 2021, 33, 11499–11516. [CrossRef]

51. Lo, W.W.; Yang, X.; Wang, Y. An xception convolutional neural network for malware classification with transfer learning. In
Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Islands,
Spain, 24–26 June 2019. [CrossRef]

http://doi.org/10.1016/j.diin.2018.09.006
http://doi.org/10.1145/2508148.2485970
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.48550/arXiv.1712.04621
http://doi.org/10.1145/3243127.3243131
https://en.wikipedia.org/wiki/Transfer_learning
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/
http://doi.org/10.1007/s11416-021-00381-3
http://doi.org/10.1016/j.procs.2022.09.047
http://doi.org/10.1007/978-981-10-7605-3_215
http://doi.org/10.1007/978-3-030-20951-3_6
http://doi.org/10.1016/j.jisa.2019.06.006
http://doi.org/10.1016/j.cose.2020.101748
http://doi.org/10.1007/978-981-15-2414-1_33
http://doi.org/10.1016/j.comnet.2020.107138
http://doi.org/10.1007/s00521-020-05195-w
http://doi.org/10.1016/j.future.2021.06.029
http://doi.org/10.1007/s00779-021-01581-w
http://doi.org/10.1145/3503047.3503081
http://doi.org/10.1016/j.jisa.2021.103063
http://doi.org/10.1109/NTMS.2018.8328749
http://doi.org/10.1007/s42452-020-3132-2
http://doi.org/10.1109/MASS50613.2020.00009
http://doi.org/10.1007/s00521-021-05816-y
http://doi.org/10.1109/NTMS.2019.8763852

Sensors 2023, 23, 3253 30 of 30

52. Parihar, A.S.; Kumar, S.; Khosla, S. S-DCNN: Stacked deep convolutional neural networks for malware classification. Multimed.
Tools Appl. 2022, 81, 30997–31015. [CrossRef]

53. Kaggle. Malimg_Dataset9010. Available online: https://www.kaggle.com/datasets/keerthicheepurupalli/malimg-dataset9010
(accessed on 10 December 2022).

54. Darem, A.; Abawajy, J.; Makkar, A.; Alhashmi, A.; Alanazi, S. Visualization and deep-learning-based malware variant detection
using OpCode-level features. Future Gener. Comput. Syst. 2021, 125, 314–323. [CrossRef]

55. Roseline, S.A.; Geetha, S.; Kadry, S.; Nam, Y. Intelligent vision-based malware detection and classification using deep random
forest paradigm. IEEE Access 2020, 8, 206303–206324. [CrossRef]

56. Ding, Y.; Zhang, X.; Hu, J.; Xu, W. Android malware detection method based on bytecode image. J. Ambient. Intell. Humaniz.
Comput. 2020, 1–10. [CrossRef]

57. Ngo, Q.D.; Nguyen, H.T.; Le, V.H.; Nguyen, D.H. A survey of IoT malware and detection methods based on static features. ICT
Express 2020, 6, 280–286. [CrossRef]

58. Huang, X.; Ma, L.; Yang, W.; Zhong, Y. A method for windows malware detection based on deep learning. J. Signal Process. Syst.
2021, 93, 265–273. [CrossRef]

59. Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things
based on hybrid image visualization and deep learning model. Ad Hoc Netw. 2020, 105, 102154. [CrossRef]

60. He, K.; Kim, D.S. Malware detection with malware images using deep learning techniques. In Proceedings of the 2019 18th
IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019. [CrossRef]

61. Su, J.; Vasconcellos, D.V.; Prasad, S.; Sgandurra, D.; Feng, Y.; Sakurai, K. Lightweight classification of IoT malware based on image
recognition. In Proceedings of the 2018 IEEE 42Nd annual computer software and applications conference (COMPSAC), Tokyo,
Japan, 23–27 July 2018; Volume 2, pp. 664–669. [CrossRef]

62. Asam, M.; Khan, S.H.; Akbar, A.; Bibi, S.; Jamal, T.; Khan, A. IoT malware detection architecture using a novel channel boosted
and squeezed CNN. Sci. Rep. 2022, 12, 15498. [CrossRef] [PubMed]

63. Makandar, A.; Patrot, A. Malware class recognition using image processing techniques. In Proceedings of the 2017 International
Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24–26 February 2017. [CrossRef]

64. Bhodia, N.; Prajapati, P.; Di Troia, F.; Stamp, M. Transfer learning for image-based malware classification. In Proceedings of the
3rd International Workshop on Formal Methods for Security Engineering (ForSE 2019), in Conjunction with the 5th International
Conference on Information Systems Security and Privacy (ICISSP 2019), Prague, Czech Republic, 23–25 February 2019. [CrossRef]

65. Kaggle. MaleVis Dataset. Available online: https://www.kaggle.com/datasets/nimit5/malevis-dataset (accessed on 10 Decem-
ber 2022).

66. MaleVis Dataset Home Page. Available online: https://web.cs.hacettepe.edu.tr/~selman/malevis/ (accessed on 10 December
2022).

67. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B. Malware images: Visualization and automatic classification. In Proceedings
of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; Association for
Computing Machinery: New York, NY, USA, 2011; p. 4. [CrossRef]

68. Model Plotting Utilities. Available online: https://keras.io/api/utils/model_plotting_utils/ (accessed on 17 December 2022).
69. Download|Graphviz. Available online: https://graphviz.gitlab.io/download/ (accessed on 17 December 2022).
70. Applied Deep Learning—Part 3: Autoencoders|by Arden Dertat|Towards Data Science. Available online: https://

towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798 (accessed on 18 December 2022).
71. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [CrossRef]
72. Understanding GRU Networks. In This Article, I Will Try to Give a . . . |by Simeon Kostadinov|Towards Data Science. Available

online: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be (accessed on 18 December 2022).
73. Prabhavathy, M.; Uma Maheswari, S.; Saveeth, R.; Saranya Rubini, S.; Surendiran, B. A Novel Approach for Detecting Online

Malware Detection LSTMRNN and GRU Based Recurrent Neural Network in Cloud Environment. In Rising Threats in Expert
Applications and Solutions; Lecture Notes in Networks and Systems; Rathore, V.S., Sharma, S.C., Tavares, J.M.R., Moreira, C.,
Surendiran, B., Eds.; Springer: Singapore, 2022; Volume 434, pp. 1–9. [CrossRef]

74. sklearn.neural_network.MLPClassifier—scikit-learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.neural_network.MLPClassifier.html (accessed on 20 December 2022).

75. sklearn.metrics.classification_report—scikit-learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.classification_report.html (accessed on 20 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11042-022-12615-7
https://www.kaggle.com/datasets/keerthicheepurupalli/malimg-dataset9010
http://doi.org/10.1016/j.future.2021.06.032
http://doi.org/10.1109/ACCESS.2020.3036491
http://doi.org/10.1007/s12652-020-02196-4
http://doi.org/10.1016/j.icte.2020.04.005
http://doi.org/10.1007/s11265-020-01588-1
http://doi.org/10.1016/j.adhoc.2020.102154
http://doi.org/10.1109/TrustCom/BigDataSE.2019.00022
http://doi.org/10.1109/COMPSAC.2018.10315
http://doi.org/10.1038/s41598-022-18936-9
http://www.ncbi.nlm.nih.gov/pubmed/36109570
http://doi.org/10.1109/ICDMAI.2017.8073489
http://doi.org/10.48550/arXiv.1903.11551
https://www.kaggle.com/datasets/nimit5/malevis-dataset
https://web.cs.hacettepe.edu.tr/~selman/malevis/
http://doi.org/10.1145/2016904.2016908
https://keras.io/api/utils/model_plotting_utils/
https://graphviz.gitlab.io/download/
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
http://doi.org/10.48550/arXiv.1406.1078
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
http://doi.org/10.1007/978-981-19-1122-4_1
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

	Introduction
	Literature Survey
	Current Study

	Materials and Methods
	Datasets Used
	Malevis
	MalImg

	System Requirements
	Data Pre-Processing
	Transfer Learning
	Ensemble Model
	Autoencoder
	Gated Recurrent Unit
	Multi-Layer Perceptron

	Results
	Discussion
	Conclusions
	References

