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Abstract: Global navigation satellite systems (GNSSs) and ultra-wideband (UWB) ranging are two
central research topics in the field of positioning and navigation. In this study, a GNSS/UWB fusion
method is investigated in GNSS-challenged environments or for the transition between outdoor and
indoor environments. UWB augments the GNSS positioning solution in these environments. GNSS
stop-and-go measurements were carried out simultaneously to UWB range observations within the
network of grid points used for testing. The influence of UWB range measurements on the GNSS
solution is examined with three weighted least squares (WLS) approaches. The first WLS variant
relies solely on the UWB range measurements. The second approach includes a measurement model
that utilizes GNSS only. The third model fuses both approaches into a single multi-sensor model.
As part of the raw data evaluation, static GNSS observations processed with precise ephemerides
were used to define the ground truth. In order to extract the grid test points from the collected
raw data in the measured network, clustering methods were applied. A self-developed clustering
approach extending density-based spatial clustering of applications with noise (DBSCAN) was
employed for this purpose. The results of the GNSS/UWB fusion approach show an improvement
in positioning performance compared to the UWB-only approach, in the range of a few centimeters
to the decimeter level when grid points were placed within the area enclosed by the UWB anchor
points. However, grid points outside this area indicated a decrease in accuracy in the range of about
90 cm. The precision generally remained within 5 cm for points located within the anchor points.

Keywords: ultra-wideband (UWB); global navigation satellite system (GNSS); integration; sensor
fusion; performance analysis

1. Introduction

Global navigation satellite systems (GNSSs) and ultra-wideband (UWB) are currently
two central research topics when it comes to positioning in GNSS-denied/challenging envi-
ronments. GNSS methods require a line-of-sight (LoS) between the satellite (transmitter)
and GNSS-antenna (receiver) for the duration of the measurements. However, obstacles like
tall buildings, trees and vehicles may disrupt the signal path and cause various undesirable
effects. Therefore, UWB ranging is used in this study in order to mitigate the effects of
such environments. In other words, the UWB measurements are used to augment GNSS
positioning. UWBs have previously been tested for their performance in combination with
GNSSs and have been proven useful in diverse cooperative positioning systems.

Initial research has already been performed by the authors of [1,2]. In these studies,
the evaluation of raw data was performed with an extended Kalman filter (EKF). In com-
parison, this study focuses on a positioning solution of single points in relation to a set
of anchor points in a GNSS-challenged environment. The coordinates of single points
are evaluated with the statistical calculation method weighted least squares (WLS) using
three different functional models (UWB-only, GNSS-only, GNSS/UWB-fusion). WLS is a
calculation method that incorporates statistical and functional models in order to estimate
the most statistically plausible values for the given models. The functional models are
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derived from the mathematical context of the point network built for the measurements.
The network of points was built consisting of a set of four anchor points with known
coordinates and seven so-called grid test points (i.e., single points) that were chosen to be
in a GNSS-friendly and GNSS-challenged environment. Another criterion for the selection
of grid points was their location inside and outside the area enclosed by the anchor points.
For the evaluation of the collected GNSS raw data, the open-source software package
RTKLib was used. The following steps of the evaluation, such as data preparation (filtering
and assignment), implementation of the WLS algorithm, and calculating statistical values
for the final evaluation were executed in MATLAB.

The major aim of this study was to investigate and compare the positioning solutions
of the three implemented WLS approaches. Furthermore, we tested whether the measure-
ment and evaluation methods used were practicable and whether they should be used in
further research.

The paper is organized as follows: Section 2 presents a general overview of the two
positioning methods, GNSS and UWB, including how they operate and their possible
combinations and comparable measurement methods. In Section 3 the methodology of
data processing is thoroughly described, while Section 4 details how the field test was
carried out and how the raw data were collected. Section 5 deals with the visualization and
interpretation of the major results as well as what conclusions can be drawn from them.
Finally, Section 6 concludes the paper and provides an outlook on future developments.

2. Employed Positioning Technologies

In this study, the usage of GNSS and UWB is investigated either in standalone mode
or integrated to an ubiquitous positioning solution. Measurements were taken in a test
field to verify their performance. In the following, the two positioning methods are
briefly reviewed.

2.1. Global Navigation Satellite Systems (GNSSs)

GNSS is short for global navigation satellite system, which includes the US Navstar
GPS (Global Positioning Service), the Russian GLONASS (Global’naya Navigatsionnaya
Sputnikkovaya Sistema), the European Galileo, and the Chinese BeiDou Navigation Satellite
System (BDS) constellations [3]. Each of these systems consists of multiple satellites in
different satellite orbits. In order to determine precise and accurate coordinates on Earth,
at least four satellites are needed. Satellite orbits or ephemerides are known, and each
satellite uses high-precision atomic clocks to determine time.

The basic principle of GNSS positioning works as follows [4]: each of the satellites
broadcasts code and carrier frequency signals to the receiver on Earth and the travel time
of the signal is measured. With the measured travel time from the code signals, so-called
‘pseudoranges’ can be determined. Due to the asynchrony of the satellite and receiver
clocks’ travel time, measurements are faulty and must be corrected. The receiver clock error
can be estimated when at least four satellites are available and tracked. The clock error
is then included in the calculation of the distances between the satellite and the receiver,
to determine the pseudoranges. The position of the receiver on Earth is then estimated
using a 3D intersection based on the multi-lateration concept.

In order to estimate the position of the receiver on Earth with high precision, so-called
‘carrier phases’ (CPs) are used. In combination with the earlier described code pseudor-
anges, it is possible to achieve low measurement noise and with that, a precision in the
range of a few millimeters or centimeters with geodetic GNSS equipment. To achieve this
result, it is important to include various effects in the observation equation. Such effects
include clock errors, propagation effects of the atmosphere (troposphere and ionosphere),
multi-path effects, satellite orbit errors, relativistic effects and most importantly carrier
phase ambiguities. Most of these effects can be reduced or even eliminated using single,
double or triple differences (SDs, DDs, TDs). Single differences can be calculated when
there are two simultaneous measurements of two GNSS receivers from one satellite. By us-
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ing this method, satellite clock errors, orbit errors, ionospheric effects and tropospheric
travel time delays can be reduced. By using double differences that are available when two
receivers simultaneously measure to two satellites, receiver clock error and phase offsets of
the receiver can be eliminated. Triple differences can be calculated using simultaneous mea-
surements of two receivers from two satellites at different time epochs. When processing
DDs, the number of whole wavelengths between receiver and satellite must be estimated
because they are essential in precise positioning. The number of whole wavelengths is
called the ambiguity. These ambiguities can be estimated by implementing special methods
using the least-squares method, e.g., the least-squares ambiguity decorrelation adjustment
(LAMBDA) method [5]. Since signals are emitted as electromagnetic waves by satellites,
they travel through different layers of the atmosphere, which causes the signal path to be
redirected. In order to address these atmospheric effects, the atmosphere is separated into
a tropospheric and an ionospheric portion [4]. By modeling both atmospheric sections,
the signal path can be corrected. Additionally, there are a few types of interference that
affect these signals on Earth and weaken the signal. The amount by which the signal is
weakened depends on the properties of the materials and the geometry (e.g., refraction).
One major interference is the multi-path effect. Signals might face obstacles in their path
and are often obstructed and reflected by buildings, trees, or other large objects [6]. Be-
cause of reflection and diffraction, the signals can find their way to the receiver in multiple
ways. The combination of direct and indirect signals causes interference in the raw data.
In order to reduce these effects, choke-ring antennas or multi-path reducing tracking loops
in the receiver can be used. Longer observation times and time-stacking methods help
to reduce multi-path effects as well [7]. The mentioned obstacles can also influence the
satellite visibility due to the signal’s inability to pass through obstacles. Due to losses of
satellite availability, positioning solutions get worse the smaller the number of satellites is.
Satellites with low elevation are more likely to be affected by the obstructions.

As a GNSS does not work in all environments, alternatives are needed to provide
ubiquitous positioning solutions. UWB can be such an alternative and has been chosen in
this work as an alternative method either in standalone mode or fused with a GNSS. The fu-
sion of technologies is promising and can be the way to achieve ubiquitous positioning.
The basics of UWB technology are discussed in the next section.

2.2. Ultra-Wide Band (UWB)

UWB ranging is a ranging method used in this work to support GNSS measurements
in challenging environments, such as in GNSS signal-obstructed environments as well
as in transitioning indoors/outdoors environments. UWB works with a bandwidth of
radio frequencies greater than 500 MHz and is usually operated in a range of 3.1 to
10.6 GHz [8,9]. Due to its high bandwidth, UWB is robust to interference caused by multiple
paths [10]. The lower frequencies support the penetration through obstacles, which enables
the multi-path resolution capabilities in environments that are disadvantageous for GNSS
measurements. Another advantage of such high bandwidth is a very fine time-resolution,
which is about hundreds of picoseconds. Converted to spatial resolution, these hundreds
of picoseconds result in centimeter-level accuracies. With that fine resolution time, range
observations can be easily separated from measurements that suffer from multi-path
effects. UWB devices are able to send out weak signals that support the feature of not
having an impact on other systems that have the same scale in bandwidth, such as Wi-Fi
(Wireless-Fidelity) [11,12]. The low-cost method of construction of UWB equipment and
its functionality as transceivers with long battery run-times are also factors in favor of
its usage [1].

To be able to achieve the scalability properties, synchronization and power control,
certain measures need to be implemented. The main problems to be faced are that there
are strict requirements on how antennas should be built regarding their size and shape.
Challenging conditions in the surroundings of the UWB device must be addressed properly,
since the transceiver must be able to work in a wide frequency band in varying environmen-
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tal conditions. Generally, UWB ranges can be measured up to about 200 m in line-of-sight
(LoS) environments but the performance for ranging is best when range observations are
performed under 50 m [13].

UWB measurements can be grouped into two categories, fingerprinting-based and
geometric methods. As part of this work, ranging based on the latter method was used.
Geometric methods include range and angle information gathering derived from received
signal strength indicator (RSSI), time-of-arrival (ToA), time-difference-of-arrival (TDoA) or
angle-of-arrival (AoA) measurements observed through a UWB system (see, e.g., [1,14,15]).

In the context of this study, transmitters and receivers based on systems that utilize
measurements of ’two-way time-of-flight’ (TW-ToF) were used [11]. As this method implies,
the time of the signal between transmitter and receiver t1, as well as the time on the way
back from the receiver to the transmitter t2, including the time it takes the receiver to send
out the signal again, are observed. Hence, TW-ToF measures the double ranges robs from
the transmitter to the receiver t1 and back to the transmitter t2. It also measures the time
taken by the receiver to respond to the transmitter UWB td to derive the range observations
between a transmitter and receiver. The time td is generally constant and can be estimated
using calibration. Then, the range observation robs is obtained as given in Equation (1) [11]:

robs =
1
2
∗
(
(t1 + t2 + td)− td,calib

)
∗ c (1)

where c is the propagation speed of the radio frequency (RF) signal and td,calib is the
estimated value of td obtained after calibration [1].

UWB units utilize coherent (i.e., phase-stable continuous oscillation) transmission of
very-short-duration RF wave-forms (referred to as pulses). Packets of several thousands
of these short pulses are then transmitted for estimating the required travel time for
the RF signal between UWB nodes. Accurate detection of the first pulse (first break) or
leading edge (LE) is then utilized for the range measurement of the direct signal. At the
same time, multipath and NLoS effects are filtered out [16]. Time synchronization of the
transmitting and receiving devices is a substantial requirement that is usually achieved
through the UWB hardware. A master UWB unit is defined for that purpose. Due to
the coherent transmission capabilities, and through implementing the TW-ToF technique,
synchronization issues are resolved to a great extent [11]. This enables range measurements
at centimeter-level accuracy.

Using this method, positions can be calculated using multilateration. Since the trans-
mitter and receiver times are not synchronized, it is mandatory that when the signal is sent
by the transmitter to the receiver, it is sent back as well. As aforementioned, UWB sensors
transmit short-duration RF wave-forms. One transmission is made from several thousands
of pulses. These pulses enable high-accuracy range measurements, which have high prac-
ticability in multipath environments with either line-of-sight (LoS) or non-line-of-sight
(NLoS) conditions.

The nominal accuracy was validated in [17] for the order of around 3 cm for calibrated
UWB pairs. Two different off-the-shelf UWB systems (the P410 and P440 TimeDomain [18]
and the Poxyz [19] UWB modules) were tested in an indoor setting along a hallway in [20].
For these tests, 14 TimeDomain and 14 Pozyx UWB anchors (also referred to as static
nodes) were mounted on the walls along the building corridor. Four mobile rover units
were used by pedestrian users walking at typical speed or in stop-and-go mode along the
hallway with 35 checkpoints. The experiments indicated that calibration of the UWB units
and derived ranges is essential to achieve a high level of performance and positioning
accuracies at the cm-level [11]. UWB for the navigation of visually impaired people was
employed in [21]. They found that UWB technology is very useful for such applications
navigating in 2D in large buildings. The use of UWB for navigation of robots is discussed
in [22]. To perform this task, a distributed SLAM (simultaneous localization and mapping)
solution was employed to estimate the trajectory of a group of robots using UWB ranging
and odometry measurements. The approach determines the relative pose (also known as
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loop closure) between two robots by minimizing the UWB ranging measurements taken
at different positions when the robots are in close proximity. The authors of that study
claimed that UWB provides a good distance measure in LoS conditions, but retrieving a
precise pose estimation remains a challenge, due to ranging noise and the unpredictable
path traveled by the robot.

Due to the development of low-cost UWB chip sets at small sizes, they have found
their way into smartphones, leading to more widespread applications of UWB technol-
ogy. Further discussion about UWB-enabled mobile devices will follow in the outlook in
Section 6.

3. Multi-Sensor Positioning

This section describes the methodology used to process the GNSS and UWB data and
to determine the user’s position. In order to extract the grid test points from the collected
raw data, a clustering method was used (Section 3.1). The user’s static position was then
determined using the weighted least squares (WLS) method. Section 3.2 defines WLS
and provides functional models for a positioning solution based on UWB measurements
only, GNSS measurements only and combined UWB and GNSS measurements (multi-
sensor solution).

3.1. Clustering Methods

Generally, clustering is used in large spatial databases to determine areas where
points occur in a concentrated form and are separated from each other by empty spaces.
Clustering algorithms are mainly used for machine learning and to detect patterns in data.
This section will introduce two clustering methods, an already existing method, density-
based spatial clustering of applications with noise (DBSCAN) [23–25], and a self-written
clustering method that is a derivation of DBSCAN. The self-written clustering method was
used for raw data processing. Normally, it is necessary to note down the start and end
times of the measurements of each point during field work. The clustering method is a
substitution for this process that should reduce the number of tasks in the field.

3.1.1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Density-based clustering is a method that sorts a set of data points by their spatial
connectivity as well as their spatial density. With this method, it is possible to create
three-dimensional connected objects in any form possible. An example of this situation
could be districts that should be mapped according to their togetherness. One such method
is DBSCAN [26]. This method identifies clusters in large spatial datasets by looking at the
local density of the data points. There are two input parameters. The first parameter is
epsilon (i.e., ε), which defines the radius of the circle created around each data point to
check the density. The second parameter is MinPts. This is a parameter that denotes the
minimum number of data points that are needed inside the circle for that data point to
be assigned to be a so-called “Core-Point”. First, DBSCAN creates a circle around each
data point with the radius ε and classifies them as either of three types of points (shown in
Figure 1).

A data point is a Core Point if a circle around it includes at least the number of MinPts.
A Border Point is defined as a directly reachable point from a Core Point within the radius
ε. If a data point cannot be reached from any other point within the dataset, this point is
called a Noise Point. Unlike other algorithms, DBSCAN only needs to run through the
whole dataset once to complete the clustering.

There are two concepts that are the basis for such density-based clustering methods
(shown in Figure 2). The first refers to situations where a data point is “density-reachable”
when there is a set of points so that each point Pi+1 is directly reachable from Pi. The second
concept addresses situations where two data points are reachable from a specific point
regarding radius ε and minPts. These two data points are called “density-connected”.
A density-connected cluster is built when there are points in the dataset that are density-
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reachable from any point in the dataset and when all points in the cluster are density-
connected [23–25].

• Core Points;
• Border Points; and
• Noise.

Figure 1. Definition of core, border and noise points.

Figure 2. Definition of density-reachable points and density-connected points.

The process of clustering points in a large dataset is summarized in the flowchart in
Figure 3.

Figure 3. Flowchart of the density-based spatial clustering of applications with noise (DBSCAN).
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DBSCAN is, as mentioned, a density-based clustering method. It is often used in sit-
uations where close togetherness is interesting. Prime examples of such situations are
searching processes for areas where, for example, many people like to choose the location
for a new restaurant or for areas where many accidents happen, to determine an appropri-
ate location for a new hospital. It is also an extremely time-efficient method, which was
discussed in Ester et al. [27].

3.1.2. DBSCAN-Derived Clustering Method

The implemented clustering method used to filter the observed data is a derivative of
DBSCAN. There are two main differences between those two implementations. The first
is the number of parameters that are needed as input, which is three compared to the
two of DBSCAN. The first two parameters define the maximum difference between two
data points. The first parameter is used for broadly filtering the data and the second one
takes these broadly filtered data points and calculates a fine-filtered solution. The third
parameter has the same functionality as the minPts parameter of DBSCAN. The summary of
the workflow of the DBSCAN-derived clustering method is shown in Figure 4. The second
major difference lies in how the calculation of the density between points is implemented.
As mentioned above, DBSCAN defines a circle and connects the points inside this circle to
a cluster. The DBSCAN-derived clustering method calculates the differences between two
successive three-dimensional data points and checks whether their differences are larger or
smaller than the first input parameter for broad filtering. If the difference is smaller than
the parameter, the data point is then added to a temporary dataset. If the difference is larger
than the parameter for broad filtering and if the size of the temporary dataset is larger than
zero, it will be checked if the temporary dataset contains more than the minimum number
of points. If this condition applies, the mean value of these data points inside the temporary
dataset will be estimated. This is comparable to the core points of DBSCAN. Additionally,
the indices of the input dataset are saved where the clusters were found. If this condition
does not apply, the temporary dataset will be cleared of all values. The second part of
this function is then analog to the first part; the only differences are that the broad-filtered
clusters are used as the input dataset and the second input variable is used to check the
conditions of the data point differences. It is important to note that it is not necessary
to compare the condition of the clusters with the minPts variable for the fine-clustering
part because the broad-filtered clusters that are used as input already fulfill this condition.
The final output values of this function are the first and last indices of the finalized clusters
of the original dataset.

Figure 4. Flowchart of the DBSCAN-derived clustering method.
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With the DBSCAN-derived method, it is possible to differentiate the coordinates of
points that were collected as raw data. Figures 5 and 6 show the observed raw data that
were clustered using the DBSCAN and DBSCAN-derived method, respectively. The clus-
ters are marked in different colors and each cluster has its own number, which is shown
in the legend on the right side. Both methods were applied to the same dataset. The ra-
dius parameter ε for DBSCAN and the di f f 1 parameter were set to be the same value
(ε = di f f 1 = 0.03). The minPts parameters for both methods were also chosen to be the
same (minPts = 3). The results of DBSCAN clustering show 36 cluster classes in total
and one class, indicated with −1 in the legend, that refers to noise points that could not
be assigned to a cluster. The DBSCAN-derived method returned only 13 cluster classes
and one that is marked with −1 for noise points. The results in Figure 5 show similar
results compared to Figure 6. The number of DBSCAN clusters is higher compared to
the DBSCAN-derived clustering method. The DBSCAN-derived method delivers a more
useful result regarding the measurement campaign conducted as part of this work be-
cause it returns clusters as they were observed with the passage of time. That means that
data points with similar coordinates might not belong to the same cluster due to different
measurement times. Another reason in favor of the DBSCAN-derived method is that the
number of clusters in the output is closer to the actual number of observed points in the
field than with DBSCAN. A drawback of this function, and for density-based clustering
methods in general, is that all clusters show some errors that refer to edge cases that could
possibly belong to multiple clusters. After applying the method to the dataset, manual
corrections must be made since some data points are always incorrectly assigned to clusters.
The reason for this lies mostly in the choice of appropriate input parameters.

Figure 5. Results of DBSCAN clustering.
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Figure 6. Results of DBSCAN-derived clustering method.

3.2. Weighted Least Squares (WLS)

After the data filtering and clustering are finished, the next step is the estimation of
the ranges and coordinates. For this, the WLS method was chosen. The WLS approach is an
estimation method that incorporates statistical models in order to estimate the most statisti-
cally plausible values. The first input parameter is the random vector of the observations L
under the assumption of constant error variance. Additionally, the standard deviations σi
associated with the observations vector L are given.

3.2.1. Functional Model

For the estimation, a functional model that incorporates the observations is needed. This
model is realized through equations ϕi that combine the observations Li with i = 1, 2, . . . , n
and the unknown values Xj for j = 1, 2, . . . , m as shown in:

L = ϕ(X) (2)

To solve the equations, they must be linearized. The linearization is performed via
differentiation of the equation after the unknown values Xj. Then, the functional model is
derived with the model matrix A:

A =


∂ϕ1
∂X1

∂ϕ1
∂X2

· · · ∂ϕ1
∂Xm

∂ϕ2
∂X1

∂ϕ2
∂X2

· · · ∂ϕ2
∂Xm

...
...

. . .
...

∂ϕn
∂X1

∂ϕn
∂X2

· · · ∂ϕn
∂Xm

 (3)

Section 3.3 details three ways the functional model and model matrix A will be set up
in this paper.
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The next step is to calculate the approximated observation vector L0. This is executed
by applying Equation (2). After that it is possible to calculate the shortened observation
vector l with:

l = L− L0 (4)

Furthermore, an approximated unknown vector x0 is needed. The values in this vector
can be approximated using various kinds of methods such as basic geodetic triangulation
(e.g., arch section, forward resection, backward resection); GNSS measurements could also
be used.

3.2.2. Stochastic Model: A Priori

After the functional model is defined, a stochastic model can be set up. This depends
on whether all the observation’s standard deviations are the same or whether they are all
different. If all standard deviations are the same, it can be omitted. The stochastic model
mainly consists of three major matrices:

• the observation’s variance-covariance matrix ΣLL;
• the observation’s cofactor matrix QLL; and
• the weights matrix P.

The first matrix to be built is the variance-covariance matrix ΣLL. It consists of the
observation variances on the main diagonal. Covariances are only needed when there is a
correlation between the observations. If there is no correlation or it is assumed that there is
no correlation, the matrix is diagonal (i.e., correlation elements are zero). In Equation (5),
the matrix includes the calculations of covariances for completeness. It is important to note
that the matrix is a square matrix with dimensions of n× n corresponding to the number
of observations n.

ΣLL =


σ2

11 σ12 · · · σ1n
σ21 σ2

22 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σ2

nn

, (5)

The cross-covariances are calculated from the product of the standard deviations
σii with i = 1, 2, . . . , n of the two correlating observations and the correlation factor ρ.
An example of this calculation is shown in Equation (6). It is important to note that
covariances with the same but mirrored indices have the same value.

σ12 = σ11 ∗ σ22 ∗ ρ (6)

The second matrix (i.e., QLL) is the cofactor matrix that is calculated by the multiplica-
tion of a constant value with ΣLL. This constant value is the variance of unitary weight σ2

0
that can be freely chosen. This leads to:

QLL =
1
σ2

0
ΣLL (7)

The last matrix is the weights matrix P and it is the inverse of the cofactor matrix QLL.

P = Q−1
LL (8)

3.2.3. Adjusted Observations and Unknown Values

With all mentioned vectors and matrices, the adjusted observations and unknown
values can be estimated. A support matrix is needed: the matrix of normal equations N
that is calculated as shown in Equation (9). The matrix AT denotes the transposed model
matrix A:

N = AT PA (9)



Sensors 2023, 23, 3303 11 of 26

The following equations lead to the results. With Equation (10) the correction vector x
of the unknown values is estimated.

x = N−1 AT Pl (10)

Additionally, Equation (11) estimates the corrections for the observations:

v = Ax− l (11)

With these equations, all the required corrections can be calculated. The estima-
tions of the adjusted observations L̂ and the adjusted unknown values X̂ are shown in
Equations (12) and (13), respectively.

L̂ = L + v (12)

X̂ = X0 + x (13)

It is mandatory to execute a test if the estimated values have the required precision
for the task. The estimated observations L̂ and the estimated unknown values X̂ are put
into the functionality model. The result of this test should be close to zero. If the result
of the test is not satisfactory, an iterative evaluation of the adjusted observations and
unknown values has to be performed. The adjusted unknown values are set to be the
approximated unknowns. The observation vector L and the stochastic model will stay the
same. The process of the WLS approach is summarized in the flow chart in Figure 7.

Figure 7. Flowchart of weighted least squares (WLS).

3.3. Functional Model Definition

In this study, the coordinates of grid test points located within a set of anchor points
are estimated. In this section, an example is given for one grid point N. In total there are
four anchor points (P1, P2, P3 and P4) and one grid point (N) in between these anchor points
(see Figure 8). Range measurements between each anchor point and the grid point N are
d1N , d2N , d3N and d4N .
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Figure 8. Four anchor points (P1, P2, P3 and P4) and one grid point (N).

To be able to compare the GNSS and UWB performance, the grid point coordinates
are estimated for UWB only, GNSS only and a combination of the UWB and GNSS mea-
surements. All coordinates are expressed in a metric Cartesian coordinate system.

3.3.1. UWB-Only Model

It is assumed that the coordinates of the anchor points are known, the measured grid
point N is only an approximation, and the UWB ranges are the observations comprising
the observation vector L.

The first step is to set up the functional model. For this step, an equation that combines
all values of the measurements is necessary. The equation in this situation is the distance
formula as given in:

f : di =
√
(xN − xi)2 + (yN − yi)2 + (zN − zi)2 (14)

Since there are four range measurements from four anchor points, there are also four
equations. The non-linear functional model equations need to be linearized. The lineariza-
tion is performed by finding differential derivatives of Equation (14) after the 3D coordinates
of the grid point N as shown in Equation (15) for the x-coordinate only. The equations for
the y and z coordinates are similar and only the index for the respective coordinates has to
be used.

∂ fi
∂Xn

=
xN − xi√

(xN − xi)2 + (yN − yi)2 + (zN − zi)2
=

xN − xi
di

(15)

The values for di in this case are the UWB range measurements. With these, the model
matrix A has four rows since there are four equations, and three columns since there are
three unknown values (i.e., the Cartesian coordinates (x, y, z) of the grid point). The model
matrix A can then be written as in Equation (16).

A(4×3) =


xN−x1

d1

yN−y1
d1

zN−z1
d1

xN−x2
d2

yN−y2
d2

zN−z2
d2

xN−x3
d3

yN−y3
d3

zN−z3
d3

xN−x4
d4

yN−y4
d4

zN−z4
d4

 (16)

As explained in Section 3.2.1, the vector for the estimated observations L0 can now be
calculated. For this step, the anchor point coordinates and the grid point coordinates are the
input parameters for the functional model’s equation (Equation (14)). Then, the shortened
observations vector l can be calculated (Equation (4)). The last step of the derivation of the
functional model is an approximation of the true values of the grid point coordinates x0,
which are determined as the mean values of all grid point observations. These steps are
also shown in Figure 7 and explained in the previous sections.
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3.3.2. GNSS-Only Model

As before, in this section, it is assumed that the coordinates of the anchor points are
known and the measured grid points are only an approximation. However, the observations
for the observations vector L are calculated from baselines si between the approximate grid
point coordinates given by the GNSS receiver and the known anchor point coordinates.

The first step is to calculate the GNSS baselines si between UWB anchor and grid
points. As the anchor points are surveyed with static GNSS observations and therefore
precisely known, they can be used for the baseline estimation. For the grid point N,
the measurements during the test for each epoch are used. The equation used for the
functional model is similar to Equation (14). The only difference is that the UWB range
measurements di are replaced by the calculated baselines si.

g : si =
√
(xN − xi)2 + (yN − yi)2 + (zN − zi)2 (17)

Their linerarization for the x coordinate results again in:

∂gi
∂Xn

=
xN − xi√

(xN − xi)2 + (yN − yi)2 + (zN − zi)2
=

xN − xi
si

(18)

The model matrix A can now be written as:

A(4×3) =


xN−x1

s1

yN−y1
s1

zN−z1
s1

xN−x2
s2

yN−y2
s2

zN−z2
s2

xN−x3
s3

yN−y3
s3

zN−z3
s3

xN−x4
s4

yN−y4
s4

zN−z4
s4

 (19)

The following processing steps are then again as in Figure 7.

3.3.3. GNSS/UWB Fusion Model

This section defines GNSS/UWB fusion. Sensor fusion of GNSS and UWB measure-
ments is ensured by combining the two previous models and vectors such as observation
vector L and model matrix A. Both Equations (14) and (17) are used as the functional model
that needs to be linearized and for the derivation of the model matrix A. The linearization
is performed as in Equations (15) and (18).

In order to set up the combination of GNSS and UWB, both the linearization of
the UWB solution and the GNSS solution must be included in the model matrix A (see
Equation (20)). Since there are now eight equations in total, the model matrix consists of
eight rows, and the number of columns remains the same since the unknown variables
remain unchanged. The upper four rows of Equation (20) contain the linearization of the
equations for the UWB part of the solution, and the lower four rows are representative of
the GNSS part of the model.

A(8×3) =



xN−x1
d1

yN−y1
d1

zN−z1
d1

xN−x2
d2

yN−y2
d2

zN−z2
d2

xN−x3
d3

yN−y3
d3

zN−z3
d3

xN−x4
d4

yN−y4
d4

zN−z4
d4

xN−x1
s1

yN−y1
s1

zN−z1
s1

xN−x2
s2

yN−y2
s2

zN−z2
s2

xN−x3
s3

yN−y3
s3

zN−z3
s3

xN−x4
s4

yN−y4
s4

zN−z4
s4


(20)
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4. Data Collection Campaign

In order to assess the positioning performance of GNSS in challenging environments
when UWB range observations are included, real-world data were collected. This section
details the survey area where open-sky and GNSS-challenged environments are available
and where pedestrians are walking around and potentially affect the UWB measurement
quality. The following parts of this section also detail the equipment and sensors used,
the post-processing software used to evaluate the observed raw data and how the ground
truth was determined.

4.1. Survey Area and Scenario

The chosen survey area is a small section of the Resselpark at Karlsplatz square in the
fourth district of Vienna. The survey area contains open-sky areas, full-grown trees and a
pond with a statue. Four anchor points (P19, P20, P07’ and P18’) were set up. Two anchor
points are from the existing control point network (P19 and P20) and the other two were
newly set up. A set of seven so-called grid points (G1–G7) were also set up. Most of these
points are located within the area that the anchor points enclose. Figure 9 illustrates the
distribution of anchor and grid points. The full extent of the survey area is about 630 m2

and with a maximum distance between two anchor points of about 54 m.

Figure 9. Survey area in a park.

The measurements were carried out on a windy day at the beginning of April when a
moderate number of pedestrians were present. GNSS data and UWB data were collected
simultaneously. Each anchor point was equipped with one UWB TimeDomain unit fixed
on a tripod.

The GNSS/UWB grid point measurements were taken in stop-and-go mode with a
stop at each point for 2 to 3 min. The GNSS data collection was carried out with a sampling
rate of one measurement per second, while the sampling rate for the UWB ranging was
about 0.1 s. A dual-frequency surveying-grade GNSS receiver was fixed on a pole that also
carried the UWB unit. A user then walked to each grid point and stopped (i.e., stop-and-go
mode). Figure 10 shows the measurement network with the blue dots representing the grid
points and the black triangles referring to the anchor points. The different colors of the
ranges describe the ranges to a specific grid point (e.g., red for grid point G1).
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Figure 10. Sketch of the test site showing between which grid point and anchor point UWB range
measurements were collected.

The anchor point coordinates were determined by post-processing the static GNSS
measurements, collected over a duration of about 15 min, with the precise ephemeris
data (final orbits) from the International GNSS Service (IGS). Section 4.4 provides more
information on this.

4.2. Sensors

Two sensor types were used in this data collection: UWB units and GNSS receivers.
The GNSS observations were performed with two Spectra SP80 receivers capable of mea-
suring at two carrier frequencies (L1 and L2 in the case of GPS). Five UWB units were
needed to make all UWB measurements. Four units were fixed on tripods positioned on
the anchor points and one unit was attached to the pole as described in the previous section.
PulsON P400 series TimeDomain UWBs were used [18]. These units can be operated in
three different ranging modes. Firstly, they can be used as standalone devices that do not
need to be linked with a computer. Secondly, they can be operated as peer-to-peer ranging
devices and lastly as part of ranging networks such as RangeNet. RangeNet is a TimeDo-
main network designed for the usage of TW-ToF that also includes coarse range estimates
(CREs) or filtered range estimates (FREs). Coarse range estimates are derived from the first
arriving signal strengths at the corresponding unit. The CREs are regularly updated and are
available in form of FREs. Next to ranging between two units, the estimation of the position
of a unit using a Kalman filter is possible, as well as creating a motion model, computing
tuning parameters and estimating geometric dilution of precision (GDOP) values.

4.3. Employed Processing Software

Following the completion of the measurements, the raw data were post-processed.
In the case of the GNSS measurements, RTKLib was used. RTKLib is an open-source toolkit
created to calculate standard and precise positions. Using raw data as input, the data can be
processed in real-time or in a post-processing environment to determine accurate positions.
Positioning can be performed either with a reference station, precise point positioning
(PPP), precise ephemerides or clock data. All the major satellite systems are available
for processing the data. Post-processing of the data was performed using the RTKPost
tool from the toolkit. With this tool, a wide range of settings can be adjusted to estimate
the positions.
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4.4. Determination of the Ground Truth

Ground truth coordinates of all points (i.e., anchor and grid points) were determined to
be able to assess the accuracy of the estimated grid point coordinates as well as the accuracy
of the measured ranges. For this, static GNSS observations with the Spectra SP80 geodetic
receiver were carried out. The GNSS static measurements were post-processed with the
precise satellite ephemeris and satellite clock corrections from the IGS. To further improve
the ground truth accuracy, a reference station (i.e., base) was set up on a pillar on the roof
of the Electrotechnical Institute building of the Vienna University of Technology. Base
station data were used to correct the GNSS measurements collected on Karlsplatz Square.
Using Equation (17), the ground truth ranges between anchor points and grid points
were calculated.

5. Results

The major aim of this investigation was to evaluate the positioning in GNSS-challenged
environments [28] when GNSS and UWB measurements are fused with a WLS approach,
as shown in Section 3.3. This section presents the ranging and positioning performance of
the proposed approach for data collected as shown in Section 4.

5.1. Ranging Assessment

In this section, the ranging performance of UWB, GNSS and their combination in
terms of accuracy and precision is investigated.

5.1.1. Evaluation of UWB Ranging Data

Figure 11 presents time series of all UWB range measurements. All UWB range
observations from all seven grid points (G1–G7) to four different anchor points, i.e., P20,
P18, P19 and P07, are shown. The different colors of the ranges in the time series represent
the time at which the data were collected at a specific grid point, as indicated in the legend.
The white points show only range observations that were filtered as outliers. By using the
median of the range measurements per grid point, a buffer around the median was defined,
and any measurements outside of this buffer were excluded as outliers.

Average ranging error, median ranging error, maximum, minimum and standard
deviation σ were calculated for UWB measurements. The errors were calculated based on
the distances calculated from the ground truth coordinates of all points and their differences
from the measured UWB ranges. Table 1 summarizes the results for all seven grid points.
Empty rows, such as for grid points G4 and G5, indicate that no measurements to the
respective anchor point were available and/or usable. The ranging accuracy was generally
at the decimeter-level with some exceptions, such as measurements on grid point G7, where
it was above 1 m. The standard deviations were in the range of a few centimeters. The most
precise measurements showed standard deviations of around 1 cm, whereas the most
imprecise measurements showed standard deviations of around 18 cm. The worst standard
deviations occurred on grid points with many outliers and/or missing data. Due to some
problems with the connection between UWB units, the data for grid points G4–G6 could
reflect this situation. For grid point G7, the results show larger deviations because of the
geometry within the network and obstruction of LoS due to the tree that is right next to this
point. Additional reasons why data quality might not be satisfying in some cases could be
that the surveyor had to hold the pole the entire time and small movements of it could have
occurred due to windy conditions. Furthermore, the surveyor could have broken the LoS
between the UWB units when holding the pole, which probably resulted in a loss of signal
strength. As mentioned in Section 2.2, UWB units operate with frequencies in a range 3.1 to
10.6 GHz, whereas the low frequencies enable the signal to pass through obstructions [9].
Even though it is possible for the signal to penetrate obstructions, the measurement quality
can still be affected. Similarly, the presence of pedestrians also resulted in the loss of
signal strength.
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Figure 11. UWB range measurement between anchor points (P20, P18, P19 and P07) and all grid
points as indicated in the legend.

Table 1. Measured UWB range errors in relation to the ground truth in (m).

GP No. AP No. Avg. Median Max. Min. σ

G1

P20 −0.352 −0.367 −0.143 −0.880 0.123
P18 0.259 0.268 0.280 0.190 0.020
P19’ −0.048 −0.045 0.509 −0.273 0.085
P07’ 0.032 0.030 0.097 0.012 0.014

G2

P20 0.030 0.034 0.073 −0.152 0.030
P18 −0.157 −0.167 0.235 −0.209 0.046
P19’ 0.050 0.050 0.401 −0.201 0.058
P07’ 0.014 0.039 0.159 −0.211 0.096

G3

P20
P18 −0.030 −0.032 0.013 −0.333 0.042
P19’ −0.002 0.007 0.064 −0.299 0.036
P07’ 0.169 0.161 1.091 −0.114 0.177
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Table 1. Cont.

GP No. AP No. Avg. Median Max. Min. σ

G4

P20
P18
P19’ 0.133 0.130 0.378 0.118 0.028
P07’ 0.056 0.063 0.130 −0.210 0.048

G5

P20 −0.111 −0.115 −0.031 −0.123 0.013
P18
P19’
P07’

G6

P20 −0.039 −0.035 −0.025 −0.078 0.011
P18 0.617 0.624 0.697 0.400 0.066
P19’
P07’ 0.824 0.818 0.862 0.808 0.015

G7

P20 1.473 1.461 1.987 1.443 0.058
P18 −0.968 −0.969 −0.994 −0.880 0.018
P19’ 1.236 1.233 1.285 1.192 0.016
P07’ −1.344 −1.349 −1.576 −1.269 0.035

Figure 12 shows a visualization of the average range errors before and after the UWB-
only WLS approach. The range error deviationsare shown on the y-axis. The x-axis relates
every range measurement to an anchor point. The deviations of the range errors are shown
with pairs of box plots. The left box plot in each subplot shows the deviations before WLS
(i.e., raw uncorrected measurements) while the right box plot shows deviations after WLS
(i.e., adjusted measurements). Most of the deviations decreased, which is represented by
the narrow interquartile ranges (i.e., boxes). The median value is represented by the red
line in the interquartile range. Outliers are represented by blue crosses. Most of the range
error medians were improved after the adjustment (i.e., closer to 0 m error on the y-axis).

Figure 12. UWB range errors before and after UWB-only WLS adjustment.
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There are at least three range measurements available where an improvement in
accuracy can be observed following the adjustment. In cases where only two or even only
one range measurement is available during the data collection, the improvement is not
significant if it can be observed. In the case of grid point G7, even though there are three or
more ranges available, an improvement cannot be observed.

5.1.2. Evaluation of GNSS Ranging Data

This section focuses on the GNSS data and the evaluation of the GNSS-only WLS
approach. As mentioned in Section 3.3.2, baselines had to be calculated first.

A similar figure as for the UWB-only measurements was produced for the GNSS-only
measurements (see Figure 13). There are no outages and there are as many baselines
available as there were collected grid point data. It can be seen in Figure 13 that GNSS
baseline errors between the anchor points and grid points G2, G3 and G4 are small and
close to 0 m (within 2 cm from the ground truth). The reason for this can be explained by
good satellite geometry and little to no obstructions of LoS. Grid points G1, G5, G6 and
G7 show GNSS baseline errors of 5 cm to 20 cm. Despite the lower accuracy, the precision
at G1, G5 and G6 grid points is similar to the other points and it is within the decimeter
level. Because the baselines are dependent on the GNSS data that were processed with
broadcast ephemerides, such deviations are expected. As for G7, the unsatisfactory data
quality is most likely due to the location of the point, which is right next to a large tree that
obstructed the clear sky as shown in Figure 9.

The GNSS-only WLS shows no significant change in the baseline accuracy.

Figure 13. GNSS baseline errors before and after GNSS-only WLS adjustment.

5.1.3. Evaluation of GNSS and UWB Fused Range Data

This section presents the evaluation of the multi-sensor WLS. The functional model
for this calculation method is as shown in Equation (20). As described in Section 3.3.3,
the first part of the model consists of the model representing the UWB measurements and
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the second part consists of the model using only GNSS data. The evaluation of the range
data was performed similarly as in the previous Sections 5.1.1 and 5.1.2.

The results indicate improvements for the fused UWB and GNSS approach. Grid point
G1 showed the biggest increase in accuracy of more than 10 cm for the distances to anchor
points P18 and P20. The standard deviation for all ranges to G1 has also been reduced to
around 1 to 2 cm. The multi-sensor model also had an impact on grid points G2, G3 and
G4.It seems that addition of the GNSS model negatively impacted the UWB ranges for grid
point G5. A ranging performance improvement of a couple of centimeters was observed
for grid point G6.A similar ranging improvement was observed for G7 even though the
ranging accuracy still remained around 1 m.

The results show that the multi-sensor solution improves range accuracy by a few cen-
timeters. The following section will show how this is reflected in the positioning solution.

5.2. Positioning Performance

This section covers the assessment of the positioning performance of the measured
grid points for all three approaches, i.e., UWB and GNSS-only solutions and the multi-
sensor solution.

All deviations from the ground truth (i.e., positioning errors or positioning accuracy)
were calculated with Equation (21). GT denotes the ground truth coordinates of the
corresponding grid point Gi and dev describes the calculated positioning error. ‖·‖2 is the
notation for the Euclidean norm. GT and Gi are both vectors in the form [x,y,z]T .

dev = ‖GT − Gi‖2, i = 1, . . . , 7 (21)

5.2.1. Positioning with UWB-Only WLS

As mentioned in Section 5.1.1, the measured and uncorrected GNSS coordinates were
used as an approximate position. A comparison of the estimated (i.e., adjusted) grid points
(red markers), measured grid points (light blue markers) and the ground truth (yellow
markers) is shown in Figure 14. The points marked with black triangles represent the
anchor points (P19, P20, P07’, P18’), while the blue points show the measured grid points
(G1–G7). The notations Gi, (i = 1, 2, . . . , 7) refer to the grid points and GTi, (i = 1, 2, . . . , 7)
denotes the ground truth for the respective grid point.

Table 2 shows the UWB-only WLS positioning performance at all grid points. The table
shows the average error, median error, maximum and minimum errors and standard
deviation. Points G1, G2 and G3 achieve sub-meter positioning accuracy with high precision
(i.e., low standard deviation). Points G4 and G5 show a significant increase in the average
positioning error to 4 m and almost 8 m, respectively. This is most likely due to the
unavailability of the UWB ranges as shown in Table 1. Only measurements from two anchor
points were available for G4 and only one for the grid point G5. The position estimate
for the G6 grid point is within the sub-meter level, most likely due to the availability of
measurements from three anchor points (see Table 1). Measurements from all anchor points
were available at G7. Nevertheless, the achieved accuracy was on average almost 2 m
with the highest standard deviation of almost 0.3 m. There are two factors that probably
caused this decrease in performance compared to points G1, G2 and G3. The first factor
relates to the network geometry where all anchor points are south or southeast from G7
(see Figure 10). The second factor may relate to the obstacles close to the point, such as the
tree (explained in Section 5.1.1).
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Table 2. Adjusted UWB-only positioning error statistics (m).

PNo. Avg. Median Max. Min. σ

G1 0.317 0.317 0.353 0.312 0.034
G2 0.850 0.849 0.900 0.804 0.019
G3 0.513 0.513 0.532 0.484 0.013
G4 4.024 4.024 4.102 3.917 0.023
G5 7.800 7.797 7.819 7.795 0.014
G6 1.049 1.054 1.008 0.972 0.046
G7 2.693 2.797 3.034 1.807 0.396

Figure 14. Adjusted, measured and ground truth grid point coordinates based on UWB-only approach.

5.2.2. Positioning with GNSS-Only WLS

In the following, the results for the measured GNSS grid points with the GNSS-
only WLS approach are assessed. Figure 15 shows the GNSS measurement data after
being post-processed in RTKLib (introduced in Section 4.3) and filtered with the self-
developed clustering method that was described in Section 3.1. The points marked with
black triangles represent the anchor points (P19, P20, P07’, P18’) while the blue points show
the measured grid points (G1–G7). All points were measured in ECEF (Earth-centered
Earth-fixed coordinate frame). The x- and y-axis were both adjusted towards the origin
for better readability. Grid points G1–G6 were measured with little to no obstruction in
LoS to the satellites. However, G7 was measured close to the large tree. Because of that,
the observation results of G7 show larger errors and lower precision.

Table 3 shows the simple statistics calculated for errors in the measured GNSS data at
each grid point. The data indicate centimeter-level accuracies for grid points G1, G2, G3 and
G4 because there are almost no obstructions in the surroundings of each of these points.
Another reason for this result could be the large number of available satellites, which was
about 17 to 18, and consequently, a good satellite–receiver geometry. The number of visible
satellites was the lowest (12 satellites) at grid point G7, where the clear sky was obstructed
due to the large tree (see Figure 9). The low accuracy for G5 and G6 could be explained
through similar reasoning as in Section 5.1.2. By trying to hold the pole still in the windy
environment, the surveyor might have caused these large positioning errors.
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Figure 15. Adjusted, measured and ground truth grid point coordinates based on GNSS-only approach.

Table 3. Measured GNSS grid point error statistics in (m).

PNo. Avg. Median Max. Min. σ

G1 0.095 0.096 0.271 0.267 0.040
G2 0.002 0.002 0.089 0.072 0.015
G3 0.009 0.008 1.007 0.132 0.084
G4 0.008 0.008 0.140 0.110 0.022
G5 0.515 0.505 0.891 0.432 0.072
G6 1.006 1.007 0.987 0.975 0.034
G7 1.941 1.988 2.171 1.439 0.290

5.2.3. Positioning with GNSS/UWB WLS

This section shows the assessment of the positioning performance of the GNSS/UWB
WLS approach introduced in Section 3.3.3. The visualization of these results is shown in
Figure 16.

The addition of the GNSS baseline measurements improved the average UWB-only
positioning performance for points G1, G2 and G3 (0.3 m, 0.9 m and 0.5 m, respectively).
On these points, GNSS performance was at centimeter-level due to the open-sky environ-
ments. A decimeter-level performance was achieved at these points with the multi-sensor
solution. The biggest improvement can be observed for points G4 and G5. As previously
mentioned, a maximum of two UWB measurements were available at these points, which
resulted in the accuracy of 4 and 7.8 m for the UWB-only solution. With the addition of more
accurate GNSS baseline measurements, the accuracy was increased to half-a-meter level.
The performances of both the UWB-only and the GNSS-only solution on point G6 were
similar (1.05 m and 1.01 m, respectively). This resulted in the improved positioning 0.99 m
accuracy of the multi-sensor solution. This is most likely due to the increase in redundant
measurements and the improved network geometry. A decrease in accuracy of about 90 cm
can be noted for grid point G7. The reason for this is most likely due to the fact that G7 is
located outside of the area that all anchor points enclose. By being outside of this anchor
point area, all range measurements come from similar directions and therefore result in
poor geometry. This influences the ranges significantly and consequently makes them
longer than they are in reality. With these incorrect ranges, the current positioning solution
was reached. The numerical statistical results are presented in Table 4.
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Figure 16. Adjusted, measured and ground truth grid point coordinates based on GNSS/UWB approach.

Table 4. GNSS/UWB-fusion error statistics in (m).

PNo. Avg. Median Max. Min. σ

G1 0.161 0.165 0.077 0.234 0.034
G2 0.076 0.075 0.134 0.063 0.019
G3 0.016 0.015 0.071 0.043 0.013
G4 0.437 0.437 0.514 0.391 0.023
G5 0.516 0.515 0.490 0.545 0.014
G6 0.985 0.989 0.896 0.958 0.046
G7 3.574 3.693 3.911 2.527 0.396

6. Concluding Remarks and Outlook

This study has shown some of the possible ranging and positioning effects of GNSS/
UWB fusion and compared the results with those of UWB-only and GNSS-only methods.
The methods used for the analysis include a DBSCAN clustering approach and WLS
algorithm to acquire the user’s static position. The experimental results show the relevant
data acquisition process and the related analysis results.

The ranging and positioning solution performance with the WLS approach for the
integration of GNSS and UWB ranging has been discussed. Positioning with GNSS has
limits when it comes to challenging environments and transition from out- to indoors and
vice versa. With the LoS of the signal path between satellites and the receiver on Earth
obstructed, several (deci-)meters of positioning error can be observed. To address this
problem, a combined solution of GNSS positioning with UWB ranging was introduced.
UWB ranging is a state-of-the-art ranging and positioning method using TW-ToF technology
between two transceivers. By positioning one UWB unit at a fixed and known location as an
anchor point, it is possible to estimate the distance between this anchor point unit and the
unit used at the location to be determined. By sending out signals in a bandwidth of 3.1 to
10.6 GHz from the main unit at the sought-after location to the anchor node, which are then
sent back to the transmitter, it is possible to determine ranges with cm-level accuracy.

The measurement campaign was carried out in an environment that includes GNSS-
challenging situations (e.g., obstruction of LoS). Four UWB anchor points were set up.
On each anchor point, one UWB TimeDomain transceiver was placed. To determine
approximate coordinates and ranges for each grid point, a multi-GNSS receiver and the
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UWB unit were placed on a measuring pole. The data post-processing was performed with
the open-source software package RTKLib.

The ranging and positioning results show definite improvements in accuracy to a
predetermined ground truth. The results of a UWB-only approach resulted in minor im-
provements in accuracy for most grid points when at least three range measurements were
available. When fewer than three ranges between the anchors and grid points were avail-
able, the results show a significant deterioration of accuracy (up to several meters). Com-
pared to that, the GNSS-only solution showed almost no changes. However, the combined
solution of the introduced GNSS/UWB-fusion WLS approach supported the grid point po-
sition estimates where fewer than three UWB ranges were available the most. By producing
redundancy and filling gaps for the missing range measurements, improvements of several
meters were achieved, reducing the position error to the dm-range. Additionally, there was
one grid point outside of the area that was enclosed by the anchor points. This grid point
experienced a rather large decrease in accuracy, most likely due to poor geometry.

For future field work, it should be considered that ranging and positioning of points
should be conducted within the borders of the mentioned anchor points and possibly with
a larger number of anchor points. Additionally, considering the windy weather situation in
which the measurements were performed, proper equipment should be prepared to counter
for these situations to reduce the influence of the user on the measurements. Furthermore,
to compare different positioning methods an extended Kalman filter could be implemented
to see if similar or even better results can be achieved. If smartphones are the platform
used, the embedded inertial sensors [29], i.e., accelerometers and gyroscopes together with
magnetometers, can be utilized, leading to a continuous ubiquitous positioning solution.

UWB is being more widely adopted due to its robustness against multiple paths and
its centimeter-level accuracy [30]. Some newer smartphones (e.g., Samsung Galaxy S21,
Apple iPhone 11 series) are already equipped with low-cost and small UWB chip-sets.
UWB chip-sets in mobile devices have not yet been used for ranging applications. Due to
the inclusion of UWB chip-sets in mobile devices, this possibility arises. Furthermore, UWB
technology is the foundation of tracking tags like Apple’s AirTag and Samsung’s SmartTag
Plus [31]. These tags let you unlock your car or home’s front door as you approach them
with your phone. This is just the beginning of the utilization of UWB for localization in
general. The European Telecommunications Standards Institute (ETSI) [32] confirms that
UWB may become the standard for indoor positioning in the future.

A main drawback of UWB in a smartphone is that, in order to achieve a short pulse
width, the UWB device has a high power consumption for a single packet transmission [33,34].
Hence, using the TW-ToF protocol where multiple packets have to be exchanged increases
the energy consumption.

For maintaining overall performance for a number of applications, the fusion of
multiple positioning technologies and sensors is a necessity. GNSS-only solutions are
difficult or even impossible to implement in urban canyons or NLoS conditions. In these
cases, multi-path effects and a reduction in the number of satellites in view may cause large
positioning errors or even failure. The gap in satellite coverage or GNSS performance is
not acceptable for many applications and has to be addressed by using complementary
technologies, such as UWB technology.
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