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Abstract: Objective, quantitative postural data is limited for individuals who are non-ambulatory,
especially for those who have not yet developed trunk control for sitting. There are no gold standard
measurements to monitor the emergence of upright trunk control. Quantification of intermediate
levels of postural control is critically needed to improve research and intervention for these indi-
viduals. Accelerometers and video were used to record postural alignment and stability for eight
children with severe cerebral palsy aged 2 to 13 years, under two conditions, seated on a bench
with only pelvic support and with additional thoracic support. This study developed an algorithm
to classify vertical alignment and states of upright control; Stable, Wobble, Collapse, Rise and Fall
from accelerometer data. Next, a Markov chain model was created to calculate a normative score for
postural state and transition for each participant with each level of support. This tool allowed quan-
tification of behaviors previously not captured in adult-based postural sway measures. Histogram
and video recordings were used to confirm the output of the algorithm. Together, this tool revealed
that providing external support allowed all participants: (1) to increase their time spent in the Stable
state, and (2) to reduce the frequency of transitions between states. Furthermore, all participants
except one showed improved state and transition scores when given external support.

Keywords: motor control; accelerometer; cerebral palsy; assessment; trunk; biomechanical algorithm;
postural development model

1. Introduction

Postural control creates the foundation for upright activity such as sitting and mo-
bility, thus it is not surprising that prognosis for motor skills is limited for children with
deficits in trunk control [1–3]. Failure to develop trunk control cascades into a plethora
of secondary complications and limitations, including increased risk for musculoskeletal
deformities such as scoliosis [4], hip dysplasia [5], osteoporosis [6], fractures [7], and dimin-
ished growth [8]. These complications place them at increased health risks for respiratory
illness [9–11], pressure wounds [12,13], joint contractures [14], and complex surgical inter-
ventions for scoliosis [4] or hip dysplasia [15,16]. Lack of trunk control impairs the child’s
ability to play, interact with the environment, and freely use their hands, which leads to
cognitive challenges due to missed learning opportunities [17].

Most theoretical models of postural development consider the trunk as if it were a
single segment [18–22], and thus lead to developmental assessments that examine posture
control in an all or none fashion. There are limited outcome measures that are specifically
designed for those who have not achieved independent sitting or mobility. Standardized
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assessments such as the Gross Motor Function Measure (GMFM) [23], or Peabody Devel-
opmental Motor Scales (PDMS) [24] often have floor effects for non-ambulatory children
and lack the granularity necessary to document small improvements in posture control.
These assessments document the child’s ability to support the entire trunk upright either
by propping on arms or hands free or evaluate the child’s ability to lift their head in supine
or prone positions. In short, these assessments of postural progression lack the granu-
larity and precision to document the process by which children first learn to attain and
maintain upright alignment. This is an important socioeconomic problem as populations
with deficits in trunk control have the greatest burden of care and need for improved
services [25].

One example of an assessment with more granularity and precision is the Segmental
Assessment of Trunk Control (SATCo) [26], which is based on a multi-segment model of the
trunk and the historical evidence of a cephalocaudal progression of motor control [27,28].
The SATCo allows documentation of the child’s level of static, active, and reactive control
across seven regions of the trunk while positioned vertically [26]. The SATCo not only offers
a precise assessment of partial trunk control, but it also challenges clinicians and researchers
to reconsider the single-segment model and include the impact of specific segmental levels
of control on function. The SATCo offers a more precise evaluation of body structure and
function that provides information about the child’s current level of upright control and
has been shown to be related to functional status. One disadvantage of the SATCo is that
training is required, and it takes at least two trained testers to administer the assessment.
While SATCo provides more specific information about the current level of control, large
gaps remain with respect to understanding mechanisms used during the development of
upright control, and, thus, little is known about how to design effective interventions that
will help a child change their current level of trunk control [29,30]. Quantitative measures of
postural behavior using varying levels of trunk support might provide increased granularity
to examine and understand underlying sensory motor mechanisms.

Postural sway is an example of a postural behavior that is quantified in adults and
children who have trunk control. Postural sway is a measure of the unconscious, small
movements that happen around the body’s center of gravity. Changes in amplitude, velocity,
or frequency content of postural sway are amongst the many experimental metrics that are
used to quantify postural stability or control [31]. Postural sway is traditionally collected
with force plates (e.g., center of pressure [31]) and/or with body worn kinematic markers
or sensors that provide a direct and detailed measure of body segment movements [32–34].

Child development researchers investigate postural sway similar to studies in adults
by examining amplitude and velocity of postural sway for brief seconds before infants
collapse or fall [19,20,35]. Similar measures of postural sway are used to evaluate infants
who are able to remain upright [22,36] or positioned in a reclined seat and given visual
or motor perturbations [37,38]. However, the parameters used for these studies are based
on mature postural sway behaviors and not translatable in children with deficits in trunk
control.

In 2012 Saavedra and colleagues [39] completed a longitudinal study in typical infants
that characterized four stages of upright control in infants based on patterns of postural be-
havior that occur prior to development of adult-like postural sway. The stage descriptions
were based on video review of postural behavior when external pelvic support was pro-
vided to typical infants. At the youngest ages (2–3 months) when infants are held vertically,
the unsupported portion of their trunk collapses forward, sideways, or backwards until it
reaches a supporting surface or end of available range (named the Collapse stage). The next
stage (Rise and Fall stage) is seen in infants at 3–4 months of age. During this period infants
exhibit ballistic muscle responses, primarily of trunk extensors, in an attempt to overcome
gravity. However, the infants do not yet have the control necessary to refine the muscle
activation, and they either overshot vertical and fell backwards or came partially upright
and fell forwards. The Rise and Fall stage is followed at 4–6 months of age by a stage of
continuous muscle activation and modulation resulting in a teeter-totter kind of wobbling
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pattern (named the Wobble stage). This pattern can be observed with an infant leaning for-
ward using primarily the trunk extensors or full range with the infant alternating activation
between trunk flexors and extensors as they wobble forwards and backwards from midline.
The final stage (Stable stage) becomes apparent at 7–8 months of age and is similar to adult
postural sway. This more stable postural sway pattern is evident by smaller amplitude
and velocity of sway around vertical alignment. Using histograms of anterior-posterior
position in space across the full 3-min trial provides a method for generalized classification
of each infant’s stage of control (e.g., skewed away from midline for Collapse; bimodal
distribution for Rise and Fall behavior; flatter, more uniform bell-shaped distribution for
Wobble; and a narrow bell-shaped distribution for Stable) [39]. These same four stages
(Collapse, Rise and Fall, Wobble, and Stable) were subsequently demonstrated in children
with moderate to severe cerebral palsy [40]. Based on the Saavedra studies [39,40], primary
stages can be distinguished for most infants and children using histograms. However, it is
not possible with histograms to distinguish between multiple behaviors within a 3-min
interval or to quantify amount of time spent in each behavior. Saavedra and colleagues
noted variability in postural behaviors of infants within the 3-min trial [39]. For example,
histograms might indicate that an infant is classified as Collapse, but video reveals attempt
to Rise one or two times, or Rise and Wobble for a few seconds before Falling. Increased
granularity beyond what is available in histograms is needed to examine how postural
stages change from moment to moment or at hourly, daily, or monthly time scales and
which patterns of change lead to achieving upright control.

Goodworth and Saavedra demonstrate that external support can be used to study pos-
tural responses to perturbation prior to the emergence of upright control for sitting [41,42].
These studies evaluate postural behaviors based on sensorimotor feedback modeling and
do not include examination of postural stages. There currently are no outcome measures
with the granularity to quantify dynamic fluctuations in postural behavior in a continuous
manner across different time scales (from seconds to months) for infants or children who
lack postural control and independent sitting ability. Such a method is critically needed to
examine the effect of interventions, positioning equipment, and daily activity on the emer-
gence of upright control. Furthermore, to understand the process behind the development
of vertical posture, the assessments performed need to take these posture behavioral stages
into account. No previous studies have examined posture development in this manner.
This study proposes a method to quantify these postural behaviors.

The purpose of this study is threefold. First, to determine if wearable sensors are a
viable means to collect kinematic data showing orientation and stability of the head and
trunk. Second, to create an algorithm that uses kinematic data to differentiate and quantify
postural stages moment to moment. Third, to examine transitions in postural stages across
time and with different levels of support. For this purpose, a cross sectional design with
children who have cerebral palsy using supported and unsupported postural conditions
was implemented. Previous research has shown that external support can be used to
study emergence of upright control in populations with underdeveloped or delayed sitting
ability [41,43]. Use of two support levels provided an opportunity to explore change in
postural behavior and assess the ability of the algorithm to differentiate between postural
conditions.

2. Materials and Methods
2.1. Participants

A repeated measures study design was used to evaluate the efficacy of using wearable
sensors to determine stages of postural control in eight children, between the ages of
23 months and 13 years old (with moderate to severe neuromotor dysfunction and deficits in
sitting postural control). Children were recruited from the database for the Pediatric Balance
Lab at the University of Hartford. The participant group was chosen to be representative
of the wide range of motor capacities seen in children with cerebral palsy. Children from
2–14 years of age were accepted because trunk control is related to severity of CP, and not
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related to age [44]. All children were classified as Gross Motor Function Classification Scale
(GMFCS) [45] level IV or V. Of the eight participants, one child presented with ataxia, two
children had dyskinesia, and five had spastic cerebral palsy [46,47]. Prior to working with
the child, a signed written informed consent was obtained from the child’s parent. This
study was approved by the University of Hartford Institutional Review Board (IRB). Table 1
provides demographics regarding the participants in this study.

Table 1. Subject Demographics. Etiologies, diagnoses, differential diagnoses and GMFCS (Gross
Motor Function Classification System) levels as provided by the families’ previous participation in the
Pediatric Balance Lab. Segmental Assessment of Trunk Control (SATCo) levels were determined at
the start of each session. Muscle tone was confirmed for each child using the Hypertonia Assessment
Tool (HAT) [48]. One child (08AC) did not demonstrate hypertonia. She had a medical diagnosis that
included hypotonia and ataxia.

ID Age (Years)
Gestational

Age
(Weeks)

Sex Etiology Diagnosis SATCo Level GMFCS
Level HAT

01DK 5.5 31 Male

Intrauterine asphyxia Apgar 4,
respiratory insufficiency,

hydrocephalus post hemorrhagic,
cerebral ventricle leukomalacia,

hyperbilirubinemia

Prematurity,
spastic

bilateral CP
Mid Thoracic V spasticity

02KJ 3.5 25 Male Unknown CP Mid Thoracic IV spasticity

03JP 1.9 34 Male Stopped moving in utero Prematurity Mid Thoracic IV spasticity

04SD 4.8 34 Female
Three small bleeds in the

brainstem, apnea, low
Apgar score

Prematurity,
bilateral

sensorineural
hearing loss,

dyskinetic CP

Upper
Thoracic V dystonia

05BS 5 40 Male Agenesis of corpus callosum CP Upper
Thoracic IV spasticity

06ML 13 Overdue Male Unknown
Athetoid CP

with dystonic
movements

Upper
Thoracic V dystonia

07WB 13 33 Male Schizencephaly CP Lower
Thoracic IV spasticity

08AC 7 23 Female

Ischemic brain injury to
cerebellum, bilateral

intraventricular hemorrhage
(IVH)

CP Lower
Thoracic IV hypotonia

ataxia

2.2. Experimental Methods

Video and accelerometry data were collected simultaneously while children were
seated on a bench with either (1) pelvic support [26] or (2) with pelvic and trunk support at
the child’s level of control as determined by the SATCo. Video recordings were included to
disambiguate and verify that the algorithm was adequately quantifying postural behaviors.
Two Canon FS400 camcorders (Canon Inc., Tokyo, Japan) on tripods were placed directly
anterior and lateral to the child. The cameras recorded at a rate of 30 frames per second.
APDM Opal sensors (APDM Wearable Technologies Inc., Portland, OR, USA) were placed
on the anterior head and trunk using soft Velcro bands (Figure 1, left image). These sensors
have triaxial accelerometers, gyroscopes, and magnetometers, which can, respectively,
quantify acceleration, angular velocity, and orientation in space. The sampling rate of the
accelerometers was 128 Hz. Simultaneous kinematic data synchronously streamed from
the Opal sensors strapped to the child’s head and torso were time matched to video data
collected from the two cameras.
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Figure 1. Sensor placement, orientation, and support conditions. Sensors were securely strapped
to the children’s heads and chests. Pelvic support stability strapping was included for all levels of
support (A), and external support was provided at upper (UT), mid (MT), or lower thoracic (LT)
regions based on each child’s segmental level of trunk control. The black torso bands are connected
to a vertical bar behind the child to provide support at the appropriate level. Trunk supports shown
are (B) Meerkat with 2 torso bands at UT and LT, (C) Custom trunk support device with one band at
MT, and (D) Meerkat with 1 band at LT.

During both trials, the participants were seated on an adjustable bench with pelvic
strapping for stability [26]. During the first trial children were provided additional external
trunk support at the lowest level of the trunk where control was demonstrated during
SATCo (e.g., upper thoracic (UT), mid thoracic (MT), or lower thoracic (LT)). During the
second trial all children had only pelvic support (No Support condition). See Figure 1.
Pelvic strapping was used as described in the Butler manuscript (SATCo reliability) for
all participants. In addition, circumferential torso support was provided from behind the
child. For the first 2 children a custom support device was used. For the last 6 children a
commercially available stander (R82 Meerkat, Etac AB, Kista, Sweden) was used off-label
to provide solid vertical trunk support in a seated position. The stander was locked in
place behind the child. This provided solid circumferential support. The torso straps on the
Meerkat were easier to apply and adjust and more comfortable for children than the custom
support. The Meerkat stander was not designed for this purpose; however, it worked well
under close supervision for the purposes of this study. Depending on the height of the
child, one or two adjustable bands were placed around the child’s trunk to support and
stabilize the spine below the level of support.

Different activities were used to encourage dynamic balance with unilateral and
bilateral arm movements for a total of 12 min. The primary activities included playing with
a suspended rubber ball, placing and removing pegs from a peg board, reaching for and
throwing plastic balls, or reaching for bubbles (Figure 2). After the first trial, a 5–10-min
rest break was given to the child. For the second trial, the child was asked to perform the
same tasks with only the pelvic strapping support (without the segmentally adaptive trunk
support). The second trial for each child consisted of the same activities, in the same order,
and for the same amount of time as their first trial. For safety, a therapist sat behind the
participant and guarded the child from injury in the event of rapid movements. When
needed, brief support was given to the upper trunk to help the child return to an upright
position.
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Figure 2. Activities used to facilitate reaching and upright posture. (A) Hitting a suspended ball,
(B) reaching for and popping bubbles, (C) placing and removing pegs from a pegboard, and (D)
reaching for and throwing small balls. Alternative activities were used for children who did not
find these four activities motivating, e.g., (E) reaching for audiovisual toys and (F) reaching for and
pulling on a retractable tape measure.

2.3. Algorithm Development

The data processing steps are shown in Figure 3. In this study, the process started
by using two forms of sensing technology, accelerometers and video, and the final output
of the process described the child’s stage of postural development. The algorithm for
determining postural behavior (step 3) used a time series of head and trunk angles as
input, so it is independent of how the head and trunk angles were quantified. Similarly, the
algorithm for determining the stage of postural development (step 4) used a time series
of postural behaviors as input, and so is independent of how the postural behavior was
generated.
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2.4. Data Processing

The raw data from the wearable sensors were obtained from the x, y, and z axes of
the accelerometer and processed using custom MATLAB scripts. The sampling rate of
the sensors was 128 Hz. The data were filtered by means of a 12th order type 2 low pass
Chebyshev filter with a 2 Hz bandwidth and 40 dB of stopband attenuation. This filtering
step effectively eliminated linear acceleration and noise, leaving only the gravitation
component of the acceleration along each axis. This filter type and its parameters were
found to give the best performance in terms of removing jerky movements and noise from
the signal while maintaining the slower movement patterns of interest.

From the filtered x, y, and z accelerations, the orientation angles of the head and the
trunk in the anterior-posterior (AP) and mediolateral (ML) planes were calculated using
these formulas:

θML = −atan2(y,−x)

θAP = −atan2(z,−x)

These formulas applied if the sensors were upright and the angles were not close
to ±90◦. However, to account for inverted positions (e.g., positive values for the x axis
acceleration) and singularities in the atan2 function at ±90◦, the following modification
was used:

θML =

{
atan2(y, x), if (x > 0) ∧ (|z| > |y|+ accthresh)

0, if (|x| < accmin) ∧ (|y| < accmin)

θAP =

{
atan2(z, x), if (x > 0) ∧ (|y| > |z| − accthresh)

0, if (|x| < accmin) ∧ (|z| < accmin)

The cut-off values used were accthresh = 0.1 × 9.81 m/s2 and accmin = 0.4 × 9.81 m/s2.
Next, a time series of postural behaviors was generated using the time series data for

head and trunk angles derived from the accelerometers. The behaviors classified were:
Stable, Wobble, Head, Rise, Fall, and Collapse. The additional category of “Head” (not
used in the initial Saavedra study) was included based on video observation that the trunk
could be oriented upright while the head was not. This behavior was seen more often when
external support was provided. The algorithmic descriptions of these behaviors and their
color coding are shown in Figure 4.
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Figure 4. Descriptions of stages of control including color code.

The algorithmic descriptions and thresholds were heuristically derived and verified
with video review and discussion among the first three authors (PM, SS, LTP). The values
we used are expressed functionally in Table 2. These definitions were applied to the ML
and AP angle time series every second to generate the time series of behaviors.

Table 2. Functional description of behaviors.

Behavior Functional Description

Trunk Upright

The trunk (T) is considered upright if it is within a cone
with respect to the vertical axis.
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After generating the time series of behaviors, a Markov chain-like model was derived
corresponding to the behavior state changes (The Saavedra et al. [39] descriptions suggested
a linear sequence of change over months by aggregating the full 3-min trial into primary
stages. In alignment with the increased granularity of 1-s time intervals used for the Markov
chain models, behaviors are referred to as “states” rather than “stages”. The term “state”
reflects moment to moment changes in behavior. The term “stage” reflects a more global
phase of postural development).

An example of this model is shown in Figure 5. The purpose of the model was to
clearly and visually show two characteristics of the times series of behaviors: (1) how
probable was each behavior transition (e.g., how likely was the transition from Stable to
Wobble vs. Stable to Fall), and (2) what proportion of time was spent in each behavior.
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Figure 5. Model of postural development showing stages (colored circles), amount of time spent in
each stage (relative size of circles), transitions between states (lines with arrows), and frequency of
transitions coming from each node (line thickness). In this example, the child spent most time in
Wobble, Rise and Fall, and Collapse and frequently transitioned from Rise to Wobble, Wobble to Fall,
Fall to Collapse, and Collapse to Rise.

For this model, the behaviors are abstracted in such a way that it was assumed the
transition only depends on the current behavior state and not on the history of behaviors.
Unlike a typical Markov chain, this study only modeled behavior changes, i.e., transitions
from a behavior to another, but not to itself. As such, a transition did not necessarily
occur every ttrans seconds, but every kttrans, where k > 1, and k was variable over the time
series. The resulting model contains transition probabilities between each state, which
are indicated by the thickness of the curves between nodes in Figure 5. To generate the
transition probabilities, the data were aggregated into a matrix of transition counts, which
was then normalized by the total number of transitions between states as shown in Table 3.
Note that the diagonal (gray cells) indicates same state transitions, which are not included
in the calculation because the model only considers transitions to a different state. This
matrix of values was then normalized by dividing each value by the total number of
transitions between states excluding the diagonal (gray cells). Summing across each row
(excluding gray cells) results in a value of one since a state must transition to some other
state. Summing down each column (including gray cells) indicates relative amount of time
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spent in each behavior state. This is visually represented by the size of the nodes in Figure 5.
The node size is proportional to time spent in the behavior state.

Table 3. Raw behavior transition counts for data represented in Figure 5. The diagonal (gray shaded)
cells indicate same state transitions.

Next State

Stable Head Wobble Rise Fall Collapse

Current
State

Stable 0 1 2 0 1 0
Head 0 15 11 1 3 0

Wobble 3 7 122 44 82 0
Rise 1 7 90 77 63 0
Fall 0 0 33 37 46 78

Collapse 0 0 0 79 0 148
Total Number of Transitions between States = 543.

The model was further aggregated to generate a two-dimensional score for a given
behavior time series consisting of a state score (SS) and a transition score (TS). The state
score was calculated as follows:

SS =
wstableTstable + wheadThead + wwobbleTwobble

max(wstable, whead, wwobble)

where wstable, whead, and wwobble are weights indicating the relative importance of the Stable,
Head, and Wobble states, respectively. Tstable, Thead, and Twobble are the proportional times
spent in the Stable, Head, and Wobble states respectively. The state score is normalized so
that only the relative and not absolute magnitudes of the weights affect the score. That is,
using weight values (2, 0.5, 1) and (4, 1, 2) will result in the same score. SS is a measure
of how much time was spent in a “good” state (Stable, Head, Wobble) with the weights
heuristically derived to indicate the relative goodness of the good states.

The transition score TS was calculated as follows

TS =
wstableSstable + wheadShead + wwobbleSwobble

max(wstable, whead, wwobble)

where

Sstable =
Prise, stable + Pf all, stable + Pcollapse, stable

Sall

Shead =
Prise, head + Pf all, head + Pcollapse, head

Sall

Swobble =
Prise, wobble + Pf all, wobble + Pcollapse, wobble

Sall

Sall = ∑
i∈{rise, f all,collapse}

j∈{rise, f all,collapse,stable,head,wobble}

Pi,j

Pa,b is the probability of transition from state a to state b, and the weights wstable, whead,
and wwobble are the same as described above. As with SS, TS is normalized so that it only
depends on the relative values of the weights. TS is a measure of how often “bad” states
(Rise, Fall, Collapse) transition to “good” states (Stable, Head, Wobble).

3. Results

Accelerometry data were collected at 128 Hz, and the algorithms used data windows
of one second to determine changes in behavior. The amount of time involved in processing
the algorithm was less than 30 s to classify 12 min of data. Examples are provided to
indicate the improved granularity over time. The histograms that were previously used by
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Saavedra give a global image of postural behaviors over the 12 min; however, distinguishing
fluctuations in behavior is not precise with a subjective view of the histogram.

These differences between this study’s algorithm and the histogram are illustrated in
Figures 6 and 7. In these figures, the colors represent the postural behavior states as shown
in Figure 4. For Rise and Fall, the exact shades of the pink and light blue indicate direction
of Fall or Rise (e.g., Rising from left or Falling forward). The histograms show angular
position in only AP for the head and trunk across the full 12 min, whereas behavior states
are determined by the algorithm using both AP and ML position and velocity. Behavior
code data shown in the figure represent approximately one minute to allow visualization of
the density of transitions. Figure 6 is an example of 02KJ during the no support condition.
The histograms for this child primarily suggest Wobble behavior as data for the head
and trunk are grossly bell-shaped and not centered around zero (vertical). There is some
multimodal appearance (multiple hills and valleys) suggesting some Rise and Fall behavior.
For the full 12-min data set, this study’s algorithm outcomes disagree slightly with the
histogram interpretation as the algorithm quantified Wobble 25.2%, Rise 25.1%, Fall 17.1%,
Collapse 30.7%, Stable 0.6%, and Head 1.3%. In retrospect, Collapse might be indicated in
the histogram by noting that there was time spent leaning forward more than 60 degrees;
however, 02KJ did not remain Collapsed at a specific end range so the histogram did not
show a skewed distribution. Figure 7 shows the same child with mid-thoracic support and
allows comparison between the histograms and output from the algorithm. The histograms
at this level of support primarily suggest Stable and Head behaviors as the trunk pattern is
centered closer to vertical, and, although still bell-shaped, it is narrower and steeper. There
is some backwards excursion of the trunk and head on the histogram suggesting some
Rise and Fall or Collapse. The histogram for the head shows the head out of alignment
with the trunk, which is vertical, and, therefore, would anticipate a high percentage of
behavior classified as Head. The algorithm quantified Head 48%, Stable 34.6%, Wobble
6.7%, Rise 3.6%, Fall 3.3%, and Collapse 3.9%, which is consistent with primarily Head
and Stable behavior. Matching the video to the algorithm output allowed the researchers
to note that Wobble most often occurred during the supported condition when the child
was attempting to aim for a specific target. Moreover, the same pattern of neck extension
that served this child in the no support condition led to a high percentage of trunk upright
but head not upright. It can be seen from these examples that the algorithm provides
increased granularity and quantification of postural data beyond what is available from
the histograms or visual observation. Behavioral data for all children are shown in Table 4.
It is notable that every child demonstrated the stages in different proportions; however,
all stages were seen across the 12-min time period for each child and with each level of
support.

Table 4. Percentages of each behavior type for each participant for both conditions. noSup = No
Support, which means pelvic stability strap and manual assistance at pelvis, if necessary. MT sup =
mid thoracic support, UT sup = upper thoracic support, and LT sup = lower thoracic support.

01DK 02KJ 03JP 04SD

noSup MT sup noSup MT sup noSup LT sup noSup UT sup

Stable 6.5% 41.1% 0.6% 34.6% 4.0% 18.5% 7.2% 10.9%
Head 18.5% 17.8% 1.3% 48.0% 22.8% 8.5% 9.6% 66.8%

Wobble 33.4% 14.0% 25.2% 6.7% 27.7% 33.0% 37.7% 8.5%
Rise 15.6% 8.4% 25.1% 3.6% 17.5% 7.9% 21.6% 3.2%
Fall 14.2% 7.0% 17.1% 3.3% 17.0% 6.9% 19.3% 3.6%

Collapse 11.7% 11.6% 30.7% 3.9% 11.0% 25.2% 4.6% 7.0%

05BS 06ML 07WB 08AC

noSup UT sup noSup UT sup noSup LT sup noSup LT sup

Stable 5.3% 43.3% 0.4% 2.6% 7.9% 29.5% 4.9% 7.3%
Head 11.6% 35.0% 3.2% 49.6% 5.8% 18.6% 37.1% 37.5%

Wobble 26.2% 5.7% 27.1% 18.6% 22.0% 21.7% 31.8% 25.7%
Rise 23.5% 5.1% 25.0% 1.6% 22.8% 7.1% 10.0% 9.3%
Fall 18.5% 6.0% 20.5% 3.6% 20.2% 8.3% 11.2% 9.9%

Collapse 14.9% 4.9% 23.8% 24.0% 21.3% 14.9% 5.0% 10.3%
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Sensors 2023, 23, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 6. Example of algorithm output (colored bar, 70 s duration), AP histograms (bottom, full 12-

min trial), and AP images from video for one child (02KJ) during the no support condition. The 

histogram is qualitatively most consistent with Wobble and Rise/Fall behaviors. The child’s head 

is more vertically aligned while his trunk is consistently leaning forward. 

 

Figure 7. Example of algorithm output (colored bar), AP histograms (bottom) and images from
video demonstrating AP alignment matched to algorithm output for subject 02KJ with mid-thoracic
support. The histogram is qualitatively consistent with stable trunk and head not aligned some
backward collapse is noted. For this child, the support provided a more upright and stable trunk
however he tended to tip his chin upward and tilt his head back slightly.

The histograms can be used to estimate a primary behavioral response; however, that
may or may not be an accurate image of the child’s postural control. Children fluctuated
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between postural behaviors throughout the 12-min period. Across all children, the algo-
rithm demonstrated that no child used the same pattern for the entire trial. One child
(04SD) used one pattern (Head) 67% of the time when offered upper thoracic support. The
average percent of maximum time spent in one behavior in the no support condition was
26%, while the average percent of maximum time spent in one behavior in the support
condition was 38%.

Figure 8 shows the average percent of time spent in different postural states for
children who were supported at Upper Thoracic (n = 3), Mid-Thoracic (n = 2), and Lower
Thoracic (n = 3) levels. The change in preferred postural behaviors (Stable, Head and
Wobble) was 37.6% increase for UT support, 38.4% for MT, and 12.1% for LT. Effect sizes for
support were 7.4, 1.1 and 0.62, respectively. The effect size was stronger for UT because
all three children improved similarly, and there was greater variation for those who were
supported at MT and LT.
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Figure 8. Average percent of time spent in different postural states for children who were supported
at different levels of support. Dashed lines show the point of separation between poor postural
behaviors (Collapse, Rise, Fall) and postural behaviors that exhibit postural response mechanisms
(Wobble, Stable, Head). UT = upper thoracic, MT = mid-thoracic, and LT = lower thoracic. noS = no
support.

Figure 9 shows how the additional thoracic support affects each child’s transitions
between states. In each case, the number of transitions per minute was reduced when
support was added. The greatest change was seen in 04SD and 06ML, both of whom
exhibited dystonic movements and were given upper thoracic support. The smallest
change was seen in 08AC who was ataxic and showed no improvement in the state and
transition scores (discussed in detail below).
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Figure 9. A comparison of the number of transitions per minute for each child in the unsupported
and supported conditions. Each child reduced the number of transitions per minute when support
was added.

Figure 10 shows the behavior state time series created by the algorithm and the
resulting Markov chain model for 02KJ in both the supported and unsupported conditions.
This side-by-side comparison demonstrates the differences in the child’s postural behavior
when support was added. In the unsupported (pelvic strap only) condition on the left,
the child spent most of the time in Wobble, Collapse, Rise, and Fall states while on the
right in the mid-thoracic support condition most of the session time was spent in the
Stable and Head states. This result is reflected in the state scores for this child in the
unsupported and supported conditions, which were 0.135 and 0.499, respectively, and
indicate significant improvement in the ability to maintain an upright posture. Similarly,
the transition scores for this child were 0.128 for unsupported and 0.244 for supported
conditions. These values indicate an improved ability to transition from a non-upright to an
upright position. Increases in both state and transition scores indicate improved postural
control.

Figure 11 shows the transition and state scores for all eight participants. The algorithm
was able to capture improved postural control in supported versus unsupported conditions.
Improved postural control is indicated by a move upward and to the right when going
from unsupported (unfilled marker) to supported (filled marker). Notably, the ataxic
participant was the only one to show worse control in the supported condition compared
to the unsupported.

Review of video data and histogram for the participant with ataxia (08AC) supported
the outcome from the algorithm that she had no apparent change (Figures 12 and 13).
The histograms looked similar for the two conditions. Visually, her trunk posture looked
hypotonic (rounding of the spine into a c-shape) with upper trunk leaning forward and
head extended for both data sets. She continued to lean her upper trunk forward and tilt
her head into extension for the supported condition, even though her lower trunk and
pelvis were vertically aligned. Additional sensors along the lower trunk might have been
useful to document alignment of her pelvis. However, our purpose was to identify the
child’s postural behavior.
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Figure 10. Example of the Markov model (top) and its associated behavior code time series (bottom).
Left is the no support condition, and right is the support condition for the same subject. Stages
(colored circles), amount of time spent in each stage (relative size of circles), transitions between states
(lines with arrows), and frequency of transitions coming from each node (line thickness) are indicated
in the Markov model. The transition and state scores for this child in the unsupported condition were
0.128 and 0.135, respectively. In the supported condition, the transition and state scores were 0.244
and 0.499 respectively.
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Figure 11. Comparison of state and transition scores for all subjects. Each subject’s no support and
support score markers are connected by a line. Data points in the lower left portion of the grid
indicate mostly poor posture (time spent and transitions toward Collapse or Rise and Fall), while
those in the upper right quadrant indicate improved posture (time spent and transitions moving
towards Wobble, Stable, or Head).
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Figure 12. Example of algorithm output (colored bar) for the full 12-min, and AP histograms (bottom)
and two images (right) showing AP alignment for 08AC during the no support condition. The
histogram is qualitatively consistent with Wobble and Head. Markov model (upper right) indicates
stages (colored circles), amount of time spent in each stage (relative size of circles), transitions between
states (lines with arrows), and frequency of transitions coming from each node (line thickness).
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Figure 13. Example of algorithm output (colored bar) for the full 12 min, and AP histograms (bottom)
and two images (right) showing AP alignment for 08AC during the LT support condition. The
histogram is qualitatively consistent with Wobble and Head. Markov model (upper right) indicates
stages (colored circles), amount of time spent in each stage (relative size of circles), transitions between
states (lines with arrows), and frequency of transitions coming from each node (line thickness).

4. Discussion

The purpose of this study is threefold. The first purpose is to determine if wearable
sensors are a viable means to collect kinematic data showing orientation and stability
of the head and trunk. The second is to create an algorithm that uses kinematic data
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to differentiate and quantify postural stages moment to moment. The sensors provided
kinematic measures of the head and trunk, which were used within a custom algorithm to
identify postural states as Stable, Wobble, Collapse, Fall, Rise, and Head. Histogram and
video recordings were used to confirm the output of the algorithm. The third purpose is
to examine transitions in postural stages across time and with different levels of support.
For this purpose, a cross sectional design with children who have cerebral palsy using
supported and unsupported postural conditions was implemented. The Markov chain-like
model revealed that providing external support allowed all subjects: (1) to increase their
time spent in the Stable state, and (2) to reduce the frequency of transitions. Furthermore, all
participants except one showed improved state and transition scores when given external
support, which may indicate improved postural control or, at the least, increased time
spent practicing improved states of control and transition towards improved states. This
is consistent with previous research that demonstrated improved trunk posture (reduced
variability in trunk sway during perturbations) for typical infants (1–6 months of age) or
children with cerebral palsy (GMFCS level IV or V) when increased segmental support was
provided [42,49–51].

This algorithm is a tool that was able to quantify postural behaviors previously not
captured in adult-based postural sway measures. It therefore has the potential to facilitate
research and intervention for children with the most severe motor disability. The tool
can test hypotheses about which state a patient may spend the most time in following an
intervention. For example, an intervention focused on increasing muscle strength may be
hypothesized to decrease the time spent in Collapse whereas an intervention focused on
sensory feedback or reducing sensory noise may reduce the time spent in Wobble [32,51,52].
This tool can also test if subjects who more frequently transition from one particular state to
other have better long-term outcomes. For example, if someone most frequently transitions
straight from Stable to Fall (skipping the Wobble state), the researchers hypothesize this
individual is lacking a key feedback ability to detect their own imminent fall and may have
worse long-term outcomes. Finally, these findings suggest that this tool is not limited to
use with CP but could be adapted for use in other populations with neurological impaired
sitting ability.

Heuristic considerations were used when creating the algorithm. Parameters such as
the time-interval for noting change (one second) and the limits of the cone of stability (20
degrees for trunk verticality and 30 degrees for head alignment with trunk) were selected
based partly on previous postural assessments and partly from video review and reflection
on the stage descriptions. The one-second time increments were selected to ensure that
changes in velocity and acceleration during Rise or Fall behavior would be captured. There
is some question if it is reasonable to see only one second of Wobble, or one second of Stable
behavior. Most postural assessments consider only Stable upright behavior and usually set
limits of 3, 5, or 10 s to be credited with postural control [23,24,53,54]. However, this study
considers the development of upright control, thus examining how frequently and for how
long a child is able to achieve each of these behavioral states is valuable information. One
second is a reasonable option in this scenario until there is a reason to change it. The choice
of 20 degrees for the trunk cone of stability was based on the amount of variation described
for alignment in the Segmental Assessment of Trunk Control [26].

In this study one category was created that was not included in previous stage de-
scriptions by Saavedra [39,40]. The category of “Head” was created based on observations
of children with trunk support. Saavedra et al., 2015 [40] noted that children with cere-
bral palsy had more head movement than typical infants when provided with support
at axillae or upper thoracic regions. With higher levels of support the trunk does not
biomechanically have much range for departing from vertical alignment. Children with
challenges to postural control at the level of the head or upper thoracic regions may have a
more vertical trunk with support but may face challenges for head alignment. Thus, the
additional category (Head) was created to indicate when the trunk is upright and the head
is not aligned with the trunk. Since the trunk is allowed a range of up to 20 degrees from
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vertical, head alignment 20 degrees from the trunk could be a compensatory strategy to
align the head and eyes vertically with the environment. However, a head angle of 30
degrees off in comparison to the trunk indicates that the head is not aligned with the trunk
or the environment. The histograms (Figures 6, 7, 12 and 13) show a common strategy
adopted by children who do not have full trunk control. Forward trunk lean paired with
neck extension allows them to control upright posture using only trunk and neck extensor
strength. When the trunk is vertically aligned, stability requires switching between trunk
flexors and extensors in a coordinated manner. Note how the child whose data are shown
in Figures 6 and 7 showed the trunk in front of midline and head closer to midline in the
unsupported condition, however when given mid-thoracic support his trunk aligned near
midline and he had a tendency to have his head fall back behind midline. This response to
support suggests that the child tried to control his head using neck extensors and struggled
to switch to neck flexors when needed. The other child whose data are shown in Figures 12
and 13 kept the same pattern of alignment between her trunk and head under both the
supported and unsupported conditions. She was given support at the lower thoracic region
and thus she had more opportunity to lean her upper trunk forward in the manner she was
used to. She kept her original strategy and was able to continue using primarily forward
lean and neck extension to remain upright.

Data from children with cerebral palsy who are not yet able to sit independently
provided a range of postural behaviors to develop this algorithm. This study’s protocol
motivated children to adapt their postural behaviors over 12 min to meet the changing task
requirements. It was anticipated that children might be “stuck” using a single postural
behavior, so it was surprising that every child demonstrated at least a few seconds with
every behavior and in only one case (04SD with support) did any behavior occur for over
50% of the time (Table 4). The activities were individualized to each child’s motivation
and interest, and the same activities were repeated for the same amount of time for that
child during both types of support. If a sedentary activity that did not require reaching
and interacting with objects had been used, a smaller number of states and transitions
might have been found. The individualized external support offered a contrast in postural
challenges that allowed quantification of change in behavior for each child. Improvement
in postural responses with segmental support is consistent with several previous studies
examining posture and upper extremity skills [41,48–50]. The algorithm and histograms
both reflected change in postural behavior related to change in the level of support. It was
encouraging to find that the algorithm was able to show both improvement and lack of
improvement with external support. Video review confirmed the algorithm classification
of behavioral states.

Wearable sensors were selected for objective quantification of postural behavior be-
cause of their small size, ease of application, and potential for future use across a variety
of locations. They are child-friendly and have potential scalability across time (minutes
to hours to full days) and settings (laboratory, clinical, home, and community) [55,56].
Wearable sensors are used in research and as consumer products for ambulatory indi-
viduals to measure a number of physical behaviors (e.g., steps, activity level, and fall
detection) [57,58]. Thus far the use of wearable sensors for non-ambulatory individuals
focuses on kicking patterns in infants [55] or mobility patterns for wheelchair users [59,60].
The goal of this study was to determine if wearable sensors could provide clinically relevant
information about postural control in children who were not able to sit independently.
Most algorithms for documenting movement and activity with accelerometers eliminate
gravitational acceleration in the outcome analyses. For this study, gravitational acceleration
was used to document postural orientation and stability. While accelerometers were used
for the postural data in this study, any sensor that provides head and trunk angles with
respect to upright over time could be used for this type of posture behavior analysis.

Prior research into using wearable sensors to detect movement patterns in populations
with mobility impairments generally use two types of algorithms [61]: (1) biomechanically-
based or (2) machine learning-based. This study’s approach was to use a biomechanically-



Sensors 2023, 23, 3309 19 of 23

based algorithm with heuristically determined parameters, because the goal was to explain
how postural control develops and not to just identify patterns. Furthermore, machine
learning approaches require vast amounts of training data, which is lacking for this specific
population, and the training data must be labeled. In this case, labeling would need to be
done using video behavior coding, which is time intensive and challenging to accomplish.
In contrast to other studies in which classifications were easily identified behaviors such
as sitting, walking, stair climbing, etc., the behaviors being identified for this study are
nuanced and the transitions between behaviors can occur rapidly and for brief periods of
time. An unsupervised machine learning approach could overcome the lack of labeled
training data; however, it would likely identify clusters of behavior that are unrelated to
the biomechanical behaviors of interest.

Validity is challenging to demonstrate when measuring a construct that has not
previously been studied. This study attempted a first level of validation through the
confirmation of the agreement between the algorithm, histograms of AP position over time,
and time matched images from video. Postural control is a continuous process. Episodes of
different behaviors can be recognized as Stable, Wobble, Rise and Fall, Collapse, or Head,
but it is challenging to visually distinguish the start and end points of those behaviors
when a child is transitioning rapidly from one to another. The algorithm presents heuristic
parameters to distinguish mathematical boundaries between these behaviors and thus
provides the opportunity to quantify and analyze how the amount of time within states
and the transitions between states evolve during the process of gaining upright control.

The benefit of the Markov chain model is that it can abstract the entire behavior
timeseries and represent the child’s behavior as an easily interpreted visualization showing
relative amounts of time spent in each behavior and the relative frequency of transitions.
The state and transition scores calculated from this model can be used to compare a child’s
behavior across conditions (supported vs. unsupported) or across time (months or years)
to show improvement in postural control. In this study, the scores are not intended to
compare postural control between different individuals.

4.1. Limitations

There is no gold standard measurement with which to compare the outcome of the
algorithm. This study is the first attempt the authors are aware of for quantifying postural
behavior states prior to development of upright control.

Data from typically developing infants were not classified or quantified in this study.
It is possible that the parameters selected for children with CP may not work as well for
quantification of states of control and transitions used by typical infants when gaining
upright control. However, the heuristic foundations for the algorithm development came
from observations of postural behavior in typical infants as well as children with CP, so
it is anticipated that the algorithm will be robust to quantify behaviors across diagnostic
groups and across typical or atypical developmental processes. This will require future
exploration and verification.

4.2. Future Studies

Areas for future investigation could include:
Verification of the algorithm and model with longitudinal data from typically develop-

ing infants. Data from children who exhibit a full range of trunk control (progressing from
no control to independent sitting over time) are needed to understand the links between
state and transition scores and functional abilities.

Electromyography (EMG) from the trunk flexors and extensors could provide ad-
ditional understanding of the developmental process. The algorithm could be used to
segregate episodes of postural behavior that could be matched to the child’s EMG to exam-
ine muscle responses based on state of control. Those results could be used to understand
the underlying mechanisms and suggest targets for motor learning interventions.
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5. Clinical and Research Relevance

Use of this algorithm could provide quantification of the effectiveness of new inter-
ventions in research or in the clinic, or document upright opportunities across full day
monitoring in the home and community. Lack of specificity in measurement has been
paralleled by a lack of specificity for intervention and contributes to the ongoing poor
prognosis for the development of functional motor skills in children with postural deficits
across a variety of diagnoses. Developmental researchers have previously shown the dose
and amount of experience that typical infants require for learning to walk (over 10,000 steps
per day) [62]. To date, there is no information on the amount of upright experience that is
required for typical infants to learn to sit independently. This method of quantifying states
of control could provide benchmarks of typical development and document differences in
the progression of trunk control in children with atypical development. Therapy sessions
could be enhanced by providing therapists with real-time or post-session outcomes show-
ing the effectiveness of different techniques or positioning devices during the intervention
and between intervention sessions.

6. Patents

Patent application is pending. For more detail, see international patent publication
number WO2022248939A2.
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