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Abstract: The analysis of sleep stages for children plays an important role in early diagnosis and
treatment. This paper introduces our sleep stage classification method addressing the following
two challenges: the first is the data imbalance problem, i.e., the highly skewed class distribution
with underrepresented minority classes. For this, a Gaussian Noise Data Augmentation (GNDA)
algorithm was applied to polysomnography recordings to seek the balance of data sizes for different
sleep stages. The second challenge is the difficulty in identifying a minority class of sleep stages,
given their short sleep duration and similarities to other stages in terms of EEG characteristics. To
overcome this, we developed a DeConvolution- and Self-Attention-based Model (DCSAM) which
can inverse the feature map of a hidden layer to the input space to extract local features and extract
the correlations between all possible pairs of features to distinguish sleep stages. The results on
our dataset show that DCSAM based on GNDA obtains an accuracy of 90.26% and a macro F1-
score of 86.51% which are higher than those of our previous method. We also tested DCSAM on
a well-known public dataset—Sleep-EDFX—to prove whether it is applicable to sleep data from
adults. It achieves a comparable performance to state-of-the-art methods, especially accuracies of
91.77%, 92.54%, 94.73%, and 95.30% for six-stage, five-stage, four-stage, and three-stage classification,
respectively. These results imply that our DCSAM based on GNDA has a great potential to offer
performance improvements in various medical domains by considering the data imbalance problems
and correlations among features in time series data.

Keywords: sleep stage classification in children; Gaussian noise data augmentation; data imbalance
problem; self-attention mechanism; biomedical multivariate signal processing

1. Introduction

Unlike in adults, sleep disorders in children are triggered by different internal and
external predisposing factors at different ages and exhibit different phenotypic symptoms
such as sleep terrors, obstructive sleep apnea, somnambulism, etc., and negative conse-
quences such as irritability, behavioral problems, learning difficulties, etc. The length
and depth of sleep and the duration of a sleep disorder also vary in different age groups.
Difficulties in initiating and maintaining sleep are among the most common sleep problems
in childhood. According to the study of [1], 41% of children aged 2 to 14 years in the
clinical sample are assessed as having insomnia, and 31% of children aged six to thirteen
years are reported to have disorders of initiating and maintaining sleep. Obstructive
sleep apnea is prevalent among 5.8% of children with its onset being between two and
eight years of age [2]. Obstructive sleep apnea is often accompanied by unusual sleep
positions, sleep-related paradoxical breathing, night-time enuresis or diaphoresis, and
morning headaches. Therefore, the study of sleep stage classification for child patients has
far-reaching significance for improving the actual sleep conditions of infants and children.
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Sleep stage classification is conducted by first recording polysomnography (PSG) signals,
which consists of electroencephalograms (EEGs), electrooculograms (EOGs), electromyograms
(EMGs), electrocardiography (ECG), etc. Subsequently, sleep experts analyze these multi-
channel PSG recordings throughout the night and assess sleep stages every 30 s according to
the Rechtschaffen and Kales (R & K) [3] and/or American Academy of Sleep Medicine (AASM) [4]
criteria (the differences between the R & K and AASM standards and their electrode
placements in EEG can be seen in our previous study [5]). R & K rules aptly categorize PSG
recordings into seven stages, i.e., Wakefulness (WA), Rapid Eye Movement (R), Stage 1 (S1),
Stage 2 (S2), Stage 3 (S3), Stage 4 (S4), and Movement Time (MT). Following AASM rules, PSG
recordings are classified into five sleep stages, which include Wakefulness (W), Rapid Eye
Movement (REM), Non-REM1 (N1: sleep transition stage), Non-REM2 (N2: light sleep), and
Non-REM3 (N3: deep sleep). However, manual scoring is constrained by the expertise of
sleep experts and the monitoring instruments. It is vulnerable to human error, often time-
consuming, and laborious. The agreement rate between expert consensus in sleep stage
scoring was reported to be only about 90% [6], and when experts assessed PSG recordings
a few weeks later, this agreement rate dropped to 75% [7], indicating the phenomenon of
intra-expert variability. Accordingly, there is an urgent need to develop an automated sleep
stage classification for children.

Figure 1 illustrates an overview of our previous study on sleep stage classification [5]
(as shown in blue in Figure 1). In the first step of sleep stage classification, we took care
of the sampling frequency because the original sampling frequency of the raw data is too
high (200 Hz), Therefore, subsampling was used to reduce the redundancy in the input
while obtaining enough valid information for sleep stage classification. Then, a Sliding
Window Segmentation (SWS) [8] algorithm was used to collect segments of PSG recordings
by sliding a time window of a fixed length with a certain stride. Subsequently, useful
features were learned using a DeConvolutional Neural Network (DCNN), which includes an
encoder based on a convolutional block and a decoder based on a deconvolutional block [9].
Finally, the DCNN predicted the sleep stage at each timestamp in the framework of multi-
class classification. Despite the impressive experimental results in overall classification
performance with DCNN, some limitations need to be further addressed. Without the
extraction and analysis of representative and distinctive hand-crafted features, the DCNN
cannot accurately detect the short-term sleep transition stage since it usually has a small
proportion in the dataset and its sleep signal is constantly maintained at a low frequency,
while there are no specific sleep waveforms. They are the main triggers for frequent
misclassification between sleep stages.

Figure 1. Schematic diagram of the optimized pattern recognition chain.

Many studies have been implemented with relatively effective classification results,
but still struggle with the problem caused by the sleep transition stage. A typical method
for classifying sleep stages is the analysis of correlations between hand-crafted features
for distinguishing sleep stages, such as the experiment performed by [10]. The correlation
coefficient in the frequency domain was defined by Empirical Mode Decomposition (EMD)
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and the extraction and classification of EEG features were realized with K-means. Instead,
Ref. [11] modified the experimental idea where the dimension-reduced EEG segments
were transferred to the graph framework to analyze the correlation between the features
and fed to an ensemble classifier to identify the sleep stages. In contrast, a One-Dimension
Convolutional Neural Network (1D-CNN) was proposed by [12] for automatically learning
multi-channel EEG and EOG features and their correlations. In [13], time-frequency features
of EEG were extracted and the frequency evolution was learned using 3D-CNN and Long-
Short-Term Memory (LSTM), respectively. There is also a study [14] in which transfer
learning was used to attempt to transfer knowledge from a large dataset (source domain)
to a small cohort (target domain) for automatic sleep stage classification, and accurate
sleep classification based on a small number of subjects was achieved. Although the above
experiments yielded good results in terms of overall accuracy, the problem of imbalance
across sleep stages caused biased performance evaluations. Without applying the data-
balanced strategy, these algorithms cannot effectively contribute to the detection of the
sleep transition stage. In addition, the sleep characteristics of the sleep transition stage in
EEG and EMG are also highly similar to those of the REM stage, which makes it difficult to
identify sleep transition stages accurately.

Therefore, in accordance with the aforementioned shortcomings in existing studies,
this paper addresses the following two issues in the sleep study: the first is the problem
of data imbalance, i.e., the distribution of examples across classes is skewed. A typical
classification assumes an equal number of examples for every class. A minority class
consisting of a small number of examples provides fewer opportunities to capture its
relationship to features. This leads to a model with poor classification performance for the
minority class. For instance, we often find that a classifier achieves an accuracy close to 100%
for majority classes, but it suffers a serious loss of accuracy for minority classes. Therefore, it
is important to develop an approach for improving the classification accuracy of a minority
class without seriously compromising the accuracy of a majority class. However, it is not
always possible to collect more data. Therefore, an alternative solution to this problem
should be sought. In our sleep stage classification, both N1 and REM are in a state of
muscle relaxation and low-frequency brain waves [15]. Hence, it is difficult to visually
distinguish between N1 and REM based on EEG and EMG. As a result, much smaller data
can be collected for the N1 stage as compared to the other stages, thus leading to a data
imbalance problem.

We adopt a data augmentation approach that simulates oversampling where the
number of examples in a minority class is increased by creating modified copies of existing
examples [16] (as shown in the yellow in Figure 1). One main data augmentation approach
is noise insertion which enables a classification model to reduce overfitting by avoiding
focusing on only a few features and extracting generalized combinations of features. In
other words, the impact of noise insertion is similar to the one of weight regularization
in training a classification model. Specifically, considering that Gaussian Noise (GN) is
statistical noise in the normal distribution [17] and Gaussian random events are very
common in nature, we implement Gaussian Noise Data Augmentation (GNDA) that injects
GN into PSG recordings of each segment for a minority class during training [18]. GN
with a mean of zero has data points essentially in all frequencies, effectively distorting
high-frequency features. This also means that lower frequency components (expected
data) will also be distorted, but neural networks can learn to outperform this, i.e., they use
enough data to correctly learn statistically useful features for recognizing minority classes.
This way, adding the right amount of noise can overcome the data imbalance problem.

The second issue is the difficulty of recognizing the N1 stage because it switches to
other stages (e.g., W or N2 stages) in a very short period of time (such as 3 to 5 min).
Moreover, as illustrated in Figure 2a,b, the EEG and even EMG features of the N1 stage
are quite similar to those of the REM stage because only Low Amplitude Mixed Frequency
(LAMF) brain waves occur in these two sleep stages without accompanying sleep features
such as K-complexes and sleep spindle, and the entire body musculature is in a relaxed
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state. Therefore, although many existing methods only use EEG, it is difficult to accurately
identify N1 and REM stages without forcibly extracting hand-crafted features. In general,
it is necessary to use the sleep features in the EOG (as shown in the brown dashed box in
Figure 2b) to further assist in distinguishing between these two sleep stages. As illustrated
in the green in Figure 1, we employ thus a self-attention mechanism [19] that embeds
the position information of the features and examines all possible pairs of features to
extract useful local and global feature correlations. Specifically, the DeConvolution- and Self-
Attention-based Model (DCSAM) is devised by incorporating the self-attention mechanism
into a DCNN. The feature map obtained by the DCNN can be embedded with its position
information. Then, the self-attention mechanism is used to perform fine-grained relativity
analysis, which can evaluate the correlations between temporal features in the feature map
to maximize the distinction between different sleep stages, so that the detection accuracy of
the N1 stage is greatly improved.

Figure 2. Examples of sleep patterns based on EEG, EOG, chin-EMG, and leg-EMG sensor modalities
in 5 sleep stages on the SDCP dataset: (a) The instance of sleep patterns based on 4 sensor modalities
in the N1 stage; (b) The instance of sleep patterns in the REM stage based on 4 sensor modalities,
where the brown dashed box indicates the difference in sleep patterns that exist in the EOG modality
of the REM stage compared to the other sleep stages; (c)The instance of sleep patterns based on 4
sensor modalities in the N2 stage; (d) The instance of sleep patterns based on 4 sensor modalities in
the N3 stage; (e) The instance of sleep patterns based on 4 sensor modalities in the W stage.

Attention is a mechanism for simulating cognitive concentration. The idea is that
the model focuses on important features while downplaying others. On this basis, the
mechanism of self-attention not only provides performance improvement but also can
serve as a tool for interpreting the behavior of models. The weights computed by the self-
attention mechanism could inform us about important features in context. The experimental
results on our own SDCP dataset [5] show that higher performances are accomplished
when a minority class such as N1 is expanded using GNDA. Compared to DCNN and
traditional RNN-based attention [20], our GNDA-based DCSAM can achieve impressive
performance due to its superior ability to emphasize key features of each sleep stage by
determining attention weights of all possible feature pairs. In addition, we demonstrate
that GNDA-based DCSAM attains a comparative performance to state-of-the-art methods
on the public Sleep-EDFX dataset [21,22]. This is further evidence of the generality and
practicality of the GNDA-based DCSAM.
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This paper is organized as follows: Section 2 shows the related studies tackling
the problem of attention mechanism and goes through the existing studies to show the
advantages of our GNDA-based DCSAM. Its methodological details are introduced in
Section 3. Then, Section 4 presents the experimental datasets (SDCP and Sleep-EDFX),
data processing, experimental settings, performance evaluation, and discussion. Finally,
Section 5 outlines the conclusion and future improvements of our study. Apart from the
main body of this paper, Appendices detail the Gaussian noise injection test, subsampling
frequency test, and sensor channel test.

2. Related Work

The attention mechanism is one of the biggest recent advancements in neural network
modeling. Just as the neural network attempts to mimic the actions of the human brain
in a simplified way. The attention mechanism is also an attempt to implement the same
action of selectively focusing on the relevant target areas while suppressing other useless
information in deep neural networks. There are several attention mechanisms that are
used in practice. Two conventionally used mechanisms are additive attention [23] and
dot-product attention [19]. Additive attention is a form of attention mechanism that uses
a fully connected network with a hidden layer to compute the attention weight of each
feature. In comparison, dot-product attention computes the attention weight of each feature
by the matrix product of input features. Indeed, additive and dot-product attentions have
the same computational complexity, but the dot-product attention operation can use highly
optimized parallel matrix multiplication. In addition, it can avoid the problem of a long-
term dependence on RNN and significantly increase the parallel processing capability. The
self-attention mechanism [19], also called intra-attention and is a variant of the attention
model that uses the scaled dot-product to compute the attention weights. It has been widely
applied in various fields, such as Natural language processing (NLP) [24], Computer Vision
(CV) [25,26], and Time Series Analysis (TSA) [27,28]. Covering self-attention-based methods
in various fields is out of the scope of this paper, and we focus only on those treating time
series data.

Numerous time series models rely on simple regressive algorithms in place of deep
learning [29–31]. Some motivations for this are interpretability, constrained data size, and
low training cost. Attention mechanisms offer a compelling argument, and the results can
be applied to explain the reasons for the performance enhancements. In the healthcare
field, ref. [32] proposed an interpretable bidirectional recurrent neural network-based
model (HAN-ECG) for identifying Atrial fibrillation (Afi) from ECG recordings. While it
is a hierarchical attention network that features three attention mechanisms to achieve
multi-resolution analysis in ECG leading to Afi. In [33], a 1-D convolution- and self-
attention-based framework called Simply Attend and Diagnose (SAnD) with single- and
multi-task strategies for multivariate medical time-series data was introduced since self-
attention can check correlations between all timestamp pairs. However, one of the major
difficulties lies in the consideration of long time series. A masking technique was adopted
to address this by hiding timestamps that were too far in the past, as well as applying high-
density interpolation rather than adding layer normalization following the self-attention
module. Meanwhile, in [34], a novel temporal attention-based encoder-decoder model was
developed for multivariate time series. It consists of Bidirectional Long Short-Term Memory
(Bi-LSTM) layers with a temporal attention module to extract long-term dependencies and
correlations between multivariate temporal channels. To analyze multivariate financial time
series data, ref. [35] proposed an LSTM and attention-based financial time series prediction
framework (AT-LSTM) to predict stock prices. The input features of a financial time series
are first assigned different weights by the attention mechanism in each time period, and
then all the weighted features constitute a feature sequence used in the LSTM prediction.

In many studies [36–51], feature engineering algorithms such as Fourier Transform
(FT), Wavelet Transform (WT), Spectral Features Analysis (SFA), and Time-frequency Analysis
(TA), etc., were used to generate and extract hand-crafted features from PSG recordings.
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Then various machine learning methods (e.g., Support Vector Machine (SVM), Decision Tree
(DT), Adaptive Boosting (Adaboost) and RF, etc.) were applied to predict the sleep stage.
Recently deep learning methods using LSTM, CNN, DCNN, and other variants could
achieve strong performances on sleep stage classification [5,12,52–54]. Nevertheless, they
have a serious limitation, namely the lack of interpretability. Some researchers have used
an attention mechanism to explain classification results by discovering the correlations
between different features in a long-term context.

Specifically, in [55], an autoencoder with a selective attention unit was proposed to
focus on relevant inputs. The feature representation was learned over a large set of pre-
defined handmade features for sleep stage recognition in training. Ref. [56] presented a
unified hybrid self-attention model (HybridAtt) to identify sleep stages by calculating the
feature correlations in the channel and temporal levels based on 14-channel PSG recordings.
The multi-view convolutional representation mechanism learns channel-specific and global
view features from input features and then uses attention mechanisms to fuse the features
of multiple views by inferring their dependencies. In [57], they demonstrated a model that
uses adversarial training along with attention mechanisms to extract transferable informa-
tion in the cross-dataset scenario from two different EEG databases, namely Physionet 2018
Challenge (P18C) and Sleep Heart Health Study (SHHS). Casal et al. [58] proposed a two-layer
architecture formed by a temporal CNN and a transformer to learn the transition rules
between awake and asleep stages using only HR signals from a pulse oximeter. All of the
aforementioned experiments verified the practicability of attention mechanisms for sleep
stage analysis.

To our knowledge, the most similar study to ours is [54], which uses a single EEG chan-
nel (Fpz-Cz) for adult patients in the Sleep-EDF(X) database by analyzing non-overlapping
segments to automatically identify sleep stages with a convolution- and sequential attention-
based algorithm. However, the weights of each sleep stage are predefined, which limits
the practical applicability of this algorithm in terms of scope and scenario and the exper-
imental subjects are adults. There are only a small number of existing studies targeting
sleep stage classification in children, and examples of them are as follows: The approach
presented by [59] used a two-stacked SVM-based sleep-wake stage classification approach
to distinguish Non-REM from REM and wakefulness from sleep based on the analysis of
six standard time-frequency domain features of heart rate variability extracted from the
Photoplethysmogram (PPG). The performance was not sufficient for clinical use. Ref. [60]
collected data on facial expressions using a video during children’s sleep. Behavioral
changes in the facial region were used for sleep-wake states by using a CNN to extract
the trainable features and employing SVM to classify the sleep stages. In comparison
with this video-based sleep stage detection and to highlight the advantages of non-contact
data acquisition, a non-contact sensing technology, namely Impulse-radio Ultrawideband
(IR-UWB) radar [61], was used to acquire fine movement asymmetries and vital signs in
children. Subsequently, radar data were analyzed with a sleep-wake decision algorithm
accompanied by amplitude-integrated EEG, respiratory signals, and movement features.
Ref. [62] also performed an IR-UWB radar-based sleep stage classification in children un-
dergoing PSG (e.g., EEG, ECG, thermistor, plethysmography, Pulse Oximetry (SpO2), etc.)
and wakefulness and sleep states can be well detected by applying an adaptive boosting
method. Nevertheless, it is evident that each of the aforementioned studies did not classify
sleep stages in detail, especially lacking identification of the N1 stage, but rather merged
sleep stages, conducted only a binary classification task (sleep and awake), a three-stage
task (W, REM, and Non-REM) and a four-stage task (W, REM, light sleep, and deep sleep).
Despite the improved performance, this simplified classification has led to a research gap
for effective sleep recognition of the N1 stage in children. In contrast, in [63], an experiment
for the classification of the N1 stage in children was performed. A multi-domain hybrid
neural network (HNN-Multi) consisting of CNN and LSTM was developed to implement
a three-stage (N1, N2, and W) classification task based on the EEG signals. An effective
combination of temporal and spatial time-domain features with time-varying frequencies
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was exploited and a performance improvement was achieved. The N1 stage is indeed the
sleep transition stage midway between W and N2 stages, but identification of the N1 stage
under conditions that ignore the influence of the REM stage is strongly biased.

In comparison, our DCSAM approach focuses on children and utilizes the self-
attention mechanism based on multiple channels of PSG recordings to extract local inter-and
intra-epochal features and implemented the standardized five-stage classification. On the
one hand, multiple channels are crucial for sleep stage classification due to their unique
signal phenotypes such as sleep spindles, K-complexes, slow-wave, etc. These phenotypes,
which play an auxiliary role, are not based only on EEG, EOG, and EMG. Therefore, it is
better to use multiple channels to yield good results. On the other hand, we performed
GNDA to balance the class proportion to overcome the imbalanced data problem and
discover the correlation of key features in different sleep stages using a self-attention mech-
anism, which significantly improves the detection accuracy of the sleep transition stage
(N1 stage), rather than extracting hand-crafted features to gain a better understanding of
sleep stage classification.

3. Methodology

Our DCSAM consists of a DCNN (Please see our previous study [5] for further explana-
tion and calculation details of DCNN) and self-attention mechanism. The convolution [64]
transforms an input segment into a high-level feature map and the deconvolution [65]
further expands them by recovering latent features that were ignored in the former block.
The self-attention mechanism then computes and updates explainable key features of sleep
stages by calculating the attention weights of local features with their global dependencies.
The following description begins with the introduction of the single-head self-attention
mechanism. Afterwards, the multi-head self-attention mechanisms are briefly explained.
The architecture of our proposed DCSAM and its implementation details are presented in
the last part of this section.

DeConvolution- and Self-Attention-Based Model

Figure 3 portrays the computation of a single-head self-attention mechanism. The
input and output of the self-attention mechanism are sequences. In particular, the genera-
tion of the output can be performed in parallel, since it is an advanced batch-processing
algorithm that performs dot product operations between matrices. We assume that the
output of the last deconvolutional layer of the DCNN is a feature map, which is defined as
a sequence of matrices X = x1, · · · , xT where xt (1 ≤ t ≤ T) is a C×M matrix created by
vertically stacking an M-dimensional transposed vector xt,c (1 ≤ c ≤ C) (i.e., the cth row
of xt is xT

t,c). Here, T, C, and M are the length of the feature map, the number of channels,
and the number of filters of the last DCNN layer, respectively. Global Average Pooling (GAP)
is performed to summarise xt,c into its average x′t,c. According to this, xt is converted
into an C-dimensional vector x′t = (x′t,1, · · · , x′t,C)

T , and X is transformed into a matrix of
dimensions T × C where it contains T vectors of C-dimensions such as X ′ = x′1, · · · , x′T .
This kind of GAP is useful for making our model more robust and resistant to overfitting
while preserving the useful information for each channel. X ′ is fed as input to the self-
attention mechanism to extract the correlations between all pairs of features in the local or
global context.

As illustrated in Figure 3, the first step of self-attention is to perform position embed-
ding [19] to take into account the temporal positions in X ′. Specifically, a C-dimension
vector et = (et,1, · · · , eC)

T encoding temporal positions are defined by computing each
dimension as follows:

et,2c′ = sin( t
10,0002c′/C ) for a dimension with an even number index

et,2c′+1 = cos( t
10,0002c′/C ) for a dimension with an odd number index,

(1)
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Unlike traditional recurrent neural networks, where each input is processed according to
the order of timestamps, a self-attention mechanism shows similar attention weights for all
inputs that have similar initial feature vectors when no position information is provided
because all inputs are processed simultaneously. Therefore, position embedding is used to
give the order context to the non-recurrent architecture. For our experiment, t represents
the timestamp (absolute position) and the use of sine and cosine functions with different
frequencies (temporal positions) make each timestamp characterized by a unique vector et
since the sine and cosine functions are stable in their periodicity and the embedding has
a certain invariance and the wavelengths of sine and cosine range from 2π to 10000 · 2π
in different dimensions, which distinguishes the form of the functions in odd and even
dimensions 2c′ and 2c′ + 1. The choice of t

100002c′/C respects Equation (1) and ensures that
t-second queries are possible even for long segments [19,66].

Figure 3. An illustration of the single-head self-attention mechanism: X′ is the input matrix of
dimensions T × C, where T, C represent the length of the time window and the number of channels,
respectively. Γ and Λ are the transformation weight matrices used to convert the position vector E
and the input vector X′ after concatenation into a new input vector X′′ encoded by the temporal
position. Three weight matrices Rq, Rk and Rv used to generate corresponding query (qt), key (kt)
and value (vt) based on X′′. g is the initial attention score that reflects the relevance between a given
query and each key and is then normalized by softmax to produce ĝ. The attention weight o can be
calculated by the sum of the multiplication between all ĝs and its corresponding values.

Then, et is enhanced into a higher-level feature e′t by multiplying weight matrix
Γ with a C × C, that is, e′t = Γet. In addition, x′t is refined into a higher-level feature
x̂′t by multiplying it with a C × C weight matrix Λ, that is, x̂′t = Λx′t. Then, X ′ is
transformed into X ′′ = x′′1, · · · , x′′T where x′′t = x̂′t + e′t encodes the characteristic of the
tth temporal position.

As shown in Figure 3, the next step of the self-attention is to generate the query qt, key
kt and value vt by the following multiplication of x′′t in X ′′ with three weight matrices Rq,
Rk and Rv, respectively.

qt = x′′tRq, (2)

kt = x′′tRk, (3)

vt = x′′tRv, (4)

Here, there are two settings to define Rq, Rk, and Rv. The first is to consider Rq = Rk = Rv,
and the second is to define them as different matrices. The second setting based on different
projections has a higher expressiveness power than the first one, but the computational
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complexity of the former is much higher. Since the experimental performance is not signifi-
cantly different between these settings, we decided to use the first one for the experiment.
In addition, the multi-head self-attention mechanism described below performs multiple
projections of x′′t in a similar way as the second setting (although they are not exactly
the same).

As depicted in the center of Figure 3, the correlation between x′′t and x′′t′ is quantified
as the following attention weight ĝt,t′ :

gt,t′ =
qt · kt′

T
√

D
, (5)

ĝt,t′ =
exp

(
gt,t′
)

∑j exp
(

gt,j
) (1 ≤ j ≤ T), (6)

where the initial attention gt,t′ is computed as the dot-product between qt and kt′ that
indicates their similarity. Here, the dot-product tends to be unfavorably large as the
increase of D that is the dimensionality of qt and kt′ . So, the dot-product is scaled by 1/

√
D.

Afterward, as described in Equation (6), a softmax operation is employed to convert gt,t′

into ĝt,t′ so that ĝt,1, · · · , ĝt,T are regarded as probabilistic values, each of which indicates
the strength of the correlation of the feature x′′t to the feature at another timestamp.

As represented by the projection of x′′t by Rv in Equation (4), vt is considered as a
higher-level feature for x′′t. The dotted line in Figure 3 illustrates that a further higher-level
feature ot for x′′t is computed as the weighted mean of v1, · · · , vT using the corresponding
attention weights ĝt,1, · · · , ĝt,T , as formulated in the equation below:

ot =
T

∑
t′=1

ˆgt,t′vt′ , (7)

Let us re-define X ′′ as a T× C matrix where the tth row is x′′T
t , and adopt a T× D matrix

O where the tth row is oT
t . The single-head self-attention mechanism to compute O from

X ′′ in batch can be performed by the following matrix operations [19]:

O = so f tmax

(
QKT
√

D

)
V , (8)

where Q, K, V are T× D matrices that are created by vertically stacking qts, kts and vts for
all timestamps. To summarize, the single-head attention takes a sequence of features X ′′ as
input and outputs a sequence of higher-level features O by aggregating projected features
at all timestamps V based on attention weights computed as so f tmax(QKT/

√
D).

It is easy to extend the single-head self-attention mechanism to the multi-head one.
Specifically, the latter just executes the former H times using H sets of weight matrices{
(Rq

h, Rk
h, Rv

h)
}H

h=1
. That is, different numbers of subheads qh,t, kh,t and vh,t can be com-

puted defer to the extended formulas qh,t = x′′tR
q
h, kh,t = x′′tRk

h, and vh,t = x′′tRv
h. As

same as the single-head self-attention, all initial attention weights gh,t can be computed
using scaled dot-product between each qh,t and the corresponding kh,t and its normalized
attention weight ĝh,t is produced by a softmax layer. Let oh,t be the higher-level feature for
x′′t with the T× D dimension generated by the hth single-head self-attention mechanism
(i.e., hth head) (as shown in Equation (9)). The overall higher-level feature o′t for x′′t is
obtained as an HD-dimensional vector created by concatenating o1,t, · · · , oH,T (as defined
in Equation (10)). Last, a learnable weight matrix RO is multiplied with o′t to produce a
final output feature o′′ that has the same dimensionality C to the input feature x′′t. The
schematic diagram of the multi-head self-attention mechanism is depicted in Figure 4. Its
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advantage is that different heads could focus on different attention ranges so that the local
and global correlations could be observed.

oh,t = so f tmax

(
qh,tk

T
h,t√

D

)
vh,t =



oT
h,1
...

oT
h,t
...

oT
h,T


, (9)

o′t =





oT
1,1
...

oT
1,t
...

oT
1,T


· · ·



oT
h,1
...

oT
h,t
...

oT
h,T


· · ·



oT
H,1
...

oT
H,t
...

oT
H,T




. (10)

Figure 4. An illustration of the multi-head self-attention mechanism: input matrix X′′ of dimension
T X C and then converted into positional-encoded query, key, and value by multiplying corresponding
R(q,k,v), which can be further decomposed into h sub-heads used to compute the final attention
weight matrix o′′ in terms of the mechanism of the single-head self-attention (see Figure 3), where
each sub-head can focus on specific areas of attention.

Our DCSAM is illustrated in Figure 5 and its implementation detail is shown in Table 1.
The input of the first convolutional layer is a tensor feature map of shape T × C, where
T represents the length of the sliding window and C represents the number of sensor
channels. A Leaky Rectified Linear Units (LeakyReLU) activation function is used in each
convolutional and deconvolutional layer. It is a variant of normal ReLU activation and does
not reach its saturation state as easily and avoids gradient dispersion. Batch normalization
is applied immediately after the first convolutional layer to normalize the layer’s inputs
by re-centering and re-scaling them, thereby avoiding the problem of internal covariate
shift, which causes hidden layers of the network to have to learn to adapt to the new
distribution when the input distribution changes. As a result, converging to a global
minimum during the training process is difficult. In addition, to avoid overfitting and
to maintain invariance of translation and scaling, the Max-Pooling layers are used in the
convolution block. A residual connection and layer normalization [67] are used to add
the output of the previous attention mechanism to the input of this layer and the sum is
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normalized. Then, an additional fully-connected dense layer with a softmax activation
function is employed to predict sleep stage labels at timestamp t. Moreover, the dropout
layer is inserted between dense and softmax layers to prevent the occurrence of overfitting.
Finally, categorical crossentropy on the softmax layer is used as a loss function.

Figure 5. An overview of our proposed DCSAM for sleep stage classification.

Table 1. The architecture and hyper-parameters of the proposed DCSAM.

Layer Number Layer Type Parameter Activation Function Value

1 conv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
same-padding

-

16
(1, 1)
(4, 1)

2 BatchNormalization - LeakyReLU -

3 conv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
same-padding

-

16
(1, 1)
(3, 1)

4 max-pooling pooling size
pooling stride size

-
-

(3, 3)
(1, 1)

5 conv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
same-padding

-

32
(1, 1)
(2, 1)

6 max-pooling pooling size
pooling stride size

-
-

(3, 3)
(2, 1)

7 conv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
same-padding

-

64
(1, 1)
(4, 1)

8 max-pooling pooling size
pooling stride size

-
-

(3, 3)
(2, 1)

9 conv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
same-padding

-

128
(1, 1)
(5, 1)



Sensors 2023, 23, 3446 12 of 33

Table 1. Cont.

Layer Number Layer Type Parameter Activation Function Value

10, 11 deconv. # kernels
Sliding stride size

Kernel size

LeakyRuLU
valid-padding

-

16, 44
(1, 1), (1, 1)
(1, 1), (3, 1)

12 GAP - - -
13 positional embedding - - -

14 attention mechanism
num-head

dropout rate
attention-axes

Q,K,V

-
-
-
-

H = 15
0.5

None
T x HD

15 add & normalization - - -
16 fully-connected # neurons ReLU 440
17 add & normalization - - -
18 fully-connected # neurons ReLU 800
19 Dropout drop rate - 0.3
20 softmax # neurons logistic 5

4. Experiments

In this section, we first give an overview of two datasets used in our experiments,
and then data preprocessing is presented. Next, we introduce an RNN-based attention
mechanism as the baseline model used for comparison with our DCSAM model and also
provide our experimental setups. We then compare the final performances based on k-fold
cross-validation and leave-one-subject-out cross-validation between DWT wavelets-based
SVM, DCNN, RNN-based attention mechanism, multi-head self-attention mechanism, and
our DCSAM with and without using GNDA. To show the generalization capabilities of
our GNDA-based DCSAM, a comparison experiment on the public Sleep-EDFX dataset is
also performed. At the end of this section, a discussion of the obtained results is presented.
In addition, the Gaussian noise injection test, subsampling frequency test, and the sensor
channel test based on the SDCP dataset as complementary experiments are shown in
the Appendices A, B and C, respectively.

4.1. SDCP Dataset
4.1.1. Dataset Description

The SDCP dataset [5] contains multi-channel PSG recordings for 21 subjects aged from
4 to 10 years old (14 females and 7 males) with sleep disorders. EEG and EOG channels

were recorded using a sliver chloride sensor, namely Ambu
®

Neuroline Cup electrode [68], and

EMG channels were recorded from a hairless skin sensor sticker Ambu
®

Neuroline-720 [68].
All sleep PSG recordings were stored in the Philips Sleepware G3 [69] workstation and
subsequently evaluated visually and manually by sleep experts. Demographic information
about children and data distribution per child in the SDCP dataset are shown in Table 2 and
Figure 6, respectively. The length of the multi-channel PSG recording is around 10 h from
the evening to the next morning. For our experiment, four sensor modalities were selected,
giving a total of 11 channels, e.g., 6 EEG channels (O1M2, O2M1, F3M2, F4M1, C3M2,
C4M1), two EOG channels (left and right rapid eye movements), one chin EMG channel,
and double legs EMG channels. The sampling frequency is 200 Hz and all recorded data
were expertly labeled every 30 s to represent one of five sleep stages (e.g., W, REM, N1, N2,
and N3) according to the AASM scoring standard. In the experiment, data collected from 17
subjects were used to train our DCSAM model, and data from the remaining four subjects
(P1, P4, P9, P24) were used to test the performance and fine-tune the hyper-parameter of
the model.

4.1.2. Data Preprocessing

Since the original sampling frequency of our sleep data was 200 Hz, 10 and 11 multi-
channel PSG recordings contained approximately 79,200,000 values. This is too large in
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terms of the computing power required to train our models. Relatedly, sleep stages do not
change suddenly, so 200 values sampled in one second are redundant and may contain
some unaltered superfluous information. Therefore, we subsampled the data by referring
to distinct functional subband frequencies of EEG, EOG, and EMG (i.e., EEG data can be
decomposed into functionally distinct frequency subbands, such as delta (0.5–3.9 Hz), theta
(4–7.9 Hz), alpha (8–12 Hz) and beta (12–30 Hz), EOG (0.2–15 Hz) and EMG (15–45 Hz)).
We tested three different subsampling frequencies (SF: 5 Hz, 10 Hz, and 50 Hz) in our
experiments, and decided to use a sampling rate of 50 Hz.

Table 2. Demographic of 21 subjects in the SDCP dataset.

Subject Age Sex Night (Lights Off) Subject Age Sex Night (Lights Off)

P 1 6 years old female 20:43:27 P 13 4 years old male 19:53:15
P 2 5 years old female 20:54:01 P 14 10 years old female 22:13:41
P 3 6 years old male 22:07:31 P 15 8 years old male 21:52:36
P 4 7 years old male 21:07:10 P 16 5 years old female 19:36:53
P 5 10 years old female 22:29:08 P 17 10 years old female 21:32:44
P 6 8 years old female 21:42:40 P 18 6 years old male 20:30:44
P 7 9 years old female 20:51:50 P 19 5 years old female 20:12:13
P 8 7 years old male 21:34:06 P 20 6 years old female 21:36:07
P 9 5 years old male 21:01:43 P 21 7 years old female 20:42:59

P 10 4 years old female 20:55:15 P 24 7 years old female 20:48:00
P 11 5 years old female 22:19:57

Figure 6. Data distribution for each child in the SDCP dataset.

After subsampling, GNDA described in Section 1 was applied to increase the propor-
tion of the N1 stage and to avoid misclassification between the N1 stage and other sleep
stages. A GN (Gaussian Noise), defined by a mean µ of zero and a standard deviation δ, can
be generated. The δ controls the degree of dispersion of the GN and can be set according to
the scale of each input x. A too-small δ has no effect, while a too-large δ makes the mapping
function too difficult to learn. Various δs were used to fine-tune a pretrained DCNN in our
previous study with GNDA in order to find the optimal δ. In particular, multiple δs were
used to generate diverse training data that were useful for accurate classification. Based on
the preliminary selection results shown in Appendix A, the δs are predetermined to (0.4),
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(0.2, 0.4), and (0.2, 0.4, 0.6). Each δ was used to generate the same number of data as the
original data of the N1 stage, so its proportion was expanded by a factor of two, three, or
four as more δs were used. As provided in Table 3, after applying GNDA, the proportion
of the N1 stage in the training set was close to that of the REM stage. Since the data in
different channels have different ranges of values, we normalized the data in each channel
to have zero mean and unit variance. This enabled us to tune δ regardless of data ranges in
the different channels.

Table 3. Proportional changes of the sleep stage by applying GNDA to data of the N1 stage in the
training set (17 subjects) in our SDCP dataset (#segments of sleep stages (%)). µ and δ represent
the mean and the standard deviation of a Gaussian distribution, respectively. The values of the
proportion before and after applying GNDA are highlighted in green and red, respectively.

N1 N2 N3 REM W

Original 1113 (5.76) 6805 (35.24) 4743 (24.56) 3288 (17.03) 3361 (17.41)
µ = 0, δ = 0.4 2226 (10.90) 6805 (33.32) 4743 (23.22) 3288 (16.10) 3361 (16.46)

µ = 0, δ = 0.2, 0.4 3339 (15.50) 6805 (31.60) 4743 (22.02) 3288 (15.27) 3361 (15.61)
µ = 0, δ = 0.2, 0.4, 0.6 4452 (19.65) 6805 (30.05) 4743 (20.94) 3288 (14.52) 3361 (14.84)

The following two settings of the SWS (Sliding Window Segmentation) process were
used based on our preliminary experiments. In the first setting, the length T and the sliding
stride ∆S of a time window were set to 30 and 30 s, respectively. This resulted in dividing
PSG recordings into non-overlapping segments. The second setting was defined by T = 300
and ∆S = 30 to generate overlapping feature segments.

4.2. Sleep-EDFX Dataset

Sleep-EDFX [21,22] is a well-known public database that contains 197 whole-night
sleep PSG recordings, including EEG (Pz-Oz and Fpz-Cz) and horizontal EOG. In Sleep
Cassette Study (SC), 153 recordings were recorded between 1987 and 1991 to study the effects
of age on the sleep of 25 to 101-years old healthy Caucasians and, in the Sleep Telemetry Study
(ST), 44 recordings were collected in 1994 to research the effects of temazepam medications
on the sleep of 22 healthy Caucasians with mild difficulties falling asleep. Each subject in
the SC study applied a total of about 20 h of PSG sleep recordings at the subjects’ homes and
the ST study provided 18 h of PSG sleep recordings in the clinic over two nights. Subjects
took temazepam one night and a placebo the other night. The sampling frequency was
100 Hz. All data were manually annotated by experts based on the R & K scoring rules. In
order to conduct a comparative experiment, we randomly selected 40 PSG recordings of
10 subjects in the SC study (SC 1, SC 5, SC 7, SC 10, SC 20, SC 21, SC 26, SC 27, SC 31, SC
51) and 10 subjects in the ST study (ST 4, ST 5, ST 10, ST 12, ST 15, ST 16, ST 18, ST 19, ST
20, ST 21) (demographic is shown in Table 4). Four classification tasks were conducted: a
six-stage task with R, WA, S1, S2, S3, and S4 stages, a five-stage task where S3 and S4 in the
six-stage classification task were combined into one stage, a four-stage task where S1 and
S2 in five-stage classification were merged, and a three-stage classification only considering
WA, Non-REM (S1, S2, S3, S4) and R stages. In addition, GNDA was configured by µ = 0
and δ = 0.4. As summarized in Table 5, this setting of δ expands twice as large as the
original data of the S1 stage.
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Table 4. Demographic of 20 subjects in the Sleep-EDFX dataset.

Study/Subject Age Sex Placebo Night (Lights Off) Temazepam Night (Lights Off)

SC 1 33 years old female 22:44 22:15
SC 5 28 years old female 1:22 0:35
SC 7 30 years old female 0:36 0:41
SC 10 26 years old male 22:59 23:07
SC 20 51 years old female 23:10 23:15
SC 21 51 years old female 23:28 23:59
SC 26 51 years old female 23:39 0:20
SC 27 54 years old female 23:41 22:58
SC 31 54 years old male 23:44 23:14
SC 51 70 years old male 23:10 0:03

- - - Placebo Night (Lights Off) Temazepam Night (Lights Off)

ST 4 18 years old female 23:53 22:37
ST 5 32 years old female 23:23 23:34

ST 10 20 years old female 23:21 23:28
ST 12 21 years old male 23:46 23:56
ST 15 66 years old female 23:42 23:33
ST 16 79 years old female 23:21 23:18
ST 18 53 years old female 23:38 23:24
ST 19 28 years old female 23:22 23:44
ST 20 24 years old male 23:47 0:01
ST 21 34 years old female 23:44 23:10

Table 5. Proportional changes in sleep stages by applying GNDA to data of the S1 stage in the training
set (14 subjects) in the Sleep-EDFX dataset(#segments of sleep stages (%)). µ and δ represent the mean
and the standard deviation of a Gaussian distribution, respectively. The values of the proportion
before and after applying GNDA are highlighted in green and red, respectively.

S1 S2 S3 S4 R WA

Original 3203 (5.58) 13,499 (23.52) 2444 (4.26) 2201 (3.83) 5551 (9.67) 30,498 (53.14)
µ = 0, δ = 0.4 6406 (10.57) 13,499 (22.28) 2444 (4.03) 2201 (3.63) 5551 (9.16) 30,498 (50.33)

4.3. RNN-Based Attention Model

One main application of the attention mechanism is sequence-to-sequence based on
the encoder-decoder framework. Here, the encoder converts an input sequence x of length
T into a context vector ξ, which summarizes the input information and is then converted
into an output sequence by the decoder. The encoder and decoder are usually constructed
using LSTM. The encoder’s output at timestamp t corresponds to a hidden state vector
hs(e)t , and the last hidden state is regarded as a context vector (i.e., ξ = hs(e)T ). However, it
cannot represent the input sequence so well. The use of the attention mechanism is thus
necessary to form a different context vector for each output of the decoder. The correlation
gt′ ,t between the hidden state hs(d)t′−1 at timestamp t′ − 1 in the decoder and all hidden

states {hs(e)t }T
t=1 in the encoder is computed by a function ζalign that attempts to capture

the alignment gt′ ,t = ζalign(hs(d)t′−1, hs(e)t ) between the hidden states at timestamps t and
t′ − 1. The normalized attention weight ĝt′ ,t is obtained by applying the softmax function

to {gt′ ,t}T
t=1 computed for {hs(e)t }T

t=1. Each of these hidden states are weighted by ĝt′ ,t and

summed to form the context vector ξt′ = ∑T
t=1 ĝt′ ,ths(e)t . This way, each context vector can

be associated with all hidden states in the encoder by attention. Then, ξt′ collaborates with
the previous hidden state hs(d)t′−1 in the decoder to form the hidden state hs(d)t′ at timestamp
t′. The working pipeline of the RNN-based attention model is shown in Figure 7 and its
implementation details are provided in Table 6.
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Figure 7. An overview of the RNN-based attention model.

Table 6. The architecture of the RNN-based attention model.

Layer Number Layer Type Parameter Activation Function Value

1 positional embedding - - -

2 LSTM cell
# units

dropout
recurrent_dropout

tanh
-
-

110
0.5
0.3

3 attention mechanism - - -
4 fully-connected # neurons ReLU 380
5 dropout drop rate - 0.2
6 softmax # neurons logistic 5

4.4. Experimental Setup

Our experimental models were implemented using the Python Keras framework with
a Tensorflow backend. The Adam optimizer was configured with learning rates of 0.001 for
the RNN-based attention model and 0.0001 for DCNN and DCSAM. The batch size was set
to 128 for all models, 400 epochs were used to train the RNN-based attention model, and
300 epochs were used for DCNN and DCSAM. All hyperparameters were selected by grid
search [70], but also in terms of parameter traversal results from the previous study [5] since
the proposed DCSAM was optimized on DCNN. Values in {16, 32, 64, 128} and {16, 32, 44}
were tested for the number of kernels in CNN and DCNN layers of DCSAM, respectively.
The number of neurons in dense layers was tested with values in {440, 800, 1000}. The
selection range from 1 to 30 with intervals of 5 was used to test the number of attention
heads. For the comparative study, the number of CuDNNLSTM units in the RNN-based
attention model was tested in a value range of 3 to 200 with intervals of 1. The range of
values from 10 to 1000 with intervals of 10 was tested to select the number of neurons
in dense layers. The grid search experiment was performed on three GPU machines in
a configuration with SF = 5 Hz with 150 epochs, each epoch taking about 3 s to train
the DCSAM model, about 6 s to train the RNN-based attention model, and about 5 s to
train the self-attention model. Three GPU machines equipped with Intel i7-8700K CPU,
128 GB RAM and two NVIDIA RTX3080Ti GPU, Intel i9-12900KF CPU, 64 GB RAM, and
one NVIDIA RTX3090 24 GB GPU, and AMD Ryzen Threadripper 64Core CPU, 256 GB
RAM and two NVIDIA RTX3090 24 GB GPU were used, respectively. Furthermore, we
attempted to utilize a state-of-the-art approach, i.e., Support Vector Machine (SVM) with the
parameters (C = 2, kernel = ’rbf’, gamma = ’scale’, max_iter = −1, decision_function_shape
= ’ovr’, break_ties = True) collaborated with Discrete Wavelet Transform (DWT)-based
hand-crafted features (e.g., approximation and detail coefficients of DWT for Daubechies-



Sensors 2023, 23, 3446 17 of 33

order wavelets—db2, db4, db6, db8, db10, db12, db14, db16, db18, and db20) [71,72] to
fairly compare the performances with our proposed attention-based models.

4.5. Performance Evaluation on the SDCP Dataset

Tables 7 and 8 show the performance metrics of all models configured with time
window lengths of T = 30 s and T = 300 s, respectively. Each model has been tested
under the condition that the sampling frequency was 50 Hz (performance metrics using
all models based on other subsampling frequencies are shown in Appendix B). All results
were evaluated using overall accuracies and F1 scores. While an overall accuracy only
reflects the proportion of correctly classified samples in the whole sample set, a macro
F1-score is the average of harmonic means of precision and recall that are independently
calculated for each class, as depicted in the following equations:

F1i =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(11)

MF1 =
1
λ

λ

∑
i=1

F1i, (12)

where λ represents the number of sleep stages. The advantage of the macro F1-score is to
treat all classes equally irrespective of the fact that the distribution of each sleep stage is
unequal. To better measure the generalization of DCSAM, we performed subject-dependent
seven-fold cross-validation, in which the sleep data of all subjects were mixed together and
leave-one-subject-out cross-validation. All results in Tables 7, 8 and A4 are based on the
7-fold cross-validation, and performances in Table 9 are based on the leave-one-subject-out
cross-validation.

Table 7. Final performance metrics of all models with and without GNDA based on the SWS strategy
(∆S is fixed at 30 s) with SF = 50 Hz and T = 30 s, and 7-fold cross-validation on the SDCP dataset
(Macro F1-Score = MF1, Accuracy = ACC, Gaussian Noise Data Augmentation = GNDA, GNDA was
applied only to the training folds during cross-validation; the highest performances are highlighted
in red).

50 Hz MF1 for Each Class

ACC MF1 N1 N2 N3 REM W

DWT + SVM without GNDA 67.59 55.52 31.59 64.20 66.92 57.14 57.75
GNDA(0.4) + DWT + SVM 67.81 52.05 29.97 62.54 64.69 55.49 47.56

GNDA(0.2, 0.4) + DWT + SVM 71.12 56.44 37.19 67.54 60.22 58.75 58.50
GNDA(0.2, 0.4, 0.6) + DWT + SVM 71.97 59.45 44.48 69.36 72.11 60.98 50.32

DCNN without GNDA 77.13 63.02 18.79 79.88 81.79 61.47 73.17
GNDA(0.4) + DCNN 80.01 66.88 25.47 82.09 82.19 69.56 75.09

GNDA(0.2, 0.4) + DCNN 80.34 67.35 26.43 81.84 82.29 72.63 73.53
GNDA(0.2, 0.4, 0.6) + DCNN 79.52 66.48 23.92 80.23 83.66 71.62 72.96

RNN-based attention without GNDA 71.48 65.27 29.97 77.67 80.09 69.68 68.94
GNDA(0.4) + RNN-based attention 73.98 66.47 32.58 78.39 81.80 71.59 67.99

GNDA(0.2, 0.4) + RNN-based attention 71.57 63.99 31.69 77.98 79.77 67.43 63.08
GNDA(0.2, 0.4, 0.6) + RNN-based attention 74.68 68.24 33.34 80.17 81.62 71.87 74.20

Self-attention without GNDA 78.25 70.83 41.25 82.00 84.27 75.89 70.74
GNDA(0.4) + Self-attention 82.97 75.87 46.84 84.08 86.95 81.24 80.24

GNDA(0.2, 0.4) + Self-attention 84.45 77.75 47.88 85.97 88.05 83.00 83.85
GNDA(0.2, 0.4, 0.6) + Self-attention 82.67 75.87 46.14 85.00 86.29 79.40 82.52

GNDA(0.4) + DCNN + Self-Attention 87.37 85.22 67.15 87.00 90.87 89.26 91.82
GNDA(0.2, 0.4) + DCNN + Self-Attention 88.55 84.69 66.72 86.17 91.89 90.44 88.23

GNDA(0.2, 0.4, 0.6) + DCNN + Self-Attention 90.26 86.51 69.20 89.57 93.91 89.83 90.02
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Table 8. Final performance metrics of all models with and without GNDA based on the SWS strategy
(∆S is fixed at 30 s) with SF = 50 Hz and T = 300 s, and 7-fold cross-validation on the SDCP dataset
(Macro F1-Score = MF1, Accuracy = ACC, Gaussian Noise Data Augmentation = GNDA, GNDA was
applied only to the training folds during cross-validation; the highest performances are highlighted
in bold).

Model 50 Hz MF1 for Each Class

ACC MF1 N1 N2 N3 REM W

DWT + SVM without GNDA 67.01 53.79 26.75 60.20 62.00 50.07 69.93
GNDA(0.4) + DWT + SVM 68.92 52.97 27.15 61.13 60.49 48.04 68.04

GNDA(0.2, 0.4) + DWT + SVM 69.92 52.99 29.13 60.89 62.05 49.91 62.97
GNDA(0.2, 0.4, 0.6) + DWT + SVM 69.94 54.18 29.99 62.05 61.79 51.52 65.55

DCNN without GNDA 77.90 66.11 26.93 84.77 86.18 63.79 68.88
GNDA(0.4) + DCNN 80.67 71.39 32.78 85.12 88.26 70.68 83.08

GNDA(0.2, 0.4) + DCNN 86.02 75.88 36.03 86.17 89.21 80.57 87.42
GNDA(0.2, 0.4, 0.6) + DCNN 85.81 76.11 35.07 86.11 89.00 82.83 87.54

RNN-based attention without GNDA 71.03 64.51 28.57 76.18 80.91 68.23 68.04
GNDA(0.4) + RNN-based attention 70.44 63.06 29.67 77.26 78.66 65.76 63.95

GNDA(0.2, 0.4) + RNN-based attention 68.76 62.28 27.99 75.98 76.00 66.90 64.53
GNDA(0.2, 0.4, 0.6) + RNN-based attention 70.56 66.47 30.71 79.98 81.22 71.00 69.44

Self-attention without GNDA 77.29 68.27 39.69 80.01 83.25 74.20 67.20
GNDA(0.4) + Self-attention 80.67 73.88 43.57 83.55 86.29 77.41 78.58

GNDA(0.2, 0.4) + Self-attention 80.05 72.97 44.30 80.95 83.98 76.62 79.00
GNDA(0.2, 0.4, 0.6) + Self-attention 81.15 74.19 44.08 81.54 85.36 78.18 81.79

GNDA(0.4) + DCNN + Self-Attention 86.24 81.89 61.78 86.24 88.89 86.97 85.57
GNDA(0.2, 0.4) + DCNN + Self-Attention 88.06 83.18 65.34 84.77 89.09 90.16 86.54

GNDA(0.2, 0.4, 0.6) + DCNN + Self-Attention 88.56 83.57 66.05 85.42 90.71 87.45 88.22

Table 9. Performance metrics of all models with and without GNDA based on the SWS strategy (∆S is
fixed at 30 s) with SF = 50 Hz and T = 30 s, and leave-one-subject-out cross-validation on the SDCP
dataset (Macro F1-Score = MF1, Accuracy = ACC, Gaussian Noise Data Augmentation = GNDA,
GNDA was applied only to the training folds during cross-validation; the highest performances are
highlighted in red).

50 Hz MF1 for Each Class

ACC MF1 N1 N2 N3 REM W

DWT + SVM without GNDA 65.00 50.03 26.10 61.75 63.49 53.02 45.79
GNDA(0.4) + DWT + SVM 63.37 46.67 24.89 57.86 60.05 50.49 40.06

GNDA(0.2, 0.4) + DWT + SVM 66.62 50.28 30.49 60.57 63.25 51.70 45.39
GNDA(0.2, 0.4, 0.6) + DWT + SVM 68.07 52.88 35.34 62.19 64.86 55.57 46.44

DCNN without GNDA 74.73 59.49 16.30 77.54 80.69 56.30 66.62
GNDA(0.4) + DCNN 77.34 63.99 22.90 80.06 80.94 61.98 74.07

GNDA(0.2, 0.4) + DCNN 78.65 64.02 24.04 82.53 80.47 60.37 72.69
GNDA(0.2, 0.4, 0.6) + DCNN 76.54 62.70 21.94 80.50 80.40 63.01 67.65

RNN-based attention without GNDA 69.60 64.03 27.00 78.63 79.40 67.23 67.89
GNDA(0.4) + RNN-based attention 70.45 64.87 30.59 79.03 80.33 69.99 64.41

GNDA(0.2, 0.4) + RNN-based attention 69.03 60.51 28.43 76.35 78.00 64.33 55.44
GNDA(0.2, 0.4, 0.6) + RNN-based attention 71.28 66.36 29.58 80.04 79.21 70.46 72.51

Self-attention without GNDA 77.62 69.40 38.97 81.91 82.67 73.90 69.55
GNDA(0.4) + Self-attention 79.45 73.60 43.82 83.98 84.06 79.28 76.86

GNDA(0.2, 0.4) + Self-attention 83.06 75.24 45.00 83.97 86.59 81.29 79.35
GNDA(0.2, 0.4, 0.6) + Self-attention 82.00 74.32 44.66 82.69 84.37 77.14 82.74

GNDA(0.4) + DCNN + Self-Attention 85.07 83.24 65.83 85.26 88.40 88.14 88.57
GNDA(0.2, 0.4) + DCNN + Self-Attention 85.86 83.09 64.70 85.09 89.26 90.00 86.40

GNDA(0.2, 0.4, 0.6) + DCNN + Self-Attention 86.91 84.00 66.48 86.44 90.39 87.69 89.00

As shown in Table 7, the highest performance is achieved by our proposed GNDA-
based DCSAM with T = 30 s, SF = 50 Hz, and δ = (0.2, 0.4, 0.6). Its accuracy (90.26%)
and macro F1-score (86.51%) have improvement margins of 12.01% and 15.68% compared
to the self-attention without GNDA. Additionally, the macro F1-scores of these models
for the N1 and REM stages have differences of 27.95% and 14.04%. Focusing on the
performances obtained by the same δ of GNDA, almost all models using GNDA have
higher performances than those without its use. In addition, the performances of our



Sensors 2023, 23, 3446 19 of 33

DCSAM using three δs (0.2, 0.4, 0.6) were on average ACC of 2% higher than those only
applying a single δ (0.4) and two δs (0.2, 0.4). Furthermore, GNDA-based DCSAM based on
non-overlapping window segmentation is more effective than that based on overlapping
window segmentation. Especially, as shown in the red in Tables 7 and 8, their notable
margin in macro F1-scores is 2.94%. This further proves that non-overlapping segmentation
contributes positively to DCNN to mine latent features and for the self-attention mechanism
to explore the correlation between these potential features.

Moreover, in Table 7, compared to non-GNDA-based DCNN in our previous study [5],
GNDA-based DCSAM achieves an improvement in accuracy and macro F1-score of 13.13%
and 23.49%, respectively. This is attributed to the solution of the class imbalance problem
and the analysis of correlations between features by the self-attention mechanism. In
particular, for the identification of the N1 stage, there was a significant improvement of
50.41% and reach 69.2%. This is also impressive when compared to the state-of-the-art
machine learning approach of DWT wavelet feature-based SVM without GN and with GN
δ = (0, 2, 0, 4, 0, 6), which achieved only 31.59% and 44.48% recognition sensitivity for the
sleep transition stage, respectively.

Last but not least, leave-one-subject-out cross-validation based on the best configura-
tion that can achieve the highest performance (SF = 50 Hz and T = 30 s) was performed
to avoid classification variance caused by the increased weight in the augmented N1 stage.
As can be seen in Table 9, all models achieve a stable performance compared to the subject-
dependent 7-fold cross-validation (as shown in Table 7) and the DCSAM still outperforms
the other models regardless of whether GNDA is used or not. With respect to the DCSAM
with GN δ = (0.2, 0.4, 0.6), the differences in accuracy and MF1 between subject-dependent
7-fold cross-validation and leave-one-subject-out cross-validation are 3.25% and 2.51%,
respectively. In particular, a small sensitive margin in the detection of the N1 stage (2.72%)
further confirms the reliability of the proposed GNDA-based DCSAM.

4.6. Comparative Experiment on the Sleep-EDFX Dataset

To highlight the general efficiency of our proposed GNDA-based DCSAM, we performed
the comparative experiment on the Sleep-EDFX dataset, leaving the hyper-parameters of
the model unchanged and deploying T = 30 s and the original sampling frequency
SF = 100 Hz with leave-one-subject-out cross-validation. Due to the difference in the
data scale distributions of the SDCP and Sleep-EDFX datasets, we changed δ in GNDA
from (0.2, 0.4, 0.6) to 0.4 and apply GNDA to the training folds during cross-validation. In
addition, an Adamax optimizer with a learning rate of 0.002 was used in this experiment.
Table 10 summarizes the performances of GNDA-based DCSAM using single-channel EEG
(Fpz-Cz) with δ = 0.4 for the six-stage to three-stage scoring tasks. Our model can obtain
strong performances on these tasks with average accuracies of 91.77%, 92.54%, 94.73%, and
95.30%, and average macro F1-scores of 86.64%, 88.85%, 91.41%, and 93.01%, respectively.

Table 10. The performance of our GNDA-based DCSAM using leave-one-subject-out cross-validation
(T = 30 s, SF = 100 Hz, δ = 0.4), Fpz-Cz on the Sleep-EDFX dataset. Average F1-Score = AF1,
Average Accuracy = AACC, GNDA is applied only to the training folds during cross-validation, and
the highest performances are highlighted in red.

AF1 AACC Average F1-Score of Each Sleep Stage

WA S1 S2 S3 S4 R

6-stage 86.64 91.77 92.79 76.40 87.94 82.07 91.94 88.69
5-stage 88.85 92.54 92.99 77.14 89.39 (S3/S4: 93.16) 91.57
4-stage 91.41 94.73 94.01 (S1/S2: 90.29) (S3/S4: 95.83) 85.51
3-stage 93.01 95.30 94.05 (S1/S2/S3/S4: 98.47) 86.51

In this comparative study, different sensor modalities and channels were tested and
the experimental results are shown in Figure 8. Both sensor modalities, Fpz-Cz and Pz-
Oz—and even their combination—could attain good experimental results, but for the



Sensors 2023, 23, 3446 20 of 33

Sleep-EDFX dataset, using a single channel based on the DCSAM is more effective than
using multiple channels, and the investment in low noise (small random variation) pays
off. This demonstrates the generalization capability of our GNDA-based DCSAM.

Figure 8. Performance comparison of our GNDA-based DCSAM using different sensor channels in the
three-stage to the six-stage classification of sleep stage on the Sleep-EDFX dataset (T = 30 s, SF = 100 Hz,
and δ = 0.4): (a) Average overall accuracy comparison; (b) Average F1-score comparison.

4.7. Discussion

First of all, the success of the experiments should be attributed to GNDA. As shown in
Table 3, the proportion of the N1 stage has only 5.76%, it is so small that the models cannot
fully learn the features of this stage. The expansion of the N1 proportion allows a better
interpretation of the characteristics of this sleep stage by the self-attention mechanism,
distinguishing it well from the REM stage. Regardless of the model, the results of using
GNDA are better than not applying it (as shown in Tables 7–9).

Next, according to the principle of the self-attention mechanism, the specificity of
the features in the N1 stage can be better distinguished in context, which greatly reduces
the misclassification risk between the N1 and other sleep stages as depicted in Figure 9.
Figure 10 illustrates the qualitative analysis results of self-attention weights for five sleep
stages. The self-attention mechanism computes attention weights ĝt,t′ utilizing the softmax
function following Equation (6). A matrix formed by collecting these attention weights
emphasizes the influence of an input temporal feature on a higher-level output temporal
feature. Since each self-attention head can focus on distinct features, the attention weight
matrices based on 15 self-attention heads were averaged and visualized by depicting high
and low attention weights in orange and green, respectively. The attention weights are
exhibited as vertical lines corresponding to the values in ĝt,t′ . To intuitively observe the
difference in attention weights for different sleep stages, we averaged the attention weight
matrices for a certain class to create 5 class-specific attention weight matrices. Different
sleep stages pay more attention to specific parts of the time series, as shown in orange
areas in Figure 10. For instance, the N1 stage appears to focus on the late-middle part of
a segment while the REM stage learns the features from the early-middle and late parts.
Therefore, each sleep stage is clearly distinguished from the other by taking into account
the distribution of attention weights. In other words, the model focuses on informative
parts of a segment, such as strong peaks corresponding to functional subbands, such as
K-complex and spindles. This demonstrates the efficiency of the self-attention mechanism
for mining feature correlations.
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Figure 9. Performance comparison in the form of a confusion matrix: (a) Confusion matrix based
on the SWS-based DCNN without GNDA using T = 30 s and SF = 50 Hz obtained from the SDCP
dataset; (b) Confusion matrix based on GNDA-based DCSAM with T = 30 s, SF = 50 Hz, and
δ = (0.2, 0.4, 0.6) obtained from the SDCP dataset.

Figure 10. Visualization of attention weights after using GNDA-based DCSAM with multiple sensor
channels on the SDCP dataset (T = 30 s, SF = 50 Hz). Attention weights (the correlations between
features) are presented at each sleep stage, respectively: (a) N1; (b) REM; (c) N2; (d) N3; (e) W.

To claim this argument more closely and visually, we also created the Sankey diagrams
in Figure 11 to show how the classification results change on an aggregated level. For the
SDCP dataset, the numbers of ground truth labels and predicted labels are depicted by
dark colors on the left side and light colors on the right side, respectively. The classification
statuses in sleep stages are shown as a flow between the left and right sides. For instance,
in the red in Figure 11a, there are 1163 N1 labels in the ground truth, but the number of
N1 labels predicted by the non-GNDA-based DCNN using leave-one-subject-out cross-
validation is 3646. This means that misclassifications between the N1 and other sleep
stages are quite severe. The advantages of GNDA and self-attention mechanisms are
obvious in comparison. After applying GNDA, a total of 2563 predicted labels as N1
are obtained after using DCSAM with the same cross-validation strategy, as shown in
Figure 11b. Although there are still misclassifications among them, most of the true N1
labels are correctly identified, so that the red-colored visual flow from the ground truth
N1 labels to the predicted ones in Figure 11b is more concentrated and less dispersed. In
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addition to N1, other sleep labels were correctly identified much more accurately compared
to Figure 11a. This further validates that our GNDA-based DCSAM is able to effectively
distinguish the N1 from the REM stage by overcoming the imbalanced class problem.

Figure 11. Visualization of sleep stage classification results on the SDCP dataset using the Sankey
diagram: (a) Sankey diagram of the classification result by the non-GNDA-based DCNN using
the leave-one-subject-out cross-validation; (b) Sankey diagram of the classification result by the
GNDA-based DCSAM using the leave-one-subject-out cross-validation.

As shown in Table 7, the experimental performance of the GNDA-based DCNN with
δ = (0.2, 0.4, 0.6) is significantly improved in MF1 by a notable margin of approximately
20.03% after it adopts the self-attention mechanism. Compared to other studies [54,56,57,73],
our model could also achieve strong and stable performance and even better accuracies
and macro F1-scores for the recognition of the sleep transition stage. Meanwhile, non-
overlapping segmentation (T = 30 s) is beneficial for the self-attention mechanism to
exploit the correlation between features of different sleep stages. On the other hand, the
determination of representative labels is more difficult in overlapping segments (T = 300 s),
and the incorrect selection of representative annotations can lead to inter-class misclassifi-
cations. This also makes the self-attention mechanism misunderstand relevant features and
their correlations.

Overall, the contribution of the attention mechanism compared to the DCNN is also
evident when analyzed at the mechanism level. Figure 12 shows the visualization of
the raw data distribution on the SDCP dataset, as well as visualizations of the features
obtained from the last DCNN layer and the last attention layer to intuitively demonstrate
the effectiveness of the core attention mechanism. Raw data (as illustrated in Figure 12a) are
usually cluttered with noise. DCNN plays an initial screening role and offers an advantage
in DCSAM, having little dependence on preprocessing while reducing the human effort
required for feature extraction. It automatically learns the temporal and latent features
from the raw sensor data. Almost all sleep stages can be well identified, except for the
N1 and REM stages, because their short duration and their features in EEG and EMG are
similar to the REM stage (as shown in Figure 12b). In turn, the core attention mechanism
performs inter-feature correlations analysis using attention weights, making the features of
the N1 stage highly distinguishable from other sleep stages (as shown in Figure 12c), thus
further improving the performance of the overall classification.
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Figure 12. Visualization of the raw data distribution on the SDCP dataset, as well as visualizations
of the features obtained from the last DCNN layer and the last attention layer using UMAP [74]
(0: N1 stage; 1: N2 stage; 2: N3 stage; 3: REM stage; 4: W stage). (a) Visualization of the raw data
distribution on the SDCP dataset; (b) Visualization of the features obtained from the last DCNN layer;
(c) Visualization of the features obtained from the last attention layer.

In the Sleep-EDFX dataset, as shown in Table 5, the proportion of the S1 stage is 5.58%,
and the difference is not very large compared to the R stage. Therefore, there is no need to
expand data for the S1 stage too much, and adding Gaussian noise based on a single δ can
improve the results obviously. As shown in Figure 13, the features of the S1 and R stages
can be efficiently learned regardless of which sensor channel is used and the recognition
sensitivity of S1 and R stages for the six-stage sleep classification can reach 76.40% and
88.69%, respectively. In addition, compared to other studies [12,36–40,45,47,52,73,75], which
has performed feature engineering to generate hand-crafted features in an EEG signal, such
as wavelet transform, spectral entropy, and time-frequency image, we deal with raw multi-
channel PSG recordings and uses the deconvolutional block and self-attention mechanism
to exploit the latent features and their correlations. The performance comparison between
our GNDA-based DCSAM and other state-of-the-art methods is shown in Table 11. The
bias of the results depends on the hyperparameter settings of the specific experimental
model. We use accuracy as the main evaluation metric for this comparison because it is
used in most studies. In Table 11, TFA+SSAE [76] and DWT+MSPCA+RotSVM [40] based
on feature engineering with single-channel EEG achieve the highest accuracies of 82% and
91.10% for the five-stage classification task, respectively. CNN-Att [54], which adopts an
attention mechanism, attained the highest accuracy of 93.7% for the five-stage classification
task. In contrast, our model with a single-channel EEG achieved an average accuracy of
91.77% to 95.30%, depending on how many sleep classes are considered. This performance
is comparable to those of the top-ranked methods in Table 11, which indicates the great
potential of our model.

All the performances prove the validity and plasticity of our model as it contributes
to the classification of sleep stages in children by investigating a strategy of data balance
and self-attention mechanism to improve the accuracy of sleep transition detection. In
general, our proposed DCSAM can also be used for timestamp-based classification tasks
for multivariate time series in various medical fields.
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Table 11. Performance comparison of various state-of-the-art methods on the Sleep-EDFX dataset
with 20 subjects. Our proposed method is highlighted in bold. TFA: Time-frequency Analysis; SSAE:
Stacked Sparse Autoencoder; CNN: Convolutional Neural Network; BiLSTM: Bidirectional-LSTM;
DWT: Discrete Wavelet Transform; SVM: Support Vector Machine; MSPCA: Multiscale Principal
Component Analysis; RotSVM: Rotational Support Vector Machine; MT-CNN: Multi-task CNN;
CNN-Att: CNN-based attention model; MB-CNN: Multi-Branch Convolutional Neural Network;
MS-DAN: Multi-scale Dual Attention Network; OC-SVM: One-class SVM; MRCNN: Multi-resolution
convolutional neural network; AFR: Adaptive feature recalibration; TCE: Temporal context encoder.

Study Dataset & Subjects Channel Performance

Overall Accuracy (%)
6-Stage 5-Stage 4-Stage 3-Stage

TFA+SSAE [76] Sleep-EDFX Fpz-Cz - 82.00 - -

CNN+BiLSTM [52] Sleep-EDFX Fpz-Cz - 82.00 - -

DWT+MSPCA+RotSVM [40] Sleep-EDFX Pz-Oz - 91.10 - -

1D-CNN [12] Sleep-EDFX Fpz-Cz +EOG 89.54 90.98 92.33 94.34

MT-CNN [77] Sleep-EDFX Fpz-Oz + EOG - 82.30 - -

CNN-Att [54] Sleep-EDFX Fpz-Cz - 93.7 - -

MB-CNN [78] Sleep-EDFX Fpz-Cz + Pz-Oz + EOG - 85.80 - -

MS-DAN [79] Sleep-EDFX Fpz-Cz - 90.35 - -

SVM+ OC-SVM [80] Sleep-EDFX Fpz-Cz + Pz-Oz 93.00 93.40 - -

MRCNN+AFR+TCE [73] Sleep-EDFX Fpz-Cz - 85.6 - -

CNN+LSTM [13] Sleep-EDFX Fpz-Cz + Pz-Oz + EOG - 87.50 - -

Proposed method Sleep-EDFX Fpz-Cz + Pz-Oz + EOG 85.75 88.50 89.81 92.52

Proposed method Sleep-EDFX Pz-Oz 88.24 90.51 91.02 92.22

Proposed method Sleep-EDFX Fpz-Cz + Pz-Oz 86.73 86.00 89.42 91.83

Proposed method Sleep-EDFX Fpz-Cz + EOG 86.40 88.99 91.30 93.86

Proposed method Sleep-EDFX Fpz-Cz 91.77 92.54 94.73 95.30

Figure 13. Comparison of our GNDA-based DCSAM using different sensor channels for the S1
(S1/S2) stage (a) and R stage (b) on the Sleep-EDFX dataset (T = 30 s, SF = 100 Hz, and δ = 0.4).

5. Conclusions

In this paper, we proposed a DeConvolution and Self-Attention-based Model (DCSAM)
with Gaussian Noise Data Augmentation (GNDA) using multi-channel PSG recordings to
address sleep stage classification for child patients. Compared to our previous study,
we inserted a multi-head self-attention mechanism in the DeConvolutional Neural Network
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(DCNN) to dig deeper into the correlation between all possible feature pairs extracted by
convolutional and deconvolutional blocks to accurately distinguish sleep stages from each
other. Meanwhile, GNDA was used to expand the proportion of the sleep transition stage
N1, so that more opportunities were offered for DCSAM to learn better features of this
stage. GNDA is an important challenge to improving the performance of minority classes
such as N1 without feature engineering. We also conducted comparative experiments
using our proposed GNDA-based DCSAM on the Sleep-EDFX dataset and proved its
stable performances.

To further optimize our GNDA-based DCSAM, we plan to investigate the following
issues: To balance the class, we will first try to use the dual-pipeline mechanism of Robust
Conditional Generative Adversarial Network (RoCGAN) [81] to simulate sleep data at the
N1 stage and expand the data, or we will attempt to implement ensemble and transfer
learning [82,83], i.e., use relevant knowledge about sleep from training a large public
dataset to facilitate the learning of sleep features in a new dataset. The data-driven DNN
models are widely used to classify sleep stages and can achieve a reasonable performance.
This is expected to significantly reduce the reliance on manual labeling. However, the
problem of domain shift usually occurs in real applications. Therefore, to prevent the loss
of domain-specific information during feature extraction and to align the fine-grained class
distributions for the source and target domains via pseudo-labels of the target domain,
we can develop an Unsupervised Domain Adaption (UDA)-based [84] unshared attention
mechanism that uses an iterative self-training strategy to solve this domain-shift problem
in the unlabeled target domain. In addition, video, accelerometer, and gyroscope data
collected by Microsoft Kinect and Inertial Measurement Unit (IMU) [85] can be used to track a
child’s body movements during sleep.
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Abbreviations
The following abbreviations are used in this article:

GNDA Gaussian Noise Data Augmentation
DCSAM DeConvolution- and Self-Attention-based Model
PSG Polysomnography
R & K Rechtschaffen & Kales
AASM American Academy of Sleep Medicine
REM Rapid Eye Movement
EEG Electroencephalography
EOG Electrooculography
EMG Electromyography
PPG Photoplethysmogram
NLP Natural Language Processing
CV Computer Vision
TSA Time Series Analysis
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DWT Discrete Wavelet Transform
SVM Support Vector Machine
DCNN DeConvolutional Neural Network
Bi-LSTM Bidirectional Long Short-term Memory
CNN Convolutional Neural Network
LeakyReLU Leaky Rectified Linear Unit
FT Fourier Transform
SFA Spectral Features Analysis
TA Time-frequency Analysis
LAMF Low Amplitude Mixed Frequency
SWS Sliding Window Segmentation
JS Jacobian Score
GAN Generative Adversarial Networks
IMU Inertial Measurement Unit
Acc Accuracy
MF1 Macro F1 score

Appendix A. Gaussian Noise Injection Test

This appendix presents the Gaussian Noise (GN) injection test to show which GN
characterized by standard deviation δ is efficient for our experiments. We adopt a pretrained
DCNN in our previous study [5] as a baseline and then train GNDA-based DCSAM using
grid search to find the optimal δ. As illustrated in Figure A1, three different settings were
compared: First, a single GN δ characterized by 19 equidistant values from [0, 1] with
intervals of 0.05 was tested as shown in the green points in Figure A1a. The second and
third δs are selected based on the performance of the single GN δ test, which allows better
accuracy of the DCSAM with GNDA than the baseline. They can build pairs δ2 and triples
δ3, as shown in the red points and blue points in Figure A1b,c, respectively. We can thus
intuitively select the effective GN δ combinations used for our subsequent experiments,
i.e., three comparison groups of SD : δ: δ = 0.4, δ = (0.2, 0.4) and δ = (0.2, 0.4, 0.6) while
the mean µ is fixed to zero.

Figure A1. Performance comparison between the baseline model (non-GNDA-based DCNN) and
pretrained DCSAM with different GN δ settings: (a) train on Gaussian noise selected from a distri-
bution with a single δ; (b) train on Gaussian noise distribution where δ is selected from Gaussian
standard deviation set δ2; (c) train on Gaussian noise distribution where δ is selected from Gaussian
standard deviation set δ3.
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Appendix B. Subsampling Frequency Test

This appendix provides the performance comparison based on the subsampling fre-
quency test to select the optimal SF for the experiment. The original sampling frequency
of sleep PSG recordings is 200 Hz. For our study, according to the functional subbands in
EEG, EOG, and EMG (defined in Section 4.1.2), we test three low subsampling frequencies,
5 Hz, 10 Hz, and 50 Hz. Tables A1 and A2 show the performance metrics using all models
based on T = 30 s and T = 300 s configured with SF = 5 Hz, 10 Hz, and 50 Hz. The results
are evaluated by overall accuracy and macro F1-score. We can find that the increase in
the subsampling frequency has a positive effect regardless of whether it depends on the
non-overlapping or overlapping segmentation. 50 Hz is determined by reconciling calcula-
tion complexity, calculation performance, and learning speed. In terms of experimental
performances, the use of low subsampling frequencies in sleep stage classification is worth
quantifying and investigating.

Table A1. Performance metrics of all models with and without Gaussian noise data augmentation
based on the SWS strategy (∆S is fixed at 30 s) with SF = 5 Hz, 10 Hz, and 50 Hz and T = 30 s by
7-fold cross-validation for sleep stage classification on the SDCP dataset (Macro F1-Score = MF1,
Accuracy = ACC, Gaussian Noise Data Augmentation = GNDA, GNDA is applied only to the training
folds during cross-validation, highest performances are highlighted in red).

Model 5 Hz 10 Hz 50 Hz

ACC MF1 ACC MF1 ACC MF1

DWT + SVM without GNDA 52.69 45.43 56.98 48.11 67.59 55.52
GNDA(0.4) + DWT + SVM 54.40 46.02 56.50 46.86 67.81 52.05

GNDA(0.2, 0.4) + DWT + SVM 58.01 49.97 60.93 51.92 71.12 56.44
GNDA(0.2, 0.4, 0.6) + DWT + SVM 60.32 52.53 64.03 54.07 71.97 59.45

DCNN without GNDA 74.48 61.39 76.33 62.17 77.13 63.02
GNDA(0.4) + DCNN 74.92 63.23 78.56 64.71 80.01 68.88

GNDA(0.2, 0.4) + DCNN 76.57 62.82 78.19 65.14 80.34 67.35
GNDA(0.2, 0.4, 0.6) + DCNN 77.12 63.19 78.45 64.66 79.52 66.48

RNN-based attention without GNDA 69.78 63.51 70.29 63.96 71.48 65.27
GNDA(0.4) + RNN-based attention 71.33 65.48 72.55 64.28 73.98 66.47

GNDA(0.2, 0.4) + RNN-based attention 70.40 63.03 69.89 61.57 71.57 63.99
GNDA(0.2, 0.4, 0.6) + RNN-based attention 73.01 66.79 74.52 67.24 74.68 68.24

Self-attention without GNDA 76.47 68.24 77.11 68.97 78.25 70.83
GNDA(0.4) + Self-attention 80.65 71.59 82.07 74.50 82.97 75.87

GNDA(0.2, 0.4) + Self-attention 78.98 70.24 80.86 71.34 84.45 77.75
GNDA(0.2, 0.4, 0.6) + Self-attention 81.17 73.78 83.07 75.24 82.67 75.87

GNDA(0.4) + DCNN + Self-Attention 83.01 79.57 84.02 81.89 87.37 85.22
GNDA(0.2, 0.4) + DCNN + Self-Attention 84.77 81.78 86.99 83.05 88.55 84.69

GNDA(0.2, 0.4, 0.6) + DCNN + Self-Attention 86.34 81.87 88.85 84.41 90.26 86.51
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Table A2. Final performance metrics of all models with and without Gaussian noise data augmenta-
tion based on the SWS strategy (∆S is fixed at 30 s) with SF = 5 Hz, 10 Hz, and 50 Hz and T = 300 s
by 7-fold cross-validation for sleep stage classification on the SDCP dataset (Macro F1-Score = MF1,
Accuracy = ACC, Gaussian Noise Data Augmentation = GNDA, GNDA is applied only to the training
folds during cross-validation, highest performances are highlighted in bold).

Model 5 Hz 10 Hz 50 Hz

ACC MF1 ACC MF1 ACC MF1

DWT + SVM without GNDA 50.87 43.39 55.21 50.09 67.01 53.79
GNDA(0.4) + DWT + SVM 53.08 44.24 55.57 50.06 68.92 52.97

GNDA(0.2, 0.4) + DWT + SVM 56.60 50.01 59.89 50.85 69.92 52.99
GNDA(0.2, 0.4, 0.6) + DWT + SVM 61.02 51.59 62.89 53.00 69.94 54.18

DCNN without GNDA 73.54 63.08 75.26 64.27 77.90 66.11
GNDA(0.4) + DCNN 75.88 64.22 79.21 66.19 80.67 71.39

GNDA(0.2, 0.4) + DCNN 82.69 71.57 85.08 71.59 86.02 75.88
GNDA(0.2, 0.4, 0.6) + DCNN 83.34 72.01 84.61 72.03 85.81 76.11

RNN-based attention without GNDA 66.74 60.20 66.92 61.57 71.03 64.51
GNDA(0.4) + RNN-based attention 67.45 61.24 68.48 61.03 70.44 63.06

GNDA(0.2, 0.4) + RNN-based attention 66.24 60.07 67.51 61.11 68.76 62.28
GNDA(0.2, 0.4, 0.6) + RNN-based attention 68.30 62.31 69.87 64.22 70.56 66.47

Self-attention without GNDA 75.01 65.23 75.89 66.04 77.29 68.27
GNDA(0.4) + Self-attention 78.87 70.34 80.33 72.48 80.67 73.88

GNDA(0.2, 0.4) + Self-attention 75.21 68.55 78.99 69.30 80.05 72.97
GNDA(0.2, 0.4, 0.6) + Self-attention 78.59 70.40 80.64 73.01 81.15 74.19

GNDA(0.4) + DCNN + Self-Attention 82.08 78.24 85.19 80.03 86.24 81.89
GNDA(0.2, 0.4) + DCNN + Self-Attention 85.57 81.78 87.69 83.56 88.06 83.18

GNDA(0.2, 0.4, 0.6) + DCNN + Self-Attention 86.38 81.81 88.84 83.08 88.56 83.57

Appendix C. Sensor Channel Test on the SDCP Dataset

This appendix provides the details of the sensor channel test using our proposed
GNDA-based DCSAM with SF = 50 Hz, T = 30 s, and δ = (0.2, 0.4, 0.6) on the SDCP
dataset. Not only all single sensor channels but also combinations between different sensor
channels were tested.

We first calculate a Jacobian Score (JS) as an evaluation measure to indicate the relevance
between a sensor channel and the performance of sleep stage classification. A neural
network outputting softmax scores can be treated as a multivariate, vector-valued function
F : RT×C → Rλ where T, C, and λ present the length of the input time window, the
dimension of the sensor channel, and the number of sleep stages, respectively. Assuming
that ψ ∈ RT×C is the model input and associated softmax output y can be defined as
Fθ(ψ) = (y1, · · · , yλ) ∈ Rλ where θ is the set of parameters of the model. A Jacobian value
JFθ(ψ)

can be formed as follows:

JFθ(ψ)
=

∂yi
∂ψt,c

, (A1)

JFθ(ψ)
represents the partial derivatives of each element of the output y with respect to each

element of the input ψ. As known, derivatives indicate how modifying each element of ψ
would impact each element of y (i.e., prediction for each class). JFθ(ψ)

with a large absolute
value means that the corresponding input significantly matters classification results. Then,
the JS Ωc for channel c is computed by averaging absolute JFθ(ψ)

s over all T and λ:

Ωc =
1

λ|T|
λ

∑
i=1

T

∑
t=1
|JFθ(ψ)

|, (A2)

where t ∈ [1, T], c ∈ [1, C], and i ∈ [1, λ]. Ωc represents the overall importance of the cth
channel for the sleep stage classification of input ψ. The final Ωc for each sensor channel
is calculated based on 7-fold cross-validation and then averaged over all folds. As shown
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in Table A3, all EEG channels were able to obtain relatively high scores, implying their
important contributions to our sleep stage classification task.

Table A3. Comparison of sensor channels’ contributions to sleep stage classification based on their
Jacobian scores.

Sensor Modality Sensor Channel Jacobian Score (Ωc)

EEG C4M1 0.1827
EEG C3M2 0.1752
EOG LEOGM2 0.1748
EOG REOGM1 0.1600
EEG O2M1 0.1442
EEG F4M1 0.1299
EEG F3M2 0.1225
EEG O1M2 0.1060
EMG Chin EMG 0.0244
EMG Leg (left) 0.0109
EMG Leg (right) 0.0087

Second, we also performed further channel tests to emphasize the importance of mul-
tiple sensor channels. Different sensor modalities and sensor channels were investigated
based on the 7-fold cross-validation using GNDA-based DCSAM with T = 30 s, SF = 50 Hz
and δ = (0.2, 0.4, 0.6), which is the configuration yielding the best performance on the
SDCP dataset. The results of channel testing are presented in Table A4. We attempt to test
single-channel EEG, single-channel EOG, single-channel EMG, and various combinations
of EEG, EOG, and EMG channels. In general, sleep analysis uses corresponding pairs of
detected EEGs to classify sleep stages, e.g., C3M2 is combined with C4M1, but in our study,
we test more diverse combinations of sensor modalities and channels.

Table A4 shows that using 6 EEG channels is more efficient than using 2 EEG chan-
nels and single-channel EEG. Moreover, using 2 EOG channels can also achieve strong
performance. However, the performance is still lower than that obtained with both EEG
and EOG modalities (6 EEG channels and 2 EOG channels). The EOG modality brings
performance improvement, which demonstrates that our GNDA-based DCSAM exploits
more correlative features of each sleep stage from 2 EOG channels in the long sleep moni-
toring context. The use of three EMG channels results in poor performance, but combining
them with 6 EEG and 2 EOG channels, namely using all the 11 sensor channels leads to the
best performance.

Table A4. Influence of sensor channels for our GNDA-based DCSAM with T = 30 s, SF = 50 Hz and
δ = (0.2, 0.4, 0.6) on the SDCP dataset (Macro F1-Score = MF1, Accuracy = ACC), highest performance
is highlighted in red.

Sensor Channel T = 30 s, SF = 50 Hz Sensor Channel T = 30 s, SF = 50 Hz

ACC MF1 ACC MF1

C3M2 82.89 76.31 C3M2 + O2M1 80.19 72.07
C4M1 83.77 78.09 C4M1 + O1M2 85.28 80.20
F3M2 79.09 72.24 F3M2 + O2M1 83.73 78.91
F4M1 78.52 73.19 F4M1 + O1M2 80.54 74.85
O1M2 69.18 63.66 6 EEG channels 87.64 82.19
O2M1 72.43 64.04 REOGM1 (EOG) 83.95 78.12

C3M2 + C4M1 83.58 78.10 LEOGM2 (EOG) 84.02 76.53
F3M2 + F4M1 81.50 77.00 2 EOG channels 84.98 79.50
O1M2 + O2M1 68.22 61.28 6 EEG + 2 EOG 88.14 83.64
C3M2 + F4M1 84.69 77.59 3 EMG channels 42.21 32.34
C4M1 + F3M2 82.51 75.80 All 11 sensor channels 90.26 86.51
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