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Abstract: Person re-identification (Re-ID) is a method for identifying the same individual via several
non-interfering cameras. Person Re-ID has been felicitously applied to an assortment of computer
vision applications. Due to the emergence of deep learning algorithms, person Re-ID techniques,
which often involve the attention module, have gained remarkable success. Moreover, people’s traits
are mostly similar, which makes distinguishing between them complicated. This paper presents a
novel approach for person Re-ID, by introducing a multi-part feature network, that combines the
position attention module (PAM) and the efficient channel attention (ECA). The goal is to enhance
the accuracy and robustness of person Re-ID methods through the use of attention mechanisms.
The proposed multi-part feature network employs the PAM to extract robust and discriminative
features by utilizing channel, spatial, and temporal context information. The PAM learns the spatial
interdependencies of features and extracts a greater variety of contextual information from local
elements, hence enhancing their capacity for representation. The ECA captures local cross-channel
interaction and reduces the model’s complexity, while maintaining accuracy. Inclusive experiments
were executed on three publicly available person Re-ID datasets: Market-1501, DukeMTMC, and
CUHK-03. The outcomes reveal that the suggested method outperforms existing state-of-the-art
methods, and the rank-1 accuracy can achieve 95.93%, 89.77%, and 73.21% in trials on the public
datasets Market-1501, DukeMTMC-reID, and CUHK03, respectively, and can reach 96.41%, 94.08%,
and 91.21% after re-ranking. The proposed method demonstrates a high generalization capability
and improves both quantitative and qualitative performance. Finally, the proposed multi-part feature
network, with the combination of PAM and ECA, offers a promising solution for person Re-ID,
by combining the benefits of temporal, spatial, and channel information. The results of this study
evidence the effectiveness and potential of the suggested method for person Re-ID in computer
vision applications.

Keywords: ECA; deep learning; PAM; person re-identification; multi-attention

1. Introduction

Person re-identification (Re-ID) is one of the computer vision tasks that aims to match
a target individual across many camera perspectives. It has become an increasingly signifi-
cant field of research in recent years, particularly in the area of surveillance and security.
The main motivation for person Re-ID is to enable effective tracking of individuals in
complex and crowded environments, such as airports, train stations, and public places [1,2].
However, the mission of person Re-ID faces several challenges that make it difficult to
achieve high levels of accuracy. These challenges include variations in lighting conditions,
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occlusions, changes in appearance, and perspective changes [3], as described in Figure 1.
Additionally, person Re-ID is a large-scale and complex problem, as it requires searching
through large databases of images to find the correct match.

Previous approaches to person Re-ID have included the use of hand-crafted features,
metric learning algorithms, and deep learning [1,4,5]. The traditional methods contain
hand-crafted feature extraction and distance metrics. Hand-crafted feature extraction is
utilized to obtain more discriminative information from the image of a person, by using
methods such as color histograms, texture features, scale-invariant feature transform (SIFT),
local binary pattern (LBP), and other techniques. Metric learning algorithms have been
used to match images using distance metrics, support vector machines (SVMs), neural
networks (NN), cross-view quadratic discriminant analysis (XQDA), nearest neighbors
(KNN), and other metric learning types [6,7], but this approach requires expert knowledge
in feature design and is limited in its ability to capture complex relationships between
images. Metric learning algorithms aim to learn a distance metric optimized for person
Re-ID, but they still have limitations, such as difficulty learning an appropriate mapping
for large-scale datasets. Deep learning, particularly convolutional neural networks (CNNs),
has significantly improved the accuracy of person Re-ID algorithms, by learning a feature
representation directly from the raw images. However, deep learning approaches also
present new challenges, such as the need for large amounts of labeled data and the compu-
tational requirements of training large models. The best approach to person Re-ID depends
on the specific requirements of the task, but deep learning has had a significant impact on
the field.

Figure 1. Some difficult issues within the DukeMTMC dataset. (a) Occlusions, (b) illumination
differences, (c) pose variations.

CNNs have proven to be an efficacious tool for addressing the issue of person Re-ID.
They are capable of learning and capturing the discriminative features of the input images,
and can be learned from end-to-end on large datasets [5]. Additionally, CNNs can be fine-
tuned for specific datasets, making it possible to improve their performance in challenging
scenarios [8]. By leveraging the ability of CNNs to automatically learn and extract features,
person Re-ID algorithms have achieved significant improvements in accuracy, making
them an important tool for overcoming the perplexing problem of person Re-ID.

In the past decade, person Re-ID has attracted a great deal of interest, due to its utility
in a range of computer vision applications, such as video surveillance and person track-
ing [6]. Re-ID attempts to identify a person of interest across numerous, non-overlapping
cameras. Recently proposed methods in person Re-ID tasks show good performance while
using the attention mechanism, by focusing on more relevant characteristics [2,6]. In addi-
tion, most Re-ID methods depend on global features, that focus on the overall information
in the image of a person and ignore the spatial structure of that person, so recently, many
Re-ID methods have mainly extracted local features for re-identification, to improve the
extracted features [9,10].
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Despite the success of person recognition methods, identifying the same person in
different cameras remains a difficult task, particularly in scenarios where the features
of a person repeatedly change. To tackle this challenge, we provide a new person Re-
ID method, that combines attention learning with a pre-trained model, which is a deep
CNN that has already been trained to find informative and strong features in images,
making the Re-ID process much easier and faster compared to models that are learned
from scratch. Our system employs an attention mechanism that combines the position
attention module (PAM) and the efficient channel attention (ECA). The PAM captures
spatial, temporal, and channel context information, which improves the representation
capability of the local features. The ECA reduces the model’s complexity while maintaining
accuracy, by capturing local cross-channel interactions.

Our contributions in this paper are twofold: (1) we introduce attention learning
combined with a pre-trained model, for person Re-ID, which outperforms existing methods,
and (2) we present an attention mechanism that combines the PAM and ECA, which
improves the representation capability and decreases the complexity of the model, while
preserving accuracy.

The remainder of the article is structured as follows: Section 2 covers relevant research
in person Re-ID. Section 3 introduces the suggested method. Section 4 displays the research
results. Section 5 shows the analysis study. Finally, Section 6 wraps up the paper and
suggests future directions.

2. Related Work

In recent years, person Re-ID has become a crucial task in video observation, and has
gained significant consideration in computer vision. Several approaches, including metric
learning, hand-crafted features, and deep learning, have been proposed for this problem.
In this part, we provide a summary of the most recent and relevant research in this area,
with a focus on deep learning methods.

2.1. Hand-Crafted Feature-Based Person Re-ID

Manual feature extraction and metric learning design are person Re-ID’s traditional
methods; they rely on detecting low-level appearance features from the requisite image
characteristics, such as shapes, colors, and textures [11]. Support vector machines (SVMs),
neural networks (NN), nearest neighbors (KNN), and others, are metric learning types that
minimize the distance between traits of the same person. Feature descriptors and metric
learning are two independent stages. Liao et al. [9] presented a method that incorporates
effective feature detection with metric learning. They suggested local maximal occurrence
(LOMO) as a traits descriptor, that represents the image by extracting the histogram for
colors using the texture histogram and sliding window with scale-invariant local ternary
mode. Also, they used cross-view quadratic discriminant analysis (XQDA) for matching
between features. Yang et al. [11] presented a method for extracting the features dependent
on colors, that are called salient color names-based color descriptors (SCNCD), and they
used the KISSME technique for metric learning. SCNCD divides the image into six parts
equally and then computes the histogram for different spaces of color on all parts, to make
the definitive extracted features sensitive to changes in illumination.

2.2. Hybrid Feature-Based Person Re-ID

The hybrid method combines deep learning with metric learning. The authors extract
the features by utilizing a convolutional neural network and metric learning for classifi-
cation. Saber et al. [6] used VGG-Net as a person representation, which provides a deep
learning mechanism for person identification, and they selected the most estimated layers,
to gain a useful feature description for the person. Subsequently, for person matching,
a support vector classifier (SVC) was used, which eliminated the issue of using a small
dataset. Jayapriya et al. [10] used CNN to extract traits from sequential information. This
strategy combined the prioritized chromatic texture image (PCTimg) with the original
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images, then entered them into the CNN to detect the traits. XQDA is employed for the
classification. Wang et al. [12] developed a Siamese model, that employed XQDA to learn
a discriminant metric, and extracted traits from deep networks to obtain spatiotemporal
information about the person.

2.3. Deep Learned Feature-Based Person Re-ID

Deep learning is based on neural network algorithms and has become a prevalent off-
shoot of machine learning [13]. Deep learning algorithms employ multiple transformation
layers with intricate constructions, in an effort to demonstrate high-level characteristics in
data. In contrast to traditional methods, deep learning methods incorporate feature descrip-
tions and similarity measures into an entire model. There are different kinds of architectures
for deep learning-based methods, like attention-based methods and part-based methods.

Attention-based methods aim to carefully choose high-interest areas from input
data, while disregarding other areas, with weak or no discriminative features. Attention
modules concentrate on extracting regions with extremely distinguishing characteristics.
Guodong et al. [14] proposed a hybrid architecture for CNN, that allows the network
to concentrate on global and local discriminatory features for a person’s image. They
introduced a method called feature mask network (FMN). Wei et al. [15] established the
global–local-alignment descriptor (GLAD) network, that appreciates the skeletons and
splits the image by using the deeper cut. GLAD is intended to detect both local traits from
separated images and global traits from the whole body. Masked graph attention network
(MGAT) is a network designed by Bao et al. [16], that concentrates on the relationship
between individual images and their labels, while ignoring the global mutual information
present in the full sample set. The MGAT is dependent on a plenary network that extracts
features, where nodes can concentrate on the characteristics of others in a directly navigable
mode in the form of a mask matrix, with label information for guiding.

Part-based Re-ID approaches, elicit image areas to discover distinctive part-level
features, established on accurate part-level cues that are often neglected when retrieving
global traits. Part-based convolutional baseline (PCB) network was suggested in [17],
which uses uniform segmentation on the convolution layer to interpret part-level data,
by dividing the entire body into six horizontally running stripes in the feature map. Each
component feature vector is supplied to a classifier, which generates an ID-prediction
loss, that is independent for each part. Tian et al. [18] proposed a joint learning network
that focuses on learning more distinctive and powerful features. They applied a global
branch to learn the most distinctive global-level traits, and they divided the extracted
map of traits into N parts, which are taken as inputs into a distinctive network that
comprehends the local-level features. Afterward, they generate a local loss by combining N-
part losses. They can then obtain a desirable total loss by combining local and global losses.
A Siamese multiple granularity network (SMGN), with two major branches, was proposed
by Li et al. [19], for learning the local and global characteristics of a person independently.
The retrieved features of the two branches are combined as multiple features for personal
images, and multiple loss functions are employed to enhance their performance.

From the above discussion, it is seen that previous studies have tried to enhance the
person Re-ID performance using different methods. However, most of these methods have
limitations, and do not perform well on large datasets. Our proposed method overcomes
these limitations, by combining attention learning with a pre-trained model, which outper-
forms the existing methods on large datasets. The main difference between the proposed
work and the related work, is that the proposed method combines the PAM and ECA,
to extract features from temporal, spatial, and channel contexts. This is a new approach
that has not been explored in previous studies. The proposed multi-part feature network,
with the combination of PAM and ECA, has great potential to solve the problem of person
Re-ID successfully, as it combines the benefits of temporal, spatial, and channel information.
To summarize, the proposed method differs from previous studies, in that it combines the
PAM and ECA to extract features from multiple contexts, with a high potential to achieve
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better results than existing methods. Table 1 summarizes the main differences between the
proposed work and related work in the field of person Re-ID.

Table 1. Summary of the main differences between the proposed work and related work.

Approach Main Focus Techniques Used

Hand-crafted Detecting low-level
appearance features

SVM, NN, KNN, feature descriptors,
metric learning

Hybrid Combining deep learning
with metric learning

CNN, metric learning, support vector
classifiers

Deep learned Using deep learning
algorithms

Attention-based, part-based methods,
CNN

Proposed Multi-part, enhancing
accuracy and robustness

Position attention module, efficient channel
attention, multi-part feature network

3. Methodology

In this section, we depict the overall structure of a multi-part feature network for
a person Re-ID task, that can independently learn extensive information from different
parts of features, and the features from these parts can be merged for prediction. Then,
we describe the two attention modules that are utilized to reduce the impact of irrelevant
background, while concentrating on discriminative features of a person’s appearance.
Finally, we describe the loss functions that are utilized. OSNet [20] acts as the foundation
for our network structure, as shown in Figure 2.

Figure 2. The architecture of the multi-part feature network.

3.1. Baseline Configuration

We utilized OSNet [20] as a feature extractor for combining heterogeneous and ho-
mogeneous features, as well as a relatively lightweight network capable of developing
performance, while avoiding over-fitting. OSNet [20] is built by stacking the bottleneck
layer by layer, to decrease the parameter numbers, thereby lowering the computational cost.

3.2. Position Attention Module

In the person scenario, we observed that distinctive trait representations are funda-
mental for person Re-ID, which may be achieved by understanding contextual information.
To extract contextual information from local traits, we utilized a position attention mod-
ule (PAM), which extracts much information derived from local characteristics, thereby
improving their ability to represent the features.

The structure of the position attention module (PAM) [21], which is made for detecting
and collecting the relevant pixels in the spatial domain, is depicted in Figure 3. The feature
F ∈ RC×H×W , where C is the number of channels, H is the spatial dimension height, and W
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is the spatial dimension width of an input tensor. We first feed the feature maps in the first
branches into a convolution layer, to produce the new feature maps F1 ∈ RC/16×H×W , then
we reshape F1 to RC/16×N , where N is the number of the pixels, which is equal to H ×W.
To obtain F2 for the second branch, we apply the same mechanism as for the first branch.
Following that, we multiply the transpositions of F2 and F1 using matrix multiplication,
and then utilize a softmax layer to compute the attention map S ∈ RN×N . Then, we execute
matrix multiplication between S and the reshaping of the input feature, to get the feature
to R ∈C×H×W . Ultimately, the definitive output ∈ RC×H×W is obtained by applying the
batch normalization and then executing an operation of element-wise sum with the input
features. Generally, in the original PAM, the third branch began with the 2D convolution
layer, and we removed this layer to decrease the training time and increase the accuracy of
our Re-ID method.

Figure 3. PAM attention module.

3.3. Efficient Channel Attention (ECA)

The channel attention module has shown significant potency to enhance the effec-
tiveness of deep CNN. Channel attention is utilized to ameliorate the features of different
channels, by simulating the significance of all channels in the feature. One of these channel
attention modules is efficient channel attention (ECA). ECA detects interactions on the local
cross-channel, by analyzing the channel and its neighbors. ECA minimizes the parameter
numbers and reduces the model’s complexity, while maintaining precision.

ECA’s structure was proposed in [22]. To begin, as illustrated in Figure 4, a global
average pooling (GAP) method is used, to reduce the size dimension of the input feature.
After that, the weights of the channel are derived by a 1D convolution with a kernel size of
three. Lastly, a sigmoid function is used, to obtain the final attention weights. Channels’
local interactive information can be reserved in this manner.

Figure 4. ECA attention module.
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3.4. Loss Functions

As the final description for the person Re-ID features, we concatenate the feature
vectors from the GAP and feature selection. Our loss function is gathered from ID loss
(softmax loss) [23] for the six parts of the selected feature, and from a hard-margin triplet
loss [24] and a center loss [25], for the concatenated feature. As demonstrated in Figure 2,
each classifier forecasts the identification of the input image, namely,

Ltotal = ∑ Lid + β× LH−triplet + α× Lcenter (1)

where β and α are weighting factors.
The cross-entropy loss (softmax loss) for the learned features, fi, with label smooth-

ing [23], is given as:

Lid = −
N

∑
i=1
×qyi × log

e(wi× fi+bi)

∑C
j=1 e(wj× f j+bj)

(2)

where N is the batch size, C is the identity class number, fi is the extracted feature, wi and
bi are the weighted and bias for class i, respectively, and qyi is the ground truth of the labels.

By obtaining many centers for all identity classes, hard triplet loss [24] outperforms
softmax loss. However, the max function is required, to find the closest center for each
identity class, and it is not smooth, thus the function can be sensitive between several
centers. Smoothing of the max function in the softmax loss, can be utilized to enhance
robustness. The hard triplet loss for the learned feature fi, is given as:

LH−triplet = −
N

∑
i=1

log
eλ(Si,yi

−δ)

eλ(Si,yi
−δ) + ∑

j 6=ye
λSi,j

i

(3)

where λ is compensated to optimize a smoothed triplet loss, δ is a predefined margin,
and S(i,j) is the similarity between feature fi and the class j.

The center loss [25] is used to decrease intra-class variance between each sample in
the mini-batch, while maintaining the features of the various classes separately. It can also
reduce the distance within the class, so the compression of the samples within the class can
be realized. The center loss function is written as follows:

Lcenter =
1
2

N

∑
i−1
‖ fi − Cyi‖

2
2 (4)

where fi is the detected feature, and Cyi is the updated deep feature.

4. Experimental Results and Discussion

In this section, we will carry out comprehensive experiments to confirm the viability
of the suggested procedure. This section is arranged as follows: 1. provides three common
datasets; 2. explains the specifics of implementation; 3. elucidates the protocols employed
to test our strategy; and 4. compares the introduced approach to competing approaches on
the relevant datasets.

4.1. The Utilized Datasets

To evolve and test the introduced model, we employed three diverse common datasets,
as shown in Table 2, which are the fundamental datasets employed for the person Re-
ID task.

CUHK03 [26]: was the first considerable dataset for a person Re-ID task. Images in
this dataset contain the person detected by manual labeling and deformable part models
(DPM). It contains 1467 identities, captured by two non-overlapping cameras.

Market-1501 [27]: was gathered by six separate cameras, at Tsinghua University. It
contains 1501 identities, and images in this dataset contain the person detected by manual
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labeling and deformable part models (DPM), it also has 2793 false images because of the
DPM detector.

DukeMTMC [7]: is one of the large-scale datasets. Eight cameras were utilized in the
DukeMTMC dataset, to track multiple targets. It contains 1812 persons, and the person in
each image is manually labeled.

Table 2. Description of the employed datasets in this research.

Dataset Year Camera Person Images Challenges

CUHK03 2014 2 1467 13,164 Alignment variation, occlusion,
missing body parts

Market-1501 2015 6 1501 32,217

Variations in scale, illumination,
and pose, occlusion,

background noise, alignment
variation, occlusion, missing

body parts

DukeMTMC 2017 8 1812 36,441

4.2. Specifics of Implementation

Our introduced network was tested on a PC that uses NVIDIA RTX3060 12GB. OS-
Net [20] was pre-trained on ImageNet [28], where we omitted the GAP layer and fully
connected layers. To be more specific, all image sizes were changed to 384 × 128 before
being entered into the network. For training, our proposed network extracted features,
and the optimizer of the network was the stochastic gradient descent (SGD) algorithm,
with a learning rate of 0.04, decay rate of 0.1, and momentum of 0.9. In the training
set, CUHK03 has 767 individuals and 7368 photos, while in the testing set, there are an
additional 700 individuals and 6732 images. Market-1501 has 751 persons in the train-
ing set, with 12,936 images, and another 750 persons in the testing set, with 16,482 im-
ages. DukeMTMC has 702 identities, with 16,522 images in the training set, and another
702 identities in the testing set, with 16,426 images.

4.3. Metric Protocol

We employed the single-shot approach in our experiment, which allows a thorough
comparison. The cumulative matching characteristic (CMC) [29] and mean average pre-
cision (mAP) [30] were utilized to evaluate the person Re-ID performance. To improve
performance even further, we added the re-ranking method [31], dependent on k-reciprocal
encoding, to our method. The re-ranking operation was utilized in the testing phase.

4.4. Evaluation on the Used Datasets

The introduced method appears to have excellent results compared to the preceding
methods. Prior to discussing its accuracy on the three datasets, the introduced approach is
evaluated against the state-of-the-art methods as follows:

Market-1501 database: Table 3 shows the competitive fineness results for the pro-
posed technique and other person Re-ID methods, using the Market-1501 dataset. Our
proposed method affords enhanced outcomes compared to the other methods. The intro-
duced method achieves 95.93%, compared to the highest score achieved by DM-OSNet [8],
of 95.61%. However, DRL-Net [32] achieves the highest mean average precision (mAP)
score, of 89.9%, while the proposed method achieves a score of 87.57%. By utilizing the
re-ranking [31], the proposed method achieves even higher results, with a rank-1 accuracy
of 96.41% and an mAP of 94.15%. The results demonstrate that the proposed method
performs well compared to other state-of-the-art techniques. However, there are still some
limitations, as some methods perform better in certain aspects, such as DRL-Net for mAP.
The findings of this study could have important implications for the development of more
accurate person re-identification systems in real-world applications.
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DukeMTMC-reID database: This has more challenges than in the Market-1501
dataset, due to the greater number of camera views and noisy backgrounds, that gives more
variation within classes. Table 3 also presents the results of various person re-identification
methods on the DukeMTMC dataset, including our proposed method, with and without re-
ranking. In terms of rank-1 accuracy, our introduced method achieves 89.77%, compared to
the highest score achieved by AET-Net [33], of 89.5%. However, AET-Net [33] achieves the
highest mean average precision (mAP) score, 80.1%, while the proposed method achieves
a score of 78.62%. Using the re-ranking technique, our proposed method improved its
performance to 94.08% and 92.22%, in rank-1 and mAP, respectively.

CUHK03 database: Table 4 presents the results of various person re-identification
methods on the CUHK03 dataset, including our proposed method, with and without
re-ranking. Our proposed method achieves impressive performance on both labeled and
detected types, outperforming other methods by 3.01% and 2.65%, respectively. Moreover,
the use of the re-ranking technique results in a substantial improvement in performance,
with an increase of 18% for labeled and 17.51% for detected types. These results demon-
strate the effectiveness of our proposed method and highlight its potential to improve on
state-of-the-art person re-identification methods. When comparing our proposed method
to other state-of-the-art methods, it is clear that our approach presents several strengths.
For instance, our method outperforms the widely used PCB [17] method by a significant
margin, achieving an improvement of 10.55% in rank-1 accuracy for detected types. Ad-
ditionally, our proposed method outperforms the HAN [34] method by 26.71% in mAP,
for labeled types. However, our method does have some limitations, such as being compu-
tationally expensive, due to the high-dimensional feature extraction required. Despite these
limitations, our proposed method demonstrates superior performance, and the results
indicate that it has the potential to be a useful tool for person re-identification in real-world
scenarios.

Table 3. Network technical change comparison on the Market-1501 dataset.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

PCB [17] 92.3 77.4 81.8 66.1

RJLN [18] 93.7 81.9 85.5 73.1

PIE [35] 87.33 69.25 80.84 64.09

AlignedReID++ [36] 91.8 79.1 82.1 69.7

PGFA [37] 91.2 76.8 82.6 65.5

Deep Person [38] 92.31 79.58 80.90 64.80

FMN [14] 85.99 67.12 74.51 56.88

FMN+re-rank [14] 87.92 80.62 79.52 72.79

FPO [39] 91.81 79.23 81.0 78.0

DCNN [40] 90.2 82.7 80.6 64.1

HAN [34] 91.6 76.7 80.7 65.5

UANet [41] 91.3 76.5 82.1 65.2

UnityStyle [42] 91.8 76.5 80.38 64.32

SMGN [19] 94.1 79.2 86.1 75.3

SMGN + re-rank [19] 95.5 80.3 87.1 76.0

GCN [43] 88.65 74.15 - -

ARFM [44] 88.02 76.13 81.53 65.94
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Table 3. Cont.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

AL-APR [45] 89.01 74.38 80.52 63.67

DUNet [46] 91.6 75.90 82.1 66.5

NFML [47] 95.3 86.4 89.2 76.2

EDAGAN [48] 85.36 64.52 74.19 51.90

CooRL [49] 89.5 74.3 78.9 65.2

Tri-GCN [2] 92.98 80.5 83.23 66.8

HOB-net [50] 94.7 86.3 88.2 77.2

SFBM [51] 95.3 85.4 88.6 74.5

VACNet [33] 95.1 86.1 89.5 77.1

twinsReID [52] 93.7 85.4 88.6 78.2

DM-OSNet [8] 95.61 87.36 89.18 78.26

TAFN [53] 94.7 86.2 85.9 74.8

MS-LS-RK [54] 92.3 88.3 86.5 81.7

AM0BH [55] 94.6 85.9 89.2 76.7

RANGEv2 [56] 94.7 86.8 87.0 78.2

DRL-Net [32] 94.7 89.9 88.1 76.6

AET-Net [33] 94.8 87.5 89.5 80.1

Our method 95.93 87.57 89.77 78.62
Our method+re-rank 96.41 94.15 94.08 92.22

Table 4. Network technical change comparison on the CUHK03 dataset (labeled and detected).

Method

CUHK03

Labeled Detected

Rank-1 mAP Rank-1 mAP

PCB [17] - - 61.3 54.2

PIE [35] - - 45.88 41.21

RJLN [18] - - 66.6 60.9

FMN [14] 41.0 38.1 42.6 39.2

FMN+re-rank [14] 46.0 47.6 47.5 48.5

HAN [34] 46.5 46.1 47.5 45.5

FPO [39] 65.60 60.16 63.07 56.31

UANet [41] 62.6 57.7 58.9 52.6

DUNet [46] 54.6 52.2 51.6 49.9

Tri-GCN [2] 68.29 61.59 65.86 58.21

HOB-net [50] 70.2 67.5 69.2 66.8

RANGEv2 [56] 64.3 67.4 61.6 64.6

Our method 73.21 67.34 71.85 66.16
Our method+re-rank 91.21 91.4 89.36 89.29
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5. Research Analysis

In this section, we analyze the parameters of the Market-1501 dataset, including the
effect of image size, the number of image parts, batch size, loss type, attention module type,
and epoch number.

5.1. Comparison of Loss Function Change

In the training stage, our loss function gathers from cross-entropy, the hard triplet loss,
and the center loss. To inspect the effect of the loss function, we performed experiments
in which we performed cross-entropy loss with the triplet loss, center loss, or a combina-
tion of them, to confirm the efficacy of employing multiple losses. Table 5 showcases the
performance of the proposed multiple loss function combinations on the three different
datasets—Market-1501, DukeMTMC, and CUHK03 (both labeled and detected). As seen
in the experimental results, utilizing many losses causes the network to exhibit varying
degrees of accuracy enhancement on the three datasets, when compared to using only the
softmax loss. For instance, using the combination of losses, outperformed the competition
by 0.99% and 1.11% in rank-1 and mAP, respectively, on the DukeMTMC dataset. Simi-
larly, the CUHK03 dataset increased by 1.14% and 1.64%, for labeled and detected sets,
respectively, using the proposed method. In combination, the loss functions are fused,
making them interactive, resulting in improved performance at the cost of speed, and the
network converges towards greater performance. Generally, the results demonstrate that
the proposed method is effective in enhancing the accuracy of the network and has the
potential to improve state-of-the-art person re-identification.

Table 5. Performance of Re-ID models under different loss functions (× loss not employed, Xloss
employed).

Loss Market-1501 DukeMTMC
CUHK03

Labeled Detected

Cross-
Entropy Tri-Hard Center Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

X × × 94.86 86.17 88.78 77.6 72.07 66.23 70.21 64.92

X × X 95.01 86.32 89.00 77.79 72.25 66.41 70.34 65.20

X X × 95.74 87.12 89.53 78.21 72.94 66.91 71.66 65.79

X X X 95.93 87.57 89.77 78.62 73.21 67.34 71.85 66.16

5.2. Comparison of Attention Change

Many cutting-edge methodologies for person Re-ID tasks, make use of attention
modules. To extract global features, we added the attention module, which consists of
PAM and ECA, into the network. To investigate the efficiency of the suggested attention
module in our framework, we conducted experiments on the Market-1501 dataset. Six
structures are compared: only the network without the attention, the network with only
one attention module (PAM or ECA), the network with changing the order of the attention
modules (PAM after or before ECA), the network with the average of the attention modules
(PAM and ECA), and the complete network. Table 6 shows the experimental results
for the Market-1501 dataset, comparing the use of attention mechanisms with different
configurations, against a baseline without attention mechanisms. The configurations
of the attention module are denoted by the numbers in parentheses. As seen in the
table, the use of attention mechanisms improves the network’s performance, achieving
higher rank-1 and mAP scores compared to the baseline. Specifically, the best performing
configuration is (1) (2), which utilizes both PAM and ECA attention mechanisms, achieving
a rank-1 score of 95.93% and mAP of 87.57%, which represents a significant improvement,
of 2.42% and 6.92%, respectively, compared to the baseline. Additionally, the results show
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that the PAM attention mechanism contributes more to the improvement than the ECA
attention mechanism. Configuration (1)—which uses only PAM—achieved a higher rank-1
score than configuration (2) (1), which uses only ECA. This suggests that PAM is more
effective in capturing long-range dependencies between features. The experimental results
demonstrate the effectiveness of using attention mechanisms in improving the performance
of person re-identification networks. The use of PAM and ECA attention mechanisms with
appropriate configurations, can significantly improve the rank-1 and mAP scores, which
are important performance metrics for person re-identification systems.

Table 6. Quantitative comparison of the attention module type on the Market-1501 dataset (where
the number is the order of the attention modules).

Attention Market-1501

PAM ECA Rank-1 mAP

- - 93.04 80.04

(1) - 95.81 86.97

- (1) 93.13 80.11

(1) (2) 95.93 87.57

(2) (1) 95.54 86.3

(1) (1) 95.46 86.96

5.3. Comparison of Using Different Pre-Trained Models

To investigate the usefulness of the baseline that we chose, we compare the results of
several baselines on different datasets. Our baselines for comparison are various versions of
OSNet [20] and VGG16. Table 7 presents the experimental results obtained for the Market-
1501, DukeMTMC, CUHK03-labeled, and CUHK03-detected datasets. Each row of the
table corresponds to a different baseline network, while each column shows the rank-1 and
mAP scores for a specific dataset. Our results demonstrate that the addition of suggested
branches improves the performance of all baseline networks, with the most significant gains
observed in the OSNetX1 network. In particular, our method achieved a rank-1 accuracy of
95.93% and a mAP score of 87.57% on the Market-1501 dataset, outperforming all other
baseline networks. Our results also show that the VGG16 baseline network performed
relatively poorly, with a rank-1 accuracy of only 90.25% and a mAP score of 74.86%. When
comparing the results of each baseline network to the proposed method, it is evident that
our method outperformed all baseline networks on all datasets, except for DukeMTMC,
where OSNetX1 , with our suggested addition, achieved the best performance. These
results highlight the effectiveness of our proposed method in enhancing the performance
of existing baseline networks. Furthermore, we observed some interesting trends and
patterns in our data. For example, we found that OSNetX1 performed significantly better
than other OSNet baselines after adding all the branches, except for rank-1 for DukeMTMC.
Additionally, the OSNetX0.75 and OSNetX1 networks achieved higher performance than
OSNetX0.5 and OSNetX0.25 , respectively, suggesting that larger networks may better capture
complex features in person re-identification. Overall, our study provides valuable insights
into the effectiveness of our proposed method and the relative performance of different
baseline networks in person re-identification.
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Table 7. Performance of proposed strategy of RE-ID under different baselines.

Baseline
Market-1501 DukeMTMC CUHK03-Labeled CUHK03-Detected

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

VGG16 90.25 74.86 74.92 55.47 57.21 51.44 51.07 45.39

OSNet_IBN_X_1 95.00 84.54 89.06 76.54 68.36 63.62 65.79 60.23

OSNet _X_0.25 88.8 72.61 81.83 64.14 55.71 49.99 51.64 46.90

OSNet _X_0.5 93.4 82.64 87.98 73.19 69.5 63.06 64.29 58.17

OSNet _X_0.75 95.42 86.18 89.96 77.2 72.93 67.35 68.57 62.92

OSNet _X_1 95.93 87.57 89.77 78.62 73.21 67.34 71.85 66.16

5.4. Comparison of Network Architectural Change

To further interpret the results presented in Table 8, we can observe that the introduced
strategy for applying the attention module after layer 4, provided the best performance in
terms of rank-1, rank-5, rank-10, rank-20, and mAP scores. This indicates that the retrieved
feature should include both coarse and fine information for a person’s representation,
to make the attention module more successful. The results also show a clear trend of
increasing performance with deeper layers, as adding the attention module after layers 3
and 4 improves performance, compared to adding it after layer 2. Moreover, the rank-1
score of 95.93%, achieved by applying the attention module after layer 4, is particularly
noteworthy, as it represents a significant improvement over the other positions tested. These
results demonstrate the effectiveness of the proposed strategy for integrating attention
mechanisms into person re-identification models and suggest that future work in this
area should explore the use of attention modules in conjunction with deeper network
architectures.

Table 8. Comparison of performance when changing attention position.

Position
Market-1501

Rank-1 Rank-5 Rank-10 Rank-20 mAP

Layer 2 87.55 94.71 96.17 97.95 68.6

Layer 3 93.72 97.39 98.52 99.17 82.17

Layer 3 and 4 94.2 97.45 98.4 99.05 82.12

Layer 4 95.93 98.13 99.02 99.44 87.57

5.5. Comparison of Image Size Change

To better understand the impact of image size on the performance of the proposed
method, we conducted experiments using different image sizes, and evaluated the results
in terms of rank-1, rank-5, rank-10, rank-20, and mAP scores, as shown in Table 9. It can
be seen, that resizing the image to 384 × 128 provided the best performance in terms of
rank-1 accuracy, with a score of 95.93%. The other image sizes had rank-1 scores ranging
from 95.24% to 95.86%. This suggests that a larger image size can capture more detailed
information about the person’s appearance, leading to better recognition performance. It is
noteworthy that the choice of image size can also impact the overall computational cost of
the system, and this factor should be considered when selecting the optimal image size for
a given application.
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Table 9. Performance of Re-ID models under changing image sizes.

Image Size Market-1501

Height Width Rank-1 Rank-5 Rank-10 Rank-20 mAP

256
128 95.51 98.01 99.02 99.32 86.58

192 95.24 98.31 98.9 99.35 86.12

320
128 95.25 98.13 98.96 99.32 87.97

192 95.6 98.4 99.05 99.38 86.55

384
128 95.93 98.13 99.02 99.44 87.57

192 95.86 98.31 99.05 99.44 87.15

5.6. Comparison of Feature Part Number

We explored the impact of the part number of feature selection on overall Re-ID per-
formance and tested it using the Market-1501 dataset. We attempted to train the provided
model with a varied number of feature selection components. The output feature is a global
feature if the part number is set to 1. Having six parts exhibits the best performance on the
Market-1501 dataset, according to the results presented in Figure 5. The Re-ID performance
begins to fall with adding further parts, indicating that too many components load the
model training and therefore lower performance.

Figure 5. Performance of our proposed models under different feature part numbers.

5.7. Comparison of Batch Size Change

Here, we examined the effects of modifying the batch size in the training stage, where
the batch size represents the number of images fed into the network. To examine the
impacts of various batch sizes on the efficiency of our introduced network, comparative
experiments were conducted. The largest batch size that could be used was 64, because of
GPU limitations. Figure 6 illustrates the results of the experiment. As seen, performance
changes as the batch size changes. The accuracy of the Market-1501 dataset may reach its
highest value when the batch size is 64. Comparing the improvement to a batch size of 48,
it is slight. As a result, performance varies by altering the batch size, and accuracy will
continue to improve. We draw the conclusion that the processing of the samples’ derived
features can be helped by increasing the batch size.
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Figure 6. Effect of changing size of batch on Market-1501.

5.8. Impact of Numbers of Epoch

The empirical results for our introduced network during the training stage are illus-
trated in Figure 7, to test the effect of changing the number of epochs. Three different
datasets were utilized in the experiment. This experiment comprised 100 training epochs
and was evaluated every 5 training epochs. As illustrated in Figure 7, both rank-1 and
mAP performance improve by increasing epoch numbers in the training stage, but the
difference is slight until epoch 35 in the Market-1501, DukeMTMC, and CUHK03-labeled
datasets, unlike the CUHK03-detected dataset, which needs to reach epoch 55 before the
change becomes small.

Figure 7. Effect of different numbers of epochs on the Market-1501, DukeMTMC, and CUHK03
(labeled and detected) datasets.
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6. Conclusions

This research presents a multi-part feature network for individual Re-ID, which com-
bines the position attention module with efficient channel attention, to improve the ro-
bustness and discrimination of the features. The suggested attention mechanism utilizes
temporal, spatial, and channel context information, to extract a broader variety of contex-
tual information from local features, hence enhancing their capacity for representation.
Under the restrictions of numerous losses, the methods we propose can produce resilient
feature representations. Extensive testing on three datasets revealed that the proposed
strategy outperformed state-of-the-art techniques and was highly generalizable. The results
indicate that the suggested strategy enhances both quantitative and qualitative methods
for re-identifying individuals. In the future, we intend to investigate and expand the
introduced method, to improve the precision and efficacy of person Re-ID.
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