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Abstract: The continuous monitoring of arterial blood pressure (BP) is vital for assessing and treating
cardiovascular instability in a sick infant. Currently, invasive catheters are inserted into an artery to
monitor critically-ill infants. Catheterization requires skill, is time consuming, prone to complications,
and often painful. Herein, we report on the feasibility and accuracy of a non-invasive, wearable
device that is easy to place and operate and continuously monitors BP without the need for external
calibration. The device uses capacitive sensors to acquire pulse waveform measurements from the
wrist and/or foot of preterm and term infants. Systolic, diastolic, and mean arterial pressures are
inferred from the recorded pulse waveform data using algorithms trained using artificial neural
network (ANN) techniques. The sensor-derived, continuous, non-invasive BP data were compared
with corresponding invasive arterial line (IAL) data from 81 infants with a wide variety of pathologies
to conclude that inferred BP values meet FDA-level accuracy requirements for these critically ill, yet
normotensive term and preterm infants.

Keywords: cNIBP; neonate; NICU; hypertension; hypotension; non-invasive blood pressure monitoring

1. Introduction

Every year in the U.S., nearly half a million sick infants are hospitalized and undergo
close monitoring of vital signs such as blood pressure (BP). In critically ill neonates, contin-
uous BP monitoring is achieved by inserting a catheter into the lumen of an artery. This
catheterization procedure is risky, invasive, and expensive—it requires skill and time, and
infants may require sedation. Multiple attempts may be required to place the catheter
due to small arteries [1–3]. A catheter may remain within the artery for several days
and can lead to serious complications such as infection, bleeding, clots, tissue, and nerve
damage [1–4].

Non-invasive alternatives to measure BP also have disadvantages. Oscillometry is the
most widely used non-invasive method and measures BP by intermittently inflating a cuff.
In general, continuous monitoring is preferred over intermittent, cuff-based, oscillometric
monitoring for hypotensive neonates because premature neonatal BP values are often too
low for an accurate measurement with a conventional cuff [5] and application of the cuff
can perturb the patient to artificially elevate the measured BP values [6]. Moreover, the
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frequent use of cuffs can cause ischemic damage [7], particularly for patients with fragile
skin such as premature neonates.

Other non-invasive techniques have been developed for the measurement of adult BP
values, such as volume clamping using partially inflated finger cuffs, pulse transit time
analysis using multiple sensors, and pulsewave analysis using cuffs or optical or radiative
sensors [8]. These are summarized in Table 1. Almost all methods require calibration with
a known BP measurement so that the measured features can be used to estimate BP [9–11],
and none have been adopted for use with neonates. Machine learning (ML) methods can
be used to analyze pulse waveform features and derive BP [12] and other hemodynamic
parameters [13]. These include neural networks, probabilistic, decision tree, and rule-based
induction.

Table 1. Methods for determining BP. Adapted * from Ref. [8].

Method Measurement Example
Companies FDA

Cuff

Finger, tabletop Continuous
BMEYE, Finapres, ADI,
Biopac, Edwards
(ClearSight), CNAP

Yes

Finger, wearable Continuous Caretaker Yes

Wrist Intermittent Omron, H2Care Yes

Cuffless

PPG Continuous Aktiia, BioBeat, Apple,
ASUS, Samsung, Sensifree Yes

PWV, PTT Continuous
Vital Insight, Quanttus,
Scanadu, Blumio,
Sibel

No

Tonometer Continuous Tensys, HealthStat,
LiveMetric Yes

Capacitance Continuous PyrAmes,
Vena Vitals Submitted

Abbreviations: PWV: Pulse wave velocity; PTT: Pulse transit time; PPG: Photoplethysmography.

Premature neonates have small wrists akin to an adult’s index finger and weigh as few
as 400 g. For these infants, there is a critical need for a wearable, continuous, non-invasive
BP (cNIBP) monitoring device that is accurate, affordable, and easy to use. For ease of use,
it is necessary to overcome the need for calibration. Such a cNIBP device could eliminate
the complications associated with IALs and obviate the need for sedation. Rapid and
timely attachment could reduce latency for treating hypotension and potentially improve
outcomes. Furthermore, less-skilled practitioners could use this device in resource-limited
settings or during patient transport.

Here, we investigate the clinical feasibility and accuracy of estimating continuous BP
in critically ill neonates with a wearable device (BoppliTM, PyrAmes Inc., Cupertino, CA,
USA) using ML-based methods without the need for calibration.

2. Materials and Methods
2.1. Device Design and Working Principle

Boppli was designed to meet the BP monitoring requirements and physical dimen-
sions of small, prematurely-born infants. It uses capacitive sensing methods, previously
reported [8]. The thin (~50 µm), capacitance sensor array comprises four sensing elements.
It is flexible and conforms to the contour of the limb. This extremely sensitive sensor is
coupled with low-power electronics (Figure 1) to achieve a small form-factor and low
weight (~12 g). The sensor and electronic components are incorporated into a disposable,
foam band designed to ensure a snug fit without imposing excessive pressure on an infant’s
delicate skin. The band does not use an adhesive, and its materials are hypoallergenic.
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Figure 1. (a) Boppli sensor schematic: illustration of the sensor and wearable, continuous, non-
invasive BP device for neonates (cross-sectional at the top; aerial view at the bottom); (b) Boppli
sensor placement around the foot of an infant.

The device determines continuous BP in real-time by using two tandem processes: (1)
capacitive sensing to quantify each pulse as a waveform, and (2) signal processing and
machine learning methods to analyze and process the pulse waveform data to derive the
systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP).

2.1.1. Capacitive Sensing

When the band is snugly wrapped around an infants’ wrist or foot, the sensor comes
in contact with the skin that overlies the artery (Figure 2). In this configuration, the sensor
and skin function like a capacitor. Each arterial pulse displaces the overlying skin towards
the sensor. This displacement alters the capacitance (∆C) of the system. With every pulse,
the capacitance will fluctuate. This fluctuation in capacitance is sensed by the electronics
and is displayed as a waveform (“pulse-waveform”). These unscaled pulse-waveforms
directly correlate with arterial BP and are wirelessly transmitted in real-time to a mobile
device uniquely paired with each sensor. The capacitance data are collected at 125 Hz, and
estimated BP values are updated at approximately 1 Hz.
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Figure 2. Overview of the working of the sensor and steps to infer blood pressure.

2.1.2. Pipeline for Real-Time Processing of Pulse Waveforms

The acquired pulse waveform data are streamed in real-time to a custom Android
application (App). The App analyzes and displays the pulse waveforms (Figure 2). The
measured pulse waveforms require additional signal processing and the application of
machine learning trained algorithms to derive the systolic, diastolic, and mean arterial
pressure (SBP, DBP, and MAP). These processing steps are summarized in Table 2.
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Table 2. Pipeline for real-time processing of pulse waveforms and artificial neural network (ANN)
training.

Modules Steps Relevance

A. Quality Model

Select data
Exclude data segments
Quality ranking
Classification elements

Boppli Band has an array of four sensors. The algorithm
chooses data from the best sensor.
Infant moves
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filter. Normalize pulse waveform.

C. BP Model CNN trained on pulse waveform
and IAL SHAPE

Determines systolic, diastolic, mean arterial
blood pressure.

D. Training Data Obtain Boppli/IAL data Sources: Stanford and CNH patient data warehouse;
Stanford Boppli/IAL data collection.

E. Data Curation Clean IAL data
Synchronize data

Removes artifacts due to motion, damping, and other
IAL operational issues.
Synchronize Boppli and IAL data taken simultaneously.

F. Training and Testing Cross-validation (k-fold)
Model Ranking

Inputs: pulse waveform data, age, and weight.
Splits data into 10 groups. Takes one group as a test and
the remainder as training. Recursively tests model using
TensorFlow and proprietary code. Choose best model
that minimizes MAE and SD while optimizing slope and
correlation coefficient of regression fit of estimated vs.
ground truth values.

Abbreviations: PW: Pulsewave; ANN: artificial neural network; HFOV: high frequency oscillatory ventilation;
MAE: mean average error; SD: standard deviation; IAL: intraarterial line; CNH: Children’s National Hospital.

2.1.3. Data Quality

To extract robust parameters for further analysis, the pulse waveform data must have
sufficient quality. Raw pulse waveform data from both the IAL and sensor can be noisy for
multiple reasons such as active or passive infant movement.

To evaluate the usability of the measured pulse waveforms signal, a visual metric,
|Qv|, was developed with a scale ranging from 0 (unusable) to 5 (best). This quality scale
was based on a visual assessment of secondary peak resolution and the degree of signal
noise by comparison to the corresponding IAL data according to a rubric. A training set
of 10,000 pairs of Boppli/IAL pulse waveforms with |Qv| and regression coefficients
was used to train a convolutional ANN (CNN) model to automatically grade Boppli and
IAL pulse waveforms. The outputs of this model are a quality metric |Q| and estimated
regression coefficient, r. The methods used to establish data quality are described in [8].

2.1.4. Signal Processing

To decrease noise and increase signal quality i.e., signal-to-noise ratio (SNR), a Butter-
worth bandpass filter (order 2) with limits of 0.1 to 20 Hz was used to remove baseline shifts,
respiratory effects, and high frequency noise. For infants on high-frequency oscillatory
ventilation (HFOV), a notch filter based on the ventilation frequency was used to mitigate
the parasitic noise due to subtle motion of the patient.

2.1.5. Artifact Removal

Similarly, if the infant moves, the signal is momentarily distorted and that segment
has low data quality |Q| and consequently cannot be used. Both IAL and sensor data were
excluded if they did not meet the predefined |Q| and r. The IAL data were also required
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to have an SNR > 5 and to be within realistic ranges with a minimum value of 0 mmHg
and maximum values of 200, 175, and 150 mmHg for SBP, MAP, and DBP, respectively.
The pulse waveforms which met all these criteria were normalized and used to derive
the SBP, MAP, and DBP with the BP model which was developed by using the process
described below.

2.1.6. BP Model

The purpose of the BP model is to recognize and correlate certain characteristics of the
shape of a pulse waveform to BP values. Once learned, the BP model can automatically
infer SBP, DBP, and MAP from the pulse waveforms.

Training Data: To enable learning, we developed an arterial line BP training/learning
database by collating de-identified, historical IAL waveforms of infants and pediatric
patients previously admitted at Lucile Packard Children’s Hospital Stanford (Stanford) and
Children’s National Hospital and Boppli sensor data collected from patients with arterial
lines in place at Stanford. These patient data were associated with patient age and weight
but were not labeled with a diagnosis. The IAL and sensor data were processed to improve
the signal quality and curated to remove artifacts as described above to make IAL data
more suitable for learning [8].

Training database characteristics:

• A total of 306 infants under 5-years-old in the historical database and 95 patients
collected in this study, no exclusions, both sexes.

• Up to 5000 pulse waveforms chosen randomly for each individual from a total of
~25,000 h of training data.

• Same quality preprocessing metrics as the data from the Boppli sensor.

When the IAL and sensor data were taken simultaneously, the two data streams for
each patient were synchronized pulse-by-pulse by correlating the amplitudes of the pulse
waveform signals and heart rates for a set of high-quality windows randomly distributed
across the entire time series to obtain a global time lag value. A local time lag was then
determined for each individual window to compensate for any missing data. A database
was created from the synchronized windows where ground truth BP values were generated
from the IAL data and associated with the sensor data for each window.

We used this database to train artificial neural networks to ‘learn’ features from pulse
waveforms which could be correlated to SBP, DBP, and MAP values extracted from the
peaks, valleys, and areas, respectively, of the IAL pulse waveforms. Finally, the ANN
model was validated (Table 2, Step F) to ensure that it could perform well when presented
with real-world data. Because of the limited amount of sensor data, 10-fold cross-validation
(CV) sets were used (with 10% of the individuals with sensor data distributed into each
CV set) where one set is held out as a test set while the nine other CV sets are used to train
the model.

3. Clinical Study Design

The use of historical IAL data was approved by the Institutional Review Boards at
Stanford University (IRB Protocol #47185) and at the Children’s National Hospital (IRB
Protocol # Pro00014876). The observational study was approved by the Institutional Review
Board at Stanford University (IRB Protocol #45892) and conducted in the neonatal (NICU)
and cardiovascular intensive care units (CVICU) at Lucile Packard Children’s Hospital
Stanford. The study complied with all relevant ethical guidelines for human subject
research. Written consent was obtained from the parents of the study subjects prior to
partaking in the study. We excluded those infants who were facing imminent demise and
those undergoing extra corporeal membrane oxygenation (ECMO). After parental consent,
we enrolled infants with umbilical arterial catheters (UACs) or peripheral arterial lines
(e.g., radial, femoral, posterior tibial, axillary, or ulnar). The Boppli sensor was placed on
an available wrist or foot with the sensor array overlying a pulse point. The wirelessly
transmitted pulse waveforms were visualized in the App on a mobile device. The mobile
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device was kept in close proximity to the patient but not available to the clinical team. This
was undertaken to ensure that clinical decisions were not made on the basis of the Boppli
readings during the conduct of the clinical study.

3.1. Arterial-Line Data Collection

The catheter (UAC or peripheral arterial line) was connected to an electronic transducer
for measuring continuous IAL BP. Measured BP waveforms sampled at 125 Hz were
displayed on a Philips Intellivue (Philips Medical Systems, BG Eindhoven, The Netherlands)
and stored in the Stanford data warehouse. The IAL data corresponding to each study
subject was pre-processed as described above to improve quality and usability.

Correlation and Accuracy Metrics

Finally, we determined if the inferred, sensor-based BP (SBP, DBP, and MAP) correlated
with BP from the IAL. Since the eventual clinical use of this device is to be determined by the
US Food and Drug Administration (FDA), we compared the Boppli results to the accuracy
specifications recommended by the FDA, i.e., a mean average error (MAE) < ±5 mmHg
and standard deviation (SD) < 8 mmHg [14].

4. Results

The demographics for 81 infants enrolled in this study are shown in Table 3. These
infants were admitted with a wide range of pathologies but were generally normotensive
during the period of the study. Table 4 describes the characteristics of the invasive arterial
line data. Table 5 provides characteristics of the IAL and Boppli placement locations. The
gauge of the catheters used also varied (data not shown). Only patients with a weight
below 5 kg and at least ten high-quality pulse waveforms were included in this analysis.

Table 3. Characteristics of the study cohort. Normotensive, not on any inotropic support during the
measurement period.

Study Cohort Patient Characteristics (N = 81)

Age (days)

Minimum
Maximum
Average
Median

1
150
17
4
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Table 3. Cont.

Study Cohort Patient Characteristics (N = 81)

Weight (kg)

Minimum
Maximum
Average
Median

0.55
4.85
2.60
2.80
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4.1. cNIBP (Sensor)

The average length of data collection was eight hours per patient, with a minimum
of 10 min and a maximum of 14.5 h. The total length of sensor data examined was ~750 h.
The data recording was stopped when the arterial line was removed, when the battery ran
out (~13–15 h), in anticipation of a procedure, or if the band was removed in error. In some
cases, the band was removed or slipped to an incorrect position during extended periods
of time, and only poor-quality data were collected during those periods.

4.2. Degree of Agreement

Bland–Altman analysis [15] for the mean difference between predicted BP (SBP, DBP,
and MAP) and A-line BP demonstrates that SBP, DBP, and MAP predictions are within the
FDA specifications when the sensor data |Q| > 2.5 and when averaged across each indi-
vidual to account for the different number of data points per individual (Figure 3a). These
analyses were performed in accordance with the guidelines for new BP devices provided
by the American National Standards Institute/Association of the Advancement of Medical
Instrumentation (AAMI)/International Organization of Standardization (Association for
the Advancement of Medical Instrumentation and American National Standards Institute
2003). Predicted values were obtained from the pulse waveform data with the additional
inputs of patient age and weight at the beginning of data collection. The points are color
coded by patient weight and do not show a systematic trend of error with patient weight
or BP values.

Bland–Altman plots with all derived data points without averaging are also shown
with contour lines indicating point densities in Figure 3b. Again, the MAE specifications
are met for SBP, DBP, and MAP and there is no systematic trend in error with BP val-
ues. However, all three BP values show increased variance and SBP does not meet the
SD criterion.
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Figure 3. Bland–Altman plots for SBP, DBP, and MAP: (a) values averaged over each individual for 
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plot of average versus difference of BP readings constructed for SBP, DBP, and MAP. Points are 
color coded by patient weight. Red dotted lines indicate 2 * SD of the calculated values. Green dotted 
lines indicate targets based on FDA guidelines for accuracy of MAE ≤ 5 mmHg and 2 * SD ≤ 2 * 8 
mmHg. The figures were generated using JMP software version 16.2.0. 

Figure 3. Bland–Altman plots for SBP, DBP, and MAP: (a) values averaged over each individual for
81 test patients; and (b) all data values without averaging. Bland–Altman plots represent a scatter
plot of average versus difference of BP readings constructed for SBP, DBP, and MAP. Points are color
coded by patient weight. Red dotted lines indicate 2 * SD of the calculated values. Green dotted lines
indicate targets based on FDA guidelines for accuracy of MAE ≤ 5 mmHg and 2 * SD ≤ 2 * 8 mmHg.
The figures were generated using JMP software version 16.2.0.

Figure 4 shows predicted SBP, DBP, and MAP values plotted against ground truth
values. The top set of plots shows the results for average values weighted by individual;
the bottom set shows all predicted values without averaging. Three linear fits are shown
in each plot. The blue line shows the unconstrained fit to the data. The green line shows
the fit of the data when the intercept is constrained to be 0. The grey line indicates the
ideal (identity) case where predicted values equal the ground truth values with a slope
of 1 and an intercept at 0. The root mean square (rms) errors are included for each fit for
comparison.
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Figure 4. Predicted BP values vs. ground truth values. The blue line represents an unconstrained
linear fit to the data. The green line is a linear fit constrained by a zero-intercept. The grey line is the
identity (ID) fit where the predicted values equal the ground truth values. The figures were generated
using JMP software version 16.2.0.

Table 6 summarizes the degree of agreement for SBP, DBP, and MAP.

Table 6. Summary of degree of agreement for SBP, DBP, and MAP including agreement with FDA
guidelines (green) and agreement falling outside FDA guidelines (red).

Systolic
BP

Diastolic
BP

Mean Arterial
BP

FDA
Guidelines

MAE SD MAE SD MAE SD MAE SD

Individual
averages
(N = 81)

−0.1 7.9 0.1 6.6 −0.1 6.4

≤±5 mmHg <8 mmHg
All points

(N = 327 K) −0.6 9.2 −0.4 7.9 −0.6 7.8

r2 Slope r2 Slope r2 Slope

Individual
averages
(N = 81)

0.64 0.64 0.35 0.42 0.53 0.58

All points
(N = 327 K) 0.56 0.58 0.27 0.36 0.43 0.50

4.3. Effect of Gestational Age

Table 7 summarizes the MAE and SD values for the study population by gestational
age at birth (GA) to understand if the BP algorithm is generalizable across the range of
GAs found in NICU patients less than 5 kg in weight. The population was separated into
three categories of GA: <28 weeks (extremely preterm, EPT), 28–37 weeks (moderately
preterm, MPT), and ≥38 weeks (full-term, FT). These categories correspond to the extremes
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of gestational age as defined by the World Health Organization [1,4]. For MAP and DBP,
all subsets meet the efficacy specification of MAE ≤ ±5 mmHg, SD ≤ 8 mmHg. SBP meets
the MAE criterion for all subsets but the MPT subset does not meet the SD criterion.

Table 7. Efficacy by gestational age.

MAP SBP DBP
GA N MAE SD Letter

Code * MAE SD Letter
Code * MAE SD Letter

Code *
EPT:

<28 wk 15 0.2 6.9 A −0.0 7.3 A 0.4 7.3 A

MPT:
28–37 wk 38 0.2 6.4 A 0.3 8.3 A 0.4 6.6 A

FT:
≥38 wk 26 −0.9 6.2 A −0.8 7.8 A −0.5 6.4 A

* Letter codes not connected by the same letter are significantly different.

The differences in accuracy between the GA groups were evaluated using the Tukey–
Kramer analysis on JMP, a statistical package from SAS. This is a variant of the Tukey HSD
method and uses SDs when there is an uneven number of data points per test period. Due
to the range of data collection periods and variations in the quality of both IAL and Boppli
data with time, the number of points varied by individual.

In the Tukey–Kramer (Tukey HSD) analysis, a letter code is assigned to each test group
which can be used to gauge the statistical significance of differences between pairs of test
groups. If the comparison of a pair of test groups did not exceed the threshold of significant
difference, they were given the same letter code. If the analysis of their SDs exceeded this
threshold, they were assigned different letter codes. A given test group may have multiple
letter codes if it did not exceed the threshold of significant difference with several other test
groups but some of the others differed significantly from one another and thus were given
different letter codes. Pairs are considered significantly different if they do not share a letter
code. The broader the difference between letter codes between a pair of test groups, the
higher the likelihood that the pairs are significantly different. In Table 7, all groups show
the same letter code and thus there does not appear to be a significant difference between
GA groups.

Figure 5 shows the comparison results for the three GA categories of infants. Data
points are colored by patient weight at the time of the study. A good overlap between
the mean diamonds (green) and the Tukey–Kramer circles (black) indicates there is no
significant difference between the GA groups. All subsets show MAP, SBP, and DBP mean
values within the specification for accuracy (green dotted lines at ±5 mmHg error) and the
95% confidence level (green dashed lines at ±16 mmHg). As such, there does not appear to
be an impact of gestational age on accuracy. Similar analyses show no significant trends in
efficacy due to age, weight, race/ethnicity, IAL location, or Boppli location.

There is some indication of a significant difference due to sex although the results for
both male and female cohorts meet the accuracy (MAE) guidelines. There is more variance
for the male subset which exceeds the target of SD ≤ 8 mmHg for SBP. The results are
shown in Table 8 and Figure 6.

Table 8. Efficacy by sex.

MAP SBP DBP
N MAE SD Letter

Code * MAE SD Letter
Code * MAE SD Letter

Code *
Female 33 2.0 5.1 A 2.2 6.4 A 1.9 4.9 A

Male 48 −1.6 6.8 B −1.7 8.4 B −1.1 7.3 B

* Letter codes not connected by the same letter are significantly different.
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Figure 5. Effect of gestational age (GA) on efficacy. Groups categorized by prematurity are com-
pared through mean diamonds (green) and Tukey–Kramer circles (black). EPT (<28 wks GA), MPT
(28–37 wks GA), FT (≥38 wks GA). Overlap between diamonds and circles indicates there is no
significant difference between groups. Mean diamonds are contained within the FDA guidelines for
accuracy (dotted green lines). Targets for 95% confidence levels are indicated with dashed green lines.
Points are color-coded by patient weight.
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Figure 6. Effect of sex on efficacy. Female and male patient subsets are compared through mean
diamonds (green) and Tukey–Kramer circles (black). Minimal overlap between diamonds and circles
indicates there is a significant difference between the two groups. Mean diamonds are contained
within the FDA guidelines for accuracy (dotted green lines). Targets for 95% confidence levels are
indicated with dashed green lines. Points are color-coded by patient weight.
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5. Discussion

A non-invasive approach to monitoring BP is a vital unmet need in neonatal critical
care. Currently, there are no commercially available neonatal cNIBP devices. Solving this
unmet need can provide better, safer BP monitoring for the ~400,000 NICU patients annually
in the U.S. [16] and avoid the pain, stress, and risks of IALs. The novel Boppli cNIBP device
can continuously and non-invasively infer BP without the need for external calibration.
This is significant because it reduces the nursing burden at the bedside. The device does
not use adhesives, which is relevant for premature neonates who lack a protective layer in
the skin, i.e., stratum corneum [17]. It is less perturbing to the patient than an IAL, cuff,
or other bulky non-invasive options. This device can be strapped on like a wrist-watch
and can be used while transporting patients. The electronics can be reused to a lower cost
of care. Consequently, this device can change the management of neonates by avoiding
arterial line placement in neonates who strictly need monitoring for BP issues.

A few prior studies have suggested that non-invasive methods of BP overestimate
invasive arterial lines [18,19]. These studies used intermittent, cuff-based methods unlike
the continuous, non-cuff-based method described here. Other studies have shown good
agreement for non-invasive methods of BP measurement [5,20]. We expect that this de-
vice, once cleared by the FDA and adopted for clinical use, will potentially eliminate the
complications associated with invasive arterial lines. This transition will pave the way
for enabling continuous non-invasive monitoring, early detection of changes in BP, timely
intervention, and tracking of the response to treatment. Although this study focuses on
neonates, the technology platform is applicable to all age groups, and limited only by the
availability of arterial waveform data for building neural network models.

The study had limitations. All enrolled neonates were critically ill but were normoten-
sive. We acknowledge that the utility of this device and its accuracy is of utmost value in
hypotensive patients and such a study is intended in the future. The correlation between
a gold-standard arterial line and cNIBP sensor can depend on the precise location of the
arterial line. We have not accounted for this issue in the current study. Critically ill infants
often have fluids running through their umbilical lines. This can dampen the observed
and recorded signals. Comparing the cNIBP signal from a limb to a presumably corrupted
waveform, deemed as a “gold-standard” can be inaccurate. Another limitation is due to
the blinding of the data to the clinical team which led to periods of time where the data
quality was insufficient for analysis. In future studies, we will display the pulsewave to the
clinical team to provide a visible cue of data quality. We have observed that the fraction of
data with usable quality increases when the clinicians are able to see the Boppli signal in
real time.

Our study also has strengths. First, we demonstrated the accuracy of the device in
estimating BP in real-world ICU settings and in infants with a wide variety of clinical
conditions. Additionally, capturing unscaled data is innovative because it overcomes
the need to calibrate for skin type, edema, patient size and shape, sensor positioning,
and temperature sensitivity. The BP model was generated with data obtained from 306
patients. We believe that additional data can refine the algorithms and increase accuracy. In
several instances, IAL data were distorted due to over/underdamping and artifacts from
transducer flushing, kinking of catheters, movement artifacts, BP cuff inflations, and high
frequency oscillatory ventilation. However, using filtering techniques, we have extracted
underlying cNIBP waveforms. This work is novel and significant because it can impact
clinical practice and simultaneously enable real-time analytics [21].

6. Conclusions

This study is significant because it addresses a critical gap faced by clinicians treating
infants in the neonatal period. We have investigated the accuracy of a novel wearable
device that utilizes capacitive sensing and algorithms trained through machine learning
in tandem to infer BP, continuously and non-invasively, without external calibration. We
showed that the use of the device is feasible for critically ill term and preterm infants with a
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wide variety of pathologies—from serious cardiac ailments, pre- and post-operative cases,
neurologic conditions, and prematurity. The ANN model used in this study is one of several
models we have developed to estimate BP in real-time without the need for calibration.
The wearable meets the FDA specifications for accuracy and is a practical choice in clinical
settings—it is easy to attach and operate and provides continuous BP readings with no
latency. A pivotal multi-center study to assess accuracy and submit data to the FDA for
device clearance is underway.
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