
Citation: Valerdi, J.L.; Bartolozzi, C.;

Glover, A. Insights into Batch

Selection for Event-Camera Motion

Estimation. Sensors 2023, 23, 3699.

https://doi.org/10.3390/s23073699

Academic Editors: Antonio

Fernández-Caballero and

Byung-Gyu Kim

Received: 12 February 2023

Revised: 24 March 2023

Accepted: 25 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Insights into Batch Selection for Event-Camera
Motion Estimation
Juan L. Valerdi , Chiara Bartolozzi and Arren Glover *

Event-Driven Perception for Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
chiara.bartolozzi@iit.it (C.B.)
* Correspondence: arren.glover@iit.it

Abstract: Event cameras measure scene changes with high temporal resolutions, making them well-
suited for visual motion estimation. The activation of pixels results in an asynchronous stream of
digital data (events), which rolls continuously over time without the discrete temporal boundaries
typical of frame-based cameras (where a data packet or frame is emitted at a fixed temporal rate).
As such, it is not trivial to define a priori how to group/accumulate events in a way that is sufficient
for computation. The suitable number of events can greatly vary for different environments, motion
patterns, and tasks. In this paper, we use neural networks for rotational motion estimation as a
scenario to investigate the appropriate selection of event batches to populate input tensors. Our
results show that batch selection has a large impact on the results: training should be performed
on a wide variety of different batches, regardless of the batch selection method; a simple fixed-time
window is a good choice for inference with respect to fixed-count batches, and it also demonstrates
comparable performance to more complex methods. Our initial hypothesis that a minimal amount
of events is required to estimate motion (as in contrast maximization) is not valid when estimating
motion with a neural network.

Keywords: dynamic vision sensor; pose estimation; neural network; deep learning

1. Introduction

Event cameras [1] transmit a digital event at a pixel location when the pixel’s relative
brightness change surpasses a threshold. Compared with standard “frame-based” cameras,
event cameras offer several advantages, including low latency, high dynamic range, high
temporal resolution, and signal compression. They inherently detect changes, making
them particularly suited for estimating motion and potentially game changers in a variety
of tasks, including visual odometry [2–4], simultaneous localization and mapping [5],
structure from motion, object tracking [6], as well as monitoring and security [7]. The
sub-millisecond temporal resolution makes them potentially extremely accurate for these
tasks; whether motion comes from an externally moving object, or the camera itself.

Traditional approaches to estimating visual changes, such as by Lucas-Kanade [8],
assume pixel-intensity consistency over short time periods, i.e., between two sequential
images. Problems with “motion-blur” (movement during photon integration) must be
overcome to produce viable results [9]. In contrast, event cameras produce asynchronous
events at microsecond temporal resolution. The precise timing allows “motion-blur” to
become separable and becomes an informative signal that can be used to calculate motion.

Camera motion estimations from events have been performed using iterative filters [5,10,11],
optimization techniques [12–15], or trained neural networks [16,17]. While the techniques differ,
they must all extract the same information from the same data flow, as shown in Figure 1.
Therefore, they all compute some form of spatiotemporal gradients as the scene texture passes
across multiple pixels during motion.

Sensors 2023, 23, 3699. https://doi.org/10.3390/s23073699 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073699
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7329-786X
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0003-4499-4070
https://doi.org/10.3390/s23073699
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073699?type=check_update&version=1

Sensors 2023, 23, 3699 2 of 15

(a) (b)

(c) (d)
Figure 1. Batch selection for event-camera motion estimation, where colours indicate different
polarity (increase or decrease in light) of events: (a) spatiotemporal volume of a batch of 1K events;
(b) spatiotemporal volume of a batch of 10K events; (c) image formed with 1K events. It may provide
understanding about the object (a door) but not the direction of the camera motion; (d) image formed
with 10K events. It is a more appropriate number of events and can provide enough data to extract
visual changes and, hence, camera motion.

To have such spatiotemporal patterns available for extracting motion patterns, batches
of more than one event must be processed. Figure 1 shows the spatiotemporal patterns in
an event batch and the “motion-blur” that occurs if integrated into a single time step. While
optimization algorithms operate directly on the list of < x, y, t > data, neural network
implementations require these data transformed into a 3D tensor to be fed to the network.
Event iterative filters, which can operate event-by-event, can only converge after processing
more than one event and, therefore, have used batches as well [14,18].

As event cameras do not have a fixed frame rate, the batch of data to be considered
simultaneously is not determined by the sensor. Instead, the size of a batch can be deter-
mined by algorithms, e.g., based on a short (millisecond) or long (seconds) period of time,
and this paper investigates the optimal selection of data for a motion estimation task. A
batch that is too large can violate the assumption of linear motion over small time periods
that many algorithms require, such as [12–14,18], while at least some minimal amounts of
data are required to form the necessary spatiotemporal gradients. A common hypothesis is
that an optimal balance of information for camera rotation estimation could be achieved
with 2 to 3 pixels of spatial motion.

The problem of batch selection, which refers to the number of events used for computa-
tion, should be decoupled from the complementary problem of batch encoding, which is
how the tensor is formed from the data (and also an open question [16,17]). Batch selection

Sensors 2023, 23, 3699 3 of 15

for neural network-based algorithms has not been addressed in much detail and we aim
to address the question of optimal batch selection for training and inference of neural
networks for rotation estimation.

We utilized a current state-of-the-art network designed for camera pose change estima-
tion [16] and modify it for rotation-only motion. We proceed to retrain the network using
various batch-selection methods, including common techniques in event-driven vision,
such as fixed-time windows and fixed event counts. Additionally, we introduce alternative
methods that we devised, such as a ‘fixed rotation’ window, a network to estimate optimal
batch sizes, a recursive strategy that determines the batch size based on the previously
estimated result, and an ad hoc method for estimating batches of sufficient motion (referred
to as local). We conduct experiments to evaluate the performance of each batching technique
for both model training and inference.

Although camera rotation estimation is an important topic in its own right [13,19],
we used a currently established method and investigated how the batch selection affects
performance. We specifically chose a 3-DoF task to remove complexities that may introduce
uncorrelated errors (e.g., from 6-DoF and depth estimation). The main contribution of this
work is the insight into the optimal batch-selection technique for motion estimation using
event cameras.

1.1. Related Work

Camera rotation estimation is the task of approximating the movement of the camera
in 3-DoF (roll, pitch, yaw) given the visual camera input. Such a problem should be
considered within the wider field of visual SLAM [19], which includes both camera pose
estimation and map creation. For a mono-camera with rotation-only motion, no parallax
occurs and depth cannot be estimated, leaving only a spherical panoramic map [20].

On the task of pure visual odometry [21], estimating the rotation change ∆R over a
small time interval does not necessarily require a global map, and can be solved using
epipolar geometry and key-point correspondence [22]. Incorrect calibration, model esti-
mation, and data association can lead to errors in the estimated pose change, resulting
in a drift in the integrated signal. To mitigate such problems, deep learning techniques
have recently shown improved performance over geometrical techniques [2–4], at the
expense of requiring large amounts of training data. Visual changes have been estimated in
event-driven deep networks by providing image sequences [2], by explicitly storing the
state used for comparison to individual images [3], or by inherently storing the state in a
recursive neural network [4].

RGB images provide a measure of the light intensity at each pixel at a fixed point in
time. Event cameras produce different visual signals, asynchronously measuring visual
changes. When a change is detected, they return an event e = (x, y, t, p). The components
(x, y) represent the position of the pixel that detects the change, t is the timestamp, and is
p the polarity (brighter or darker change). An individual event at a single pixel location
does not contain enough information on its own; therefore, multiple consecutive and
neighboring events must be processed to understand the scene and motion.

Geometric approaches to visual odometry with event cameras are more similar to
‘direct visual odometry’ [23], as features are not extracted; instead, the pose change is
computed directly over the raw data by computing the spatiotemporal warping required
to maximize the contrast of a batch of events [13,15,24–27]. The estimation of this vector
is achieved through optimization and the batch size needs to be large enough for the
convergence of the optimization, but small enough to avoid the superposition of complex
motion that cannot be described with a single warping. Learning-based approaches for the
estimation of optical flow, depth, and camera motion from event cameras use three channel
images (representing time and event polarity counts) [17] or an < x, y, t > normalized
3D tensor [16] as input to deep convolutional neural networks. The encoding of events
into the tensor has an impact on the performance; however, which events are selected (the
focus of this work) is given less attention. Specifically, the choices of fixed-time events

Sensors 2023, 23, 3699 4 of 15

and fixed-number batches of events are often made without clear motivation, and other
selection methods have not been thoroughly explored.

An event batch of fixed-time length contains a highly variable number of events,
which depends on the camera and independent object motion. As such, the assumption of
linear motion cannot be guaranteed for long temporal windows or large speed motions.
Conversely, for short temporal windows or small motions, the information in the batch can
be too small. An event batch with a fixed number of events may guarantee a minimum
amount of information to be processed, but it can also vary depending on the scene texture.
Therefore, other methods to decide which events should be used in a single tensor for
processing could improve the overall network performance.

2. Materials and Methods

The focus of this work is to investigate batch selection methods for motion estimation
using learning-based approaches. We used a state-of-the-art network to perform motion
estimation and simplify the problem to rotation-only to isolate errors due to inaccuracies in
scene depth, as well as those due to the entangling of rotation and translation motion.

2.1. Rotation Estimation Network

We simplified EV-FlowNet v2 [16] by removing the depth decoder and using only the
pose model related to rotations, as shown in Figure 2.

As input, the network uses a tensor that attempts to maintain the spatiotemporal
information of the events by discretizing the time domain into a set of bins. Given a selection
of N input events {(xi, yi, ti, pi), i = 1, 2, . . . , N}, and a set of B temporal bins, we define
the input tensor V(x, y, t), where (x, y) are the image coordinates and t = 0, 1, . . . , B− 1,
as follows:

V(x, y, t) = ∑
i

pikb(x− xi)kb(y− yi)kb(t− t∗i)

t∗i = (B− 1)(ti − t1)/(tN − t1)

kb(a) = max(0, 1− |a|)

The output of the network is the predicted change in the camera rotation pose, ∆X,
between the time points t1 and tN .

Training is performed using a supervised approach instead of self-supervised, as
in [16], with the goal of increasing the likelihood of producing a well-trained network and
isolating performance differences based on the batch-selection method, rather than other
sources. We created new simulated datasets with diverse characteristics to evaluate the
network and batch selection methods in a variety of scenarios. Supervised learning on
simulated data has been used successfully in recent work [28–30].

Figure 2. Network for camera rotation estimation, simplified from EV-FlowNet v2 [16].

2.2. Batch Selection

The input to the rotation estimation network, for both training and inference, is a
fixed-size 3D tensor that can be filled with a variable number of input events or event
batches. Converting an event batch to a tensor is described in Section 2.1, while the criteria
to select event batches is the major focus of this work. Every event batch covers a discrete:

Sensors 2023, 23, 3699 5 of 15

1. Number of events;
2. Temporal period; and
3. Camera rotation.

Any of these can be used to define the criteria to select events from the event stream. We
trained a rotation estimation network for each batch method.

2.2.1. Fixed Number of Events (WinT)

The batch is always formed from a fixed and constant number of events N, as in
[12,15,16,18,26,27,31,32]. A fixed count of events ensures that there are always some events
available to infer motion. However, for low-texture scenes, the batch may not be filled until
a large (possibly non-linear) motion is performed.

2.2.2. Fixed Temporal Period (NK)

The batch is formed from all events in a set time period, T, as in [14,29,33–36]. A
temporal window has data proportional to the speed of the camera and, therefore, results
in a wide variance in the number of motions encoded in the tensor.

2.2.3. Fixed Camera Rotation: Local

As texture varies across different scenes, a fixed camera motion will produce batches
of different sizes. However, at the scale of a single object, a stronger correlation between
camera velocity and the number of events exists. The local estimation method uses a measure
of the percentage of events that have occurred in small neighborhoods of pixels (at the
scale of a single object edge), with the idea that a moving edge will activate all pixels in the
small region after a fixed, repeatable, amount of motion. For each event, the local method
evaluates multiple adjacent patches to estimate the percentage of active events.

Given the set of events since the last batch, E = {(xi, yi, ti, pi), i = 1, . . . , N}, we define
the image of n events, n ≤ N, as

In(x, y) = 1,

if there exists ei ∈ E, i ≤ n, such that (x, y) = (xi, yi).
For each event en that has occurred since the last batch was formed, we check four

adjacent m×m patches. Each patch is adjacent to the event along the x-axis or y-axis; in
Figure 3, we show an example. A batch of n events is formed if the event en has at least one
adjacent patch in which:

∑m
j=−m ∑m

k=−m In(j, k)

m2 > Tle (1)

where the local estimation threshold, Tle, is approximately 0.13.

2.2.4. Fixed Camera Rotation: Recursive

The recursive estimation selects a batch of events with a predefined magnitude of
motion, assuming that the previous velocity estimate is similar. Given the previously
predicted pose change estimate ∆X, the rotational speed v, is calculated as:

vi−1 =
|∆X|
ti−1

and, therefore, the time window to produce a similar amount of motion for ti is:

ti =
r

vi−1
+ k

where r is the desired rotational change and k is a small offset.
Such an approach assumes an accurate and stable estimation of ∆X. Any incorrect

estimation can lead to divergence of the algorithm over time. In practice, depending on the
algorithm, an offset value, such as k, prevents such a divergence.

Sensors 2023, 23, 3699 6 of 15

Figure 3. The local estimation method triggers a batch if any of the four regions of size m (red- and
gray-dotted) surrounding the most recent event (center X) contains more than m2Tle pixels that
have been triggered by previous events (black squares). In low-noise conditions, the criteria will
be met when an edge passes through any of the dotted regions, accumulating events of more than
one-pixel thickness.

2.2.5. Fixed Camera Rotation: Trained Network (Net)

Another method to estimate an appropriate batch of events for a constant magnitude
of rotation is to use a small trained network. The input to the network is a 3D tensor, I,
with each slice Ii being an image of accumulated events on the visual plane for a number of
events, Ni:

Ii(x, y) = 1 if ∃ej(x, y), j ∈ [0, Ni].

Example images of typical layers are shown in Figure 4b.
The output of the network is an estimate of the N events that best match the desired

fixed rotation amount. The architecture of the neural network is shown in Figure 4a.
The design decision lies in selecting the value of Ni for each layer, which affects the

temporal resolution represented by the fixed-size tensor and sets the minimum and maxi-
mum velocity that can be estimated. The amount of texture in the scene is the main factor
that influences the number of events occurring during any fixed rotation. More structure,
edges, and objects produce a greater number of events, given the same camera motion. As
the field of view is two-dimensional, the number of events also scales exponentially, and
must be accounted for in the selection of N:

Ni = aβi (2)

where a is the smallest possible event batch and β > 1 is the rate scaling factor. Therefore,
the range of possible values of N falls in the interval

[
a, aβn] for Ni, 1 ≤ i ≤ n.

2.2.6. Fixed Camera Rotation: Ground-Truth

The ground-truth camera rotation can be used to form batches of events for training
only. Therefore, we compare the above estimation methods against networks trained
with perfect knowledge of camera rotations. These networks must use one of the above
estimation methods for inference.

External sensors, such as inertial measurement units, could be used to estimate a
constant rotational motion, and then fused with visual information. In this paper, we focus
on vision-only solutions for scenarios in which other sensors are not available.

Sensors 2023, 23, 3699 7 of 15

(a) (b)

Figure 4. The selection network used to estimate the number of events N needed to produce a
specific magnitude of rotation, without knowing the rotation itself. (a) Examples of input layers to the
selection network showing I25K , I50K , I75K , and I100K , respectively, as the edges become bolder/thicker.
(b) The selection network has four convolutional layers reducing the spatial–temporal information
with each layer until obtaining a 1× 1 tensor as output.

3. Results

We evaluate the network performance at estimating camera rotations for the different
batch methods used in training. The performance is measured as the absolute difference
between the estimated rotation velocity and the ground truth, over each trajectory.

3.1. Datasets

Simulated datasets were used to provide accurate ground-truth for camera motion
and to ensure that it was restricted to pure rotations. We selected four publicly available
photorealistic simulated environments from the UnrealCV Zoo [37], which included diverse
lighting, textures, shadows, reflections, and object clutter, as shown in Figure 5. The camera
was positioned inside the virtual room and randomly rotated along all three axes at a
variety of speeds, as shown in Figure 5e. Frames were generated at a rate of over 1 kHz
from which the event stream was generated using log-image-difference techniques [38].
We used five trajectories for arch1, four trajectories for arch2, and three trajectories for arch3
and the final room dataset, resulting in a total of 13 different datasets (each with a different
velocity trajectory) covering a total of 190 seconds of data.

3.2. Training

Datasets were split into 150 s of training (all arch datasets) and 40 s of testing (the
single previously unseen room dataset), which were spread across each of the datasets in
Figure 5e. Event batches were created in pre-processing using each batching method at
predefined fixed intervals in the dataset (every 5 ms) to ensure a valid comparison. Each
batch was then converted to the required tensor format, as described in Section 1.1.

The motion estimation networks and the selection network were trained using the
Adam optimizer with learning rates ranging from 0.005 to 0.0001 and a batch size of 256.
The motion networks were trained for 1000 epochs using an Nvidia Quadro RTX 6000,
which took approximately 10 h. The selection network was trained for 200 epochs, which
took approximately 1 h.

The selection network parameters, as defined in Equation (2), were set as follows:
a = 4000, β = 1.34, and n = 16. These parameters define a predictability range of [4000,
432,251] events. To ensure that the network learns equally at different scales within this
range, we used the mean squared logarithmic error (MSLE) as the loss function.

Sensors 2023, 23, 3699 8 of 15

(a) (b)

(c) (d)

(e)

(f)
Figure 5. Example scenes (images from OpenCV website) (a) “room” from RealisticRendering,
(b) “arch1” from ArchinteriorsVol2Scene1, (c) “arch2” from ArchinteriorsVol2Scene2, (d) “arch3” from
ArchinteriorsVol2Scene3, and analysis of the simulated datasets: (e) angular velocity mean and vari-
ances of all simulated datasets, and (f) event images demonstrating rotations of 0.25◦, 0.5◦, and 1.0◦,
from left to right.

Sensors 2023, 23, 3699 9 of 15

3.3. Batch Selection Parameters

Batch parameters were chosen to ensure linear motion within each batch [12,13],
resulting in valid EV-FlowNet v2 performance. Figure 5f shows that the rotation parameters
of 0.5◦ and 1.0◦ lead to an edge blur of approximately 1–2 pixels and 3–5 pixels, respectively.
As a control, we also trained a network using batches with random rotations between
0.5 and 1.0 degrees.

The parameters selected for each trained model are summarized in Table 1 and an
example of the resulting batch size is shown in Figure 6. Fixed number batches were chosen
as 30K, following [12,16,24,27], and 100K after observing typical amounts of texture in our
datasets. The fixed-time batch of 20 ms resulted in a mean of ∼0.57◦ of the rotation and
50 ms resulted in a mean of ∼1◦ of the rotation. The selection network was trained with a
target of 1◦. The local estimation method was heuristically tuned from trial and error, as
noise and artifacts influenced the resulting batches in unpredictable ways.

Table 1. Selection methods and motion estimation models used in the experiments.

Selection Method Application Parameter Name

Fixed rotation Train-only 0.5◦ Rot0.5
Fixed rotation Train-only 1.0◦ Rot1.0
Random rotation Train-only 0.5◦–1.0◦ RotR
Fixed count Train/infer 30,000 30K
Fixed count Train/infer 100,000 100K
Fixed time Train/infer 20 ms Win20
Fixed time Train/infer 50 ms Win50
Selection network Train/infer target 1.0◦ Net
Local estimation Train/infer 90%-7× 7 patches Local
Recursive Infer-only 1.0◦ (trained Rot1.0) Rot1.0r
Recursive Infer-only 0.75◦ (trained RotR) RotRr

Fixed rotation methods can only be used for network training under operational
conditions as they require ground-truth information. In Table 1, we label them as train-only.
However, for baseline purposes, we also perform inference with fixed rotation batches since
we have ground-truth available in our experiments. The recursive methods are labeled
infer-only.

(a) (b)
Figure 6. Batch sizes for different batch selection strategies: (a) arch1_1 dataset and (b) room dataset
(first 10 s).

Sensors 2023, 23, 3699 10 of 15

3.4. Batch Size Analysis

Fixed-time batches vary with velocity and scene texture but follow a similar trend to
fixed rotation batches, which only vary with scene texture. The selection network (Net)
and the recursive strategy (Rot1.0r) were designed to mimic Rot1.0 batches. Both strategies
performed similarly, with a logarithmic error of 0.23 for Rot1.0r and 0.19 for Net. As shown
in Figure 6b, they approximate the order of magnitude, peaks, and troughs of Rot1.0 well.

The local method did not follow Rot1.0 batch size in terms of the order of magnitude,
and was unable to predict trends in the data, even though the parameters were tuned to
achieve a similar amount of “edge-blur”. Figure 7 shows that the main reason for this
behavior is that the activated pixel region meets the threshold due to texture from multiple
nearby edges, rather than a single clear edge moving through the 7× 7 region. This problem
was consistently observed across different kernel sizes.

(a) (b)
Figure 7. (a) Local vs. (b) Win20 event selection in the room dataset. Red circle represents the area
where the local method conditions are met.

3.5. Camera Rotation Estimation

Multiple models were trained to estimate camera rotation, each using a different batch
selection method. Inference was performed firstly using the same batch selection method
used during model training, and secondly using all valid batch selection methods for
each trained model. The performance was measured as the mean difference between the
estimated velocity and the ground-truth velocity.

3.5.1. Identical Batch Method for Training and Inference

The 100K model evaluated with the 100K batch is the poorest estimator compared
to the other models, as shown in Figure 8. The batch size is significantly larger than the
others and is likely not producing the required linear motion. The relative performance is
visualized in Figure 9a.

The fixed rotation networks (Rot0.5, Rot1.0, RotR) generally have the lowest error
and best performance, as shown in Figure 9b. However, Figure 8 shows that fixed-time
networks (Win20, Win50) perform at a comparable level and outperform 30K and Net. As
fixed rotations are not valid methods for live inference (and are presented here only for
comparison to a baseline), the fixed-time batches actually give the best performance.

In summary, our results show that:

• Fixed-time networks vastly outperform fixed-count networks.
• The selection network (Net) did not match the performance of fixed rotations, indicat-

ing the batching methods are highly sensitive to the precision of the estimator.
• The local window shows the highest average error, which indicates that the algorithm

itself did not achieve the desired result of measuring a consistent amount of rotation.

Sensors 2023, 23, 3699 11 of 15

Figure 8. Rotation estimation error using the same selection strategy for training. Red bars indicate
train-only results (cannot be used in a real system), while blue bars can be used for both training
and inference.

(a) (b)
Figure 9. A comparison of estimated rotational velocities over time: (a) the first three seconds
of x-velocity prediction on the room dataset and (b) the rotation velocity estimation compared
to ground-truth.

3.5.2. Robustness of the Trained Models (Comparing Figure 10 Columns)

Comparing how different batch selection methods perform on models trained with
other batch selection methods, as in Figure 10, provides insight into which models gen-
eralize well, and why the temporal window performs well. The networks trained with
local windows and 100K batches did not perform well when tested with any of the batch
selection methods, indicating that the model itself is not well-trained for the task.

The networks trained with RotR, Win20, and Win50 batches generalized well, as
shown by the better performances during inference when using most of the other batch
selection methods. Networks trained with fixed rotation batches produced very strong
results when using the same batch selection method in the training (i.e., Rot1.0-Rot1.0 and
Rot0.5-Rot0.5) but did not generalize as well during inference when using other batch
selection methods.

The networks trained with 30K and Net batches produced consistent results but
with a lower performance than the networks trained with the batch selection methods
mentioned above.

Sensors 2023, 23, 3699 12 of 15

Figure 10. Error heatmap of all trained models evaluated with the different batch selection strategies.
Selections written in red are train-only.

3.5.3. Suitability of Batch Methods for Inference (Comparing Figure 10 Rows)

Rot1.0, RotR, and Rot0.5 batch selection methods require motion ground-truth to
produce the batches; therefore, they cannot be used during inference.

Fixed-time batches produce lower errors than fixed-count batches, across many of the
models. The Net batches did not produce a well-trained model; however, it performed well
as an inference method using models trained in other batches. Finally, the recursive method
(which can be used for inference only), also had a high performance for the RotR model.

4. Discussion
4.1. Training with a Large Variety of Batch Sizes is Important for Model Generalization

In retrospect, it is clear that a model trained on a wide variety of batch sizes and
velocities can generalize well to any input batch. Therefore, the network becomes less
dependent on a specific input batch method, and it can perform well with a range of
batch selection methods. RotR produces the best-performing and most generalized model
for many different inference batch methods, while Win20 and Win50 also produce well-
generalized models. This has a promising implication that these networks can be trained
with data augmentation by generating different batch sizes from the same data to increase
the available training data multiplicatively.

4.2. A Minimum Amount of Rotation is not Necessary for Deep-Learning Techniques

While contrast maximization techniques require multiple events from neighboring
pixels warped onto a single pixel to enable optimization convergence, the same does not
seem to apply to trained network approaches. Instead, the network is able to infer even
very small amounts of motion from sparse event inputs. For example, it could be that the
network uses the fact that no neighboring events occurred to estimate a small motion and the
orientation of slight edges to estimate the direction of motion.

4.3. Inference Choice

The Net, recursive, and fixed-time batching methods all produced comparable in-
ference results. However, Net is a secondary network that requires additional training
data, which impacts run-time as it must be performed before each rotation estimation
inference call. The recursive method can result in stability and convergence issues since
large accelerations can invalidate the assumption that consecutive batches should have ap-
proximately the same size. If an unsuitable batch size results, the velocity is compromised

Sensors 2023, 23, 3699 13 of 15

for correctly predicting future batch sizes. Therefore, a simple fixed-time batching method
is recommended for the inference phase.

Another surprising result is the performance difference between fixed-time and fixed-
number batches. Both are simple metrics that, for a wide variety of event-driven algorithms,
are sometimes arbitrarily chosen and alternated without justification. The results indicate
that the choice can actually have a significant impact on the outcomes. For example, in [16],
a fixed-number window is used, while even better results may be achieved if a fixed-time
window was used instead.

In datasets with many directional changes, there are many points of zero motion (i.e.,
zero events), which cannot be represented by a fixed number of events. A window that
includes motion from either side of the inflection point invalidates the assumption of linear
motion. This could explain why the model trained with a batch size of 100K produced a
error higher than 30K.

4.4. Local Windows

There are likely more effective methods than the one we proposed for detecting
consistent motion through small local regions. However, since our results indicated that
a fixed-time batch was sufficient, further investigation into local estimation methods was
deemed unnecessary. This result provides further evidence that the actual spatiotemporal
patterns of events that occur at a fine-grained resolution may not be as neatly organized as
often assumed.

5. Conclusions

We evaluated various methods for selecting which events should be in a given batch
that forms the input tensor to a camera rotation estimation network. We drew the following
conclusions from the experiments:

• Network training should be performed with the widest variety of batch sizes and
velocities to produce a well-generalized network.

• The fixed-time batch is recommended for inference; the exact size of which should
depend on the application and typical velocity profiles of the camera. We believe
this conclusion may serve as the baseline for any other task that measures velocity or
optical flow, but may not be able to be extrapolated to tasks that measure absolute
position, for example, object recognition.

• Networks for measuring pose change or velocity possibly have an advantage over
contrast maximization techniques for measuring small velocities with a small batch.

The initial hypothesis that a minimum amount of events is required to accurately
measure motion was found to be incorrect for the learning-based method used; therefore,
the proposed methods for training a network, local motion estimation, and recursive
strategies were not beneficial to the task.

The code and datasets are available as open-source to further contribute towards
improving motion estimation with event cameras.

Author Contributions: Conceptualization, J.L.V., C.B. and A.G.; methodology, J.L.V. and A.G.;
software, J.L.V.; validation, J.L.V.; formal analysis, J.L.V.; investigation, J.L.V.; resources, C.B.; data
curation, J.L.V.; writing—original draft preparation, J.L.V. and A.G.; writing—review and editing,
J.L.V., A.G. and C.B.; visualization, J.L.V.; supervision, A.G. and C.B.; project administration, C.B.;
funding acquisition, C.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 3699 14 of 15

Data Availability Statement: Datasets: https://zenodo.org/record/7762780, 10.5281/zenodo.77627
80 (last accessed: 20 March 2023); Code: https://github.com/event-driven-robotics/batch-selection-
experiments (last accessed: 20 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Patrick, L.; Posch, C.; Delbruck, T. A 128x 128 120 db 15 µs latency asynchronous temporal contrast vision sensor. IEEE J.

Solid-State Circuits 2008, 43, 566–576.
2. Zhan, H.; Garg, R.; Weerasekera, C.S.; Li, K.; Agarwal, H.; Reid, I. Unsupervised learning of monocular depth estimation and

visual odometry with deep feature reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 340–349.

3. Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. DeepIM: Deep Iterative Matching for 6D Pose Estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

4. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional
Neural Networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29
May–3 June 2017; pp. 2043–2050. [CrossRef]

5. Rebecq, H.; Horstschaefer, T.; Gallego, G.; Scaramuzza, D. EVO: A Geometric Approach to Event-Based 6-DOF Parallel Tracking
and Mapping in Real Time. IEEE Robot. Autom. Lett. 2017, 2, 593–600. [CrossRef]

6. Glover, A.; Bartolozzi, C. Robust visual tracking with a freely-moving event camera. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3769–3776.
[CrossRef]

7. Chen, G.; Liu, P.; Liu, Z.; Tang, H.; Hong, L.; Dong, J.; Conradt, J.; Knoll, A. NeuroAED: Towards Efficient Abnormal Event
Detection in Visual Surveillance With Neuromorphic Vision Sensor. IEEE Trans. Inf. Forensics Secur. 2021, 16, 923–936. [CrossRef]

8. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981 ; Volume 81.

9. Portz, T.; Zhang, L.; Jiang, H. Optical flow in the presence of spatially-varying motion blur. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1752–1759.

10. Gallego, G.; Lund, J.E.; Mueggler, E.; Rebecq, H.; Delbruck, T.; Scaramuzza, D. Event-Based, 6-DOF Camera Tracking from
Photometric Depth Maps. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2402–2412. [CrossRef] [PubMed]

11. Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining Events, Images, and IMU for Robust
Visual SLAM in HDR and High-Speed Scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001. [CrossRef]

12. Gallego, G.; Rebecq, H.; Scaramuzza, D. A unifying contrast maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 3867–3876.

13. Gallego, G.; Scaramuzza, D. Accurate angular velocity estimation with an event camera. IEEE Robot. Autom. Lett. 2017, 2, 632–639.
[CrossRef]

14. Kim, H.; Kim, H.J. Real-time rotational motion estimation with contrast maximization over globally aligned events. IEEE Robot.
Autom. Lett. 2021, 6, 6016–6023. [CrossRef]

15. Peng, X.; Gao, L.; Wang, Y.; Kneip, L. Globally-Optimal Contrast Maximisation for Event Cameras. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 3479–3495. [CrossRef] [PubMed]

16. Zhu, A.Z.; Yuan, L.; Chaney, K.; Daniilidis, K. Unsupervised event-based learning of optical flow, depth, and egomotion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 989–997.

17. Ye, C.; Mitrokhin, A.; Fermüller, C.; Yorke, J.A.; Aloimonos, Y. Unsupervised Learning of Dense Optical Flow, Depth and
Egomotion with Event-Based Sensors. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5831–5838.

18. Henri Rebecq, T.H.; Scaramuzza, D. Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear
Optimization. In Proceedings of the British Machine Vision Conference (BMVC), London, UK; Tae-Kyun, K., Stefanos Zafeiriou, G.B.,
Mikolajczyk, K., Eds.; BMVA Press: Durham, UK, 2017; pp. 16.1–16.12. [CrossRef]

19. Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A Survey of State-of-the-Art on Visual SLAM. Expert Syst. Appl. 2022,
205, 117734. [CrossRef]

20. Wagner, D.; Mulloni, A.; Langlotz, T.; Schmalstieg, D. Real-time panoramic mapping and tracking on mobile phones. In
Proceedings of the 2010 IEEE Virtual Reality Conference (VR), Boston, MA, USA, 20–24 March 2010; pp. 211–218. [CrossRef]

21. Scaramuzza, D.; Fraundorfer, F. Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92. .
MRA.2011.943233. [CrossRef]

22. Chng, C.K.; Parra, A.; Chin, T.J.; Latif, Y. Monocular Rotational Odometry with Incremental Rotation Averaging and Loop
Closure. In Proceedings of the 2020 Digital Image Computing: Techniques and Applications (DICTA), Melbourne, Australia, 9
November–2 December 2020; pp. 1–8. [CrossRef]

https://zenodo.org/record/7762780
https://github.com/event-driven-robotics/batch-selection-experiments
https://github.com/event-driven-robotics/batch-selection-experiments
http://doi.org/10.1109/ICRA.2017.7989236
http://dx.doi.org/10.1109/LRA.2016.2645143
http://dx.doi.org/10.1109/IROS.2017.8206226
http://dx.doi.org/10.1109/TIFS.2020.3023791
http://dx.doi.org/10.1109/TPAMI.2017.2769655
http://www.ncbi.nlm.nih.gov/pubmed/29990121
http://dx.doi.org/10.1109/LRA.2018.2793357
http://dx.doi.org/10.1109/LRA.2016.2647639
http://dx.doi.org/10.1109/LRA.2021.3088793
http://dx.doi.org/10.1109/TPAMI.2021.3053243
http://www.ncbi.nlm.nih.gov/pubmed/33471749
http://dx.doi.org/10.5244/C.31.16
http://dx.doi.org/10.1016/j.eswa.2022.117734
http://dx.doi.org/10.1109/VR.2010.5444786
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/DICTA51227.2020.9363388

Sensors 2023, 23, 3699 15 of 15

23. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22. [CrossRef]

24. Xu, J.; Jiang, M.; Yu, L.; Yang, W.; Wang, W. Robust motion compensation for event cameras with smooth constraint. IEEE Trans.
Comput. Imaging 2020, 6, 604–614. [CrossRef]

25. Zihao Zhu, A.; Atanasov, N.; Daniilidis, K. Event-based visual inertial odometry. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5391–5399.

26. Liu, D.; Parra, A.; Chin, T.J. Globally optimal contrast maximisation for event-based motion estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6349–6358.

27. Gallego, G.; Gehrig, M.; Scaramuzza, D. Focus is all you need: Loss functions for event-based vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12280–12289.

28. Gehrig, D.; Rüegg, M.; Gehrig, M.; Hidalgo-Carrió, J.; Scaramuzza, D. Combining Events and Frames Using Recurrent
Asynchronous Multimodal Networks for Monocular Depth Prediction. IEEE Robot. Autom. Lett. 2021, 6, 2822–2829. [CrossRef]

29. Hidalgo-Carrió, J.; Gehrig, D.; Scaramuzza, D. Learning monocular dense depth from events. In Proceedings of the 2020
International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28 November 2020; pp. 534–542.

30. Mostafavi, M.; Yoon, K.J.; Choi, J. Event-Intensity Stereo: Estimating Depth by the Best of Both Worlds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4258–4267.

31. Stoffregen, T.; Gallego, G.; Drummond, T.; Kleeman, L.; Scaramuzza, D. Event-based motion segmentation by motion compensa-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 7244–7253.

32. Zhu, A.Z.; Yuan, L.; Chaney, K.; Daniilidis, K. EV-FlowNet: Self-supervised optical flow estimation for event-based cameras. In
Proceedings of the Robotics: Science and Systems, Pittsburgh, PA, USA, 26–30 June 2018.

33. Alonso, I.; Murillo, A.C. EV-SegNet: Semantic segmentation for event-based cameras. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

34. Deng, Y.; Chen, H.; Chen, H.; Li, Y. Learning From Images: A Distillation Learning Framework for Event Cameras. IEEE Trans.
Image Process. 2021, 30, 4919–4931. [CrossRef] [PubMed]

35. Pan, L.; Liu, M.; Hartley, R. Single image optical flow estimation with an event camera. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1669–1678.

36. Stoffregen, T.; Kleeman, L. Event cameras, contrast maximization and reward functions: An analysis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12300–12308.

37. Qiu, W.; Zhong, F.; Zhang, Y.; Qiao, S.; Xiao, Z.; Kim, T.S.; Wang, Y.; Yuille, A. UnrealCV: Virtual Worlds for Computer Vision.
In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017;
pp. 1221–1224. [CrossRef]

38. Rebecq, H.; Gehrig, D.; Scaramuzza, D. ESIM: An Open Event Camera Simulator. Conf. Robot. Learn. (CoRL) 2018, 87, 969–982.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/TCI.2020.2964255
http://dx.doi.org/10.1109/LRA.2021.3060707
http://dx.doi.org/10.1109/TIP.2021.3077136
http://www.ncbi.nlm.nih.gov/pubmed/33961557
http://dx.doi.org/10.1145/3123266.3129396

	Introduction
	Related Work

	Materials and Methods
	Rotation Estimation Network
	Batch Selection
	Fixed Number of Events (WinT)
	Fixed Temporal Period (NK)
	Fixed Camera Rotation: Local
	Fixed Camera Rotation: Recursive
	Fixed Camera Rotation: Trained Network (Net)
	Fixed Camera Rotation: Ground-Truth

	Results
	Datasets
	Training
	Batch Selection Parameters
	Batch Size Analysis
	Camera Rotation Estimation
	Identical Batch Method for Training and Inference
	Robustness of the Trained Models (Comparing Figure 10 Columns)
	Suitability of Batch Methods for Inference (Comparing Figure 10 Rows)

	Discussion
	Training with a Large Variety of Batch Sizes is Important for Model Generalization
	A Minimum Amount of Rotation is not Necessary for Deep-Learning Techniques
	Inference Choice
	Local Windows

	Conclusions
	References

