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Abstract: Driver distraction is considered a main cause of road accidents, every year, thousands of
people obtain serious injuries, and most of them lose their lives. In addition, a continuous increase can
be found in road accidents due to driver’s distractions, such as talking, drinking, and using electronic
devices, among others. Similarly, several researchers have developed different traditional deep learn-
ing techniques for the efficient detection of driver activity. However, the current studies need further
improvement due to the higher number of false predictions in real time. To cope with these issues, it
is significant to develop an effective technique which detects driver’s behavior in real time to prevent
human lives and their property from being damaged. In this work, we develop a convolutional
neural network (CNN)-based technique with the integration of a channel attention (CA) mechanism
for efficient and effective detection of driver behavior. Moreover, we compared the proposed model
with solo and integration flavors of various backbone models and CA such as VGG16, VGG16+CA,
ResNet50, ResNet50+CA, Xception, Xception+CA, InceptionV3, InceptionV3+CA, and EfficientNetB0.
Additionally, the proposed model obtained optimal performance in terms of evaluation metrics,
for instance, accuracy, precision, recall, and F1-score using two well-known datasets such as AUC
Distracted Driver (AUCD2) and State Farm Distracted Driver Detection (SFD3). The proposed model
achieved 99.58% result in terms of accuracy using SFD3 while 98.97% accuracy on AUCD2 datasets.

Keywords: convolutional neural network; driver distraction detection; driver behavior ANALYSIS;
EfficientNetB0; channel attention mechanism

1. Introduction

In the past few decades, the rapid increase in road accidents due to the lack of driver
attentiveness, has gained researchers’ attention [1]. For instance, in 2016, the World Health
Organization (WHO) reported “1.4 million humans lost their lives due to road accidents
globally”. In addition, road accident is the eightieth major cause of death [1]. A study by
the government of India in 2017, reported that approximately half a million road accidents
occurred in India, in which several people lost their lives and many of them obtained
serious injuries [2]. In another article reported in 2018 by the Ministry of Road Transport
and Highway (MRTH), almost half a million road accidents have been recorded in different
states in India, in which roughly 0.15 million people lost lives and almost 0.48 million
people obtained serious injuries [3]. Similarly, the report of National Highway Traffic Safety
Administration (NHTSA) in the USA concluded that around 64.4% of people lose life due to
diversion of attention from driving [3]. Moreover, their report also declared that 94% of car
accidents are caused by driver’s inactiveness [3], while a large number of road accidents are
due to the usage of electronic devices such as Bluetooth devices, mobile phones, and so on.

Prior studies have demonstrated that drivers’ attention is changed by engaging in
other activities when they are driving, which can lead to road accidents. These activities
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include engaging with electronic devices while driving such as calling, talking, texting, and
so on. Researchers are thus motivated to find out the easiest way to reduce the number of
road accidents. Therefore, several researchers have presented different computer vision-
based methods to alert the driver in case of engaging in other activities while driving.
These methods are broadly categories into two major fields such as traditional Machine
Learning (ML) and Deep Learning (DL)-based methods [4]. For instance Vural, et al. [5],
used a traditional ML approach such as Adaboost and multinomial ridge regression to
determine the drivers’ drowsiness based on the 30 facial actions from the Facial Action
Coding system. In addition, their resultant technique obtained 90% accuracy across subjects
based on two datasets such as, Cohn–Kaneda DFAT-504 and spontaneous expressions
dataset. As a follow-up research Babaeian et al. [6], proposed a method by the use of
advanced logistic regression using a ML algorithm that can detect driver’s drowsiness
based on computing heart rate. Chen et al. [7], used AdaBoost algorithms to fabricate
a driving behavior classification model to analyze the behavior of a driver and analyze
whether it is safe. In another article, Kumar et al. [8] proposed a method of real-time
driver’s drowsiness detection system. The researchers recorded a video through a webcam
(Sony CMU-BR300) and detected the driver’s faces using image processing techniques.
The researchers used a Support Vector Machine (SVM)-based classification. However,
the limited performance, high false alarm rate, and time complexity of traditional ML
models are the major factors of failure. Furthermore, in the traditional ML-based models,
the handcrafted features extraction and classification are very tedious, error prone, and
time-consuming processes. These factors motivated the researchers to explore the DL-based
model for driver distraction detection.

For instance, Hssayeni, et al. [9], proposed deep learning models for the detection
of drivers’ attentions, although their resultant works require more improvement in terms
of accuracy. Kapoor, et al. [10], proposed a light-weight pretrained technique with some
fine-tuning strategies for real-time detection of driver distraction. However, their approach
generated a false alarm rate due to the rapid movements of the body based on low perfor-
mance. A DL-based model for drowsiness detection is presented in [11], to determine the
driver attentiveness based on facial landmark key point detection. The researchers used
the NTHU-DDD dataset and achieved 80% in terms of accuracy. However, the accuracy of
their proposed method needs further improvement.

Driver distraction detection is a problem to be solved, the aforementioned techniques
based on traditional ML and DL models are time-consuming and required further enhance-
ment in terms of accuracy and time complexity. In addition, such techniques generate
false alarms due to the low performance. Moreover, it is a challenging task to detect
driver behavior to overcome road accidents. To deal with the problem in a satisfactory
way, we proposed an EfficientNetB0 with CA for the real-time efficient detection of driver
distraction. The major contributions of the proposed work are as follows:

• Inspired by the transfer learning technique, we trained different types of pretrained
models without dense layers and applied CA mechanism for obtaining optimal per-
formance. In addition, we compared the performance of our proposed model with
other architectures including VGG16, VGG16+CA, ResNet50, ResNet50+CA, Xception,
Xception+CA, InceptionV3, InceptionV3+CA, and EfficientNetB0.

• The results of a detailed ablation study showed that the EfficientNetB0 with channel
attention (CA) achieved the highest performance compared with all other methods.
Based on these findings, we selected EfficientNetB0 with CA as the model of choice
for driver distraction detection. In addition to its superior performance, the proposed
model is also lightweight, enabling fast processing times compared with other archi-
tectures. The faster processing time of the EfficientNetB0 with CA mechanism can
reduce the risk of accidents and improve the overall safety of drivers and passengers.
Furthermore, the lightweight and fast processing nature of the proposed model makes
it highly applicable for real-world scenarios that require real-time detection, such as
medical diagnosis, video surveillance, and robotics.
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• We evaluated the performance of the proposed model on the SFD3 and AUCD2
datasets. Our results showed that the proposed model achieved higher accuracy and
faster processing times compared with other baselines. This highlights the potential of
the proposed model as a more efficient and effective solution for driver distraction
detection in real-world scenarios.

The rest of the article is formatted as follow: in Section 2 we highlight related works
with previous literatures and their approaches, Section 3 presents the methodology of our
work, discussion and result are available in Section 4, and finally, in Section 5 we provide
the conclusion and future work.

2. Related Work

Drivers’ distraction is a major cause of accidents that affects human lives and their
resources. To cope with these issues, several researchers have proposed different techniques
to notify the driver of their distraction based on alarm or messages using a Traditional Deep
Learning (TDF) approach. For instance, Alzubia et al. [12], presented a CNN-based method
which alerts the drivers by their distraction while driving. In this study, the researcher
utilized an ensemble technique to detect driver distraction using their custom dataset.
Their method is not only limited to determining drivers’ distractions but also can work in
real time using resource constraint edge devices. However, their technique needs further
improvement in evaluation matrices. As a follow-up study, Leekha et al. [13] proposed
a CNN method and trained the existing method on two publicly available datasets, such as
the State Farm Distracted Driver Detection (SFD3) and the AUC Distracted Driver dataset
(AUCD2), additionally their proposed method achieved 98.48% and 95.64% performance,
respectively. Despite that, their technique is time-consuming as they trained the complex
model on datasets. In another research, Varaich et al. [14] used two competing DCNN
architectures named InceptionV3, and Xception. In addition, the authors compared the
results of both architectures and applied them to recognize ten unique actions of the
drivers in the SFD3 dataset. The resultant technique was complicated compared with
state-of-the-art techniques. The next method, devised by Jamsheed et al. [3], is a technique
for alerting distracted drivers and reducing the ratio of the road accidents based on deep
learning. Their technique consists of three models, namely, vanilla CNN, vanilla CNN based
on data augmentation, and CNN with transfer learning. Differently, false classification
of distraction can happen based on performance. Similarly, Moslemi et al. [1] derived
a benefit from temporal information by using a 3D CNN and optical flow to improve
the driver monitoring system. Their resultant model achieved 90% performance based
on the Kinetics and the SFD3 datasets, but their method is computationally inefficient,
in addition, their technique requires further improvement. The next article proposed by
Qin et al. [15], introduced a new D-HCNN model based on a declining filter size with only
0.76M parameters, a much smaller number of parameters compared with SOTA based on
two available datasets such as AUCD2 and SFD3, through which their model obtained
95.59% and 99.87% performance in terms of accuracy, respectively.

Another study, presented by Dua et al. [16], was focused on enhancing the performance
of four deep learning models: AlexNet, VGG Face, Flow ImageNet, and ResNet. The models
detect four types of different features such as hand gestures, facial expressions, behavioral
features, and head movements. The authors used NTH Drowsy Driver Detection (NTHU-
DDD) video dataset in this article. They passed the RGB videos as input and the goal of
that input is detecting the driver drowsiness. Their resultant model achieved 85% accuracy;
However, the resultant model is limited in drivers’ behavior classes.

Alotaibi et al. [17] used a TDF approach and tried to enhance the performance of
the proposed model. Moreover, their research is focused on the three popular pretrained
CNNs architectures, such as Inception, ResNet, and Hierarchical Multiscale Recurrent
Neural Network [18]. Based on Inception, ResNet, and Hierarchical Multiscale Recurrent
Neural Network, they obtained promising performance. Additionally, Dhakate et al. [2]
implemented four pretrained DL architectures, i.e., VGG16, ResNet50, Xception, and
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InceptionV3 for the efficient classification of drivers’ distraction, whereas their proposed
architecture obtained 97% performance using well-known datasets SFD3 and AUCD2.
However, their experiments were performed based on computationally large models such
as, VGG16, ResNet50, and so on. The next approach devised by Jabbara et al. [11] proposed
a real-time drowsiness detection technique based on Deep Neural Network (DNN). The
researchers designed a method using facial landmark key points detection to show whether
the driver is active or not. Their work is based on the (NTHU-DDD) dataset and their
proposed model obtained 80% accuracy; however, their proposed method requires a proper
setup for real-time detection to save the driver privacy.

The approach presented by research Hssayeni et al. [9] utilized a computer vision and
ML technique to detect drivers’ behavior based on a dashboard camera. Their experimental
results depended on three transfer learning architectures, such as AlexNet, VGG16, and
ResNet50 and their proposed model obtained 85% accuracy. However, their proposed
architecture creates false detection due to the rapid movement of a body and low accuracy.
The other research introduced by Streiffer et al. [19] proposed a convolutional and recurrent
neural network that can analyze driving image and IMU sensor data to detect up to six
classes of driving behaviors with high performance.

In another study, Valeriano et al. [20] compared different deep learning methods
for the classification of driver behavior. However, their proposed method achieved high
accuracy of 96.6% based on three rounds of 5-fold cross validation; however, their proposed
model needs to deploy edge devices. Masood et al. [21] proposed a CNN-based model that
not only detects distraction but also analyzes the images that are captured inside of the
vehicle. In addition, their proposed method achieved 99% accuracy using the SFD3 dataset.
Furthermore, the VGG16 and VGG19 methods were utilized for the identification of driver
distraction in this article. However, their experiments are computationally expensive
based on large models. In another approach, Majdi et al. [22] presented an automated
supervised learning method called DriveNet for driver distraction detection based on
two other popular machine-learning approaches: an Recurrent Neural Network (RNN) and
Multi-Layer Perceptron (MLP). Moreover, their presented method reached 95% accuracy,
but their experimental setup is complex.

Wöllmer et al. [23] proposed a Long Short-Term Memory (LSTM) technique that figures
out real-time distractions of drivers and their resultant technique achieved 96.6% in terms
of accuracy; however, the privacy of the driver is a critical issue in real-time distractions.
Xing et al. [24] presented a driver behavior recognition system based on DCNN based
on a low-cost camera (use for image acquisition). Their work related to three different
pretrained CNN architectures, for instance, AlexNet, GoogLeNet, and ResNet50, and their
CNN-based models obtained 81.6%, 78.6%, and 74.9%, respectively. These models are also
trained for binary classification problems whether the driver is distracted or not. The binary
classification rate achieved 91.4% accuracy. The summary of the literature is tabulated in
Table 1; however, their models need further enhancement for multiclass classification.

Table 1. Summaries of related articles.

Reference Description Method

[12] Proposed an ensemble-based technique for the classification
of driver distraction. DL Ensemble Technique

[13] Utilized a deep learning architecture based on CNN for
driver distraction detection using two well-known datasets. DL

[14]
Implemented two DCNN pretrained networks named
(InceptionV3 and Xception) for the recognition of driver
action using publicly available SFD3 dataset.

DCNN
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Table 1. Cont.

Reference Description Method

[3]
The authors implemented several architectures namely,
vanilla CNN with and without augmentation technique,
and pretrained CNN model for driver distraction detection.

Vanilla CNN

[1] The authors implemented a 3D CNN technique for driver
behavior monitoring. 3D CNN

[15]
Utilized a novel D-HCNN algorithm, which detects driver
action in early stages while driving using AUC2 and
SFD3 datasets.

D-HCNN

[16] Proposed an ensemble technique which contains four DL
pretrained architectures using video data. DL Ensemble Technique

[17]
Trained a DL pipeline named inception using some
fine-tunning strategies for accurate classification of
driver behaviors.

DL

[2]
Used a stacking technique for obtaining optimal results.
Initially, they stacked all the feature vectors and feed to the
CNN for training purposes.

Stacking Ensemble Technique

[19]
The authors presented a deep learning framework called
DarNet which classifies driver behavior using input
sensor data.

DL

[20]

The researchers utilized the deep convolutional neural
network for efficient and effective classification of driver
distraction using the SFD3 dataset. In addition, their
experimental results are focused on three rounds of 5-fold
cross validation.

DCNN

[21]

The authors used forward machine learning based on
convolution neural network which not only classifies the
driver’s distraction but also finds the reason of
their distraction.

ML and CNN

[22]

Presented a method named Drive-Net based on supervised
learning for the accurate detection of driver behavior while
driving using the well-known publicly available
SFD3 dataset.

DL

[23] The authors introduced a novel framework called LSTM to
detect online driver activity. DL LSTM

[24]

Evaluated three CNN-based transfer learning techniques
using some fine-tuning strategies for the recognition of
seven common driver distractions using low-cost camera
collected images.

CNN

Ye et al. [6] implemented a pretrained Xception network as a backbone for features
extraction and incorporated channel attention for selection of more optimal features for de-
tecting driver distraction behavior. Their proposed network (SE-Xception) obtained 92.60%
performance in terms of accuracy. Another article presented by Liu et al. [7], utilized chan-
nel expansion and attention mechanism to improve YOLOv7 (namely CEAM-YOLOv7)
for driver distraction detection using an in-vehicle camera. Additionally, their proposed
architecture achieved promising performance among SOTA techniques. As a follow-up
research, Zhang et al. [8] introduced a novel attention mechanism-based architecture for
driver distraction behavior detection in real time. In this paper, the authors evaluated
their proposed method using two datasets such as publicly available dataset and their
custom dataset. Lin et al. [9] proposed a novel lightweight architecture known as LWANet.
In other words, to decrease the computation cost and number of parameters that can be
trained, the classic VGG16 architecture is optimized by reducing its trainable parameters
by 98.16% through replacing standard convolution layers with depth-wise separable convo-
lutions. Moreover, the proposed LWANet achieved 99.37% accuracy on SFD3 dataset and
98.45% accuracy using AUC dataset. Another study presented by Wei et al. [10] presented
a technique named ENet-CBAM which is based on EfficientNet and Convolutional Block
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Attention Module for effective detection of driver distraction. Overall, their proposed
ENet-CBAM is capable of detecting effectively driver distraction in a real-time scene with
few parameters. Similarly, Hu et al. [11] proposed a deep learning-based technique to learn
dominant features from the input data. In addition, their proposed technique is improved
by two aspects: firstly, use of a multi-scale convolutional block with various kernel sizes to
generate a hierarchical feature vector. They also adopted a maximum selection unit that
concatenates multi-scale information in an adaptive manner. Secondly, the researchers
added an attention mechanism to learn pixel and channel saliency between convolutional
features. Furthermore, their experimental results demonstrated that the proposed technique
(MSA-CNN) achieved higher performance for driver distraction behavior recognition.

As evident from the literature, numerous researchers have proposed several methods
for driver distraction detection. It is worth noting that these techniques suffer from sub-
stantial shortcomings including limited performance and required huge computational
hardware. In addition, such techniques generate false alarms due to the rapid movement
of the body owing to their low performance. Furthermore, the selection of a suitable DL
model to deploy over a resource constraint device in real time is a challenging task. To cope
with this, in the upcoming section, we briefly explained the proposed model that can be
easily deployed over resource constraint devices and can improve the performance over
SOTA methods.

3. Proposed Method

We provided a brief discussion about the proposed model to solve the aforementioned
problems in a satisfactory way. The proposed model is composed of two main steps such as
(1) preprocessing, to prepare data for training and testing, and (2) training the traditional DL
model for accurate driver distraction detection. Furthermore, we fine-tuned a pretrained
DL model to enhance the driver distraction detection performance and minimize the false
alarm rate. In the proposed work, we employed a CA module with several DL models and
validated their performance against SOTA over the benchmark datasets. The proposed
framework employing the CA module as is presented in Figure 1. The following subsequent
sections explain the details of step 1 and step 2.
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3.1. Preprocessing

Data preprocessing has a vital role in the ML and DL models and is considered as
a fuel for their training [25–28]. Data preprocessing is a technique for cleaning and or-
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ganizing unusual data to make them well-known information. In simple words, data
preprocessing is a task of data mining that prepares the raw data into an understandable
form for model training [29]. Furthermore, the useful and error-free data provide optimal
results at the time of evaluation. Additionally, there are several techniques of preprocess-
ing, for instance, augmentation, enhancement, data transformation, and data reduction,
among others.

Data Augmentation

Data augmentation is a technique that prevents ML and DL models from acquiring
irrelevant information. In addition, ML and DL models require a huge amount of data
(which are not available easily) for predicting accurate results. In some cases, the available
datasets are expanded artificially by applying augmentation techniques [30]. After applying
the augmentation technique, the network learns the same object located in the picture with
a different view, which enhances the performance of the model [31].

Furthermore, there are different steps available in geometric augmentation, for in-
stance, resizing, cropping, rotating, flipping, scaling, and so on. These transformations
expand the available dataset and bring the network toward optimal results.

Resizing plays a major role to train any ML or DL models. In addition, our traditional
DL models train very quickly and accurately on small images. Moreover, all the DL
models need the images to be the same size. The mathematical formulation of resizing is
provided below:

(wnew, hnew) =
M

max(w, h)
(w, h) (1)

Normalization is a scaling technique of translating the low and high intensity pixel
into the range of 0 and 1 called Min-Max scaling. It mainly keeps the numerical data in
a specific range without changing its shape.

Xnormalized =
x−mean(x)
xmax − xmin

(2)

Horizontal flip means “flip” or “mirror” look. Horizontal flipping means transforming
all the layers of images horizontally, from left to right or right to left. It only changes the
position of the pixel on x-axis without losing any information.

Horizontal ( f (x)) = x2 (3)

Rotation is a method which is applicable to rotate the object around the center, which
simply means, rotate the images in a clockwise or counterclockwise direction. However,
we rotated the images 10◦ in a clockwise position to generate new images.

Image enhancement is a method used to process the image adjustment, so the resultant
image looks more suitable. This method is implemented on input images to avoid noise
from an image. The equation is formulated below:

g(x, y) =


a1 f (x, y) f (x, y) < r1

a2( f (x, y)− r1) + s1, r1 ≥ f (x, y) < r2
a3( f (x, y)− r2) + s2, f (x, y) < r2

 (4)

In the above equation, g(x, y) is the output of the image, while f (x, y) is the input pixel
data; where a1, a2 and a3 are scaling factors for many grayscale areas and s1,s2, r1 and r2
are the adjustable parameters.

3.2. The Proposed Model

We utilized EfficientNetB0 as a backbone architecture followed by a CA module to
increase the performance over the state-of-the-art models. The EfficientNet was proposed
latterly as a series of eight networks named, such as, B1, B2, B3, up to B7. The top
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network version B7 on the ImageNet dataset revealed state-of-the-art results in terms of
accuracy by achieving 84.4% top-1 accuracy while using 66 million parameters. In addition,
Swish f (x) = x.sigmoid (β.x) = x

1+eβx is an activation function introduced with the version
of EfficientNet architecture [32]. Moreover, the Swish Activation (SA) function has better
performance than the ReLU activation. It obtains better performance on deeper networks
throughout of challenging datasets [33].

EfficientNet was introduced by the researcher of Google Tan et al. [34], which is based
on the inverted bottleneck residual block (MBConv), which was originally proposed with
MobileNetV2. The major goal of the EfficientNet block is to enlarge the channels and
then squeeze them; this technique diminishes the number of channels for the upcoming
layers [28]. Moreover, this network also brings down the computational weight; hence, it
works in in-depth separable convolutions.

Furthermore, we used EfficientNetB0 as a proposed model, which focuses on detecting
the driver’s distraction in the early stage based on the optimal performance. On the other
hand, EfficientNetB0 is a lightweight architecture where it can easily deploy on edge devices.
This model works in block-wise separable convolution neural networks, moreover, it has
237 layers. The proposed model is capable of scaling up or down and it exhibited enormous
performance compared with previous state-of-the-art ConvNets [35] on CIFAR-100. The
architecture of the proposed model is presented in Figure 2. In the implementation, we
used EfficientNetB0 without classification layers, where the features vectors are 7 × 7 with
1280 number of channels (F) and integrated CA mechanism for further strengthening of
model performance as is discussed in Section 3.3.
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3.3. Channel Attention Mechanism

To optimally select the features in images that contribute to achieving the targeted
task effectively, our experiments were performed by using the CA module between two
basic layers to acquire the features. In this article, the CA technique contains global
average pooling layer, max-pooling layers, three fully connected layers, and a multiplication
operation [36]. However, the main objective of channel attention is to show the relationship
between each channel of the feature map and to acquire a 1-D weight Wc ∈ RC×1×1 and
then multiply it to a specific channel. For that reason, it can provide more attention to the
important information of images in the target task. To learn optimal weights, we used
two parallel connections of pooling operation after (F), which is average pooling and max
pooling to make two descriptors for each channel. Then we concatenated the output of
both channels and fed into shared multilayer perceptron with 3 fully connected layers to
create more effective feature vectors. Lastly, we obtained CA by using the SoftMax function
as mentioned in Figure 3. The formula is presented as follows:

Wc(F) = So f tmax(MLP(AvgPool(F)) + MLP(MaxPool(F))) (5)
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4. Results and Discussions

In this section, the results are conducted on two benchmark datasets and the per-
formance of the proposed model is evaluated. First, we provided a detailed explanation
about the experimental setup, followed by performance parameters, datasets, and finally
presented the results of both datasets in terms of quantitative and qualitative analysis.

4.1. Experimental Setup

Our experimental results were conducted in TensorFlow 2.3.0 with Nvidia CUDA
support. All the experiments were performed on Ubuntu 20.04.3 LTS operating system,
equipped with a Core i7-9700KF CPU, 62 GB Memory, and NVIDIA Corporation TU104
[GeForce RTX 2070 Super GPU] with 8 GB of VRAM.

4.2. Performance Parameters

Many frozen CNNs with CA mechanism were used in this study. All the models
obtained optimal performance based on a variety of metrics such as testing accuracy,
testing loss, F1-score, precision, and recall. True positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) are the confusion matrix instances, through which
we determined the performance of a specific network. Accuracy is a confusion matrix term
that indicates the performance of the model for all classes. In simple words, it can measure
the number of accurate samples to the total number of samples. The recall is also called
sensitivity or True Positive Rate (TPR). This instance evaluates the model to detect driver’s
distraction in positive image samples. The specificity of a confusion matrix is determined
by the ability to correctly classify negative samples in all true negative cases. Confusion
matrix can manage the model that keeps away the model from misidentifying the driver’s
distraction. F1-score manages the stability between recall and precision. These matrices
are briefly explained in [37–39] and the mathematical formulation of these matrices are
provided below:

Acc(k) =
TP(k) + TN(k)

TP(k) + FP(k) + TN(k) + FN(k)
(6)

Sensitivity(k) =
TP(k)

TP(k) + FN(k)
(7)

F1− Score(k) = 2
(

precision ∗ recall
precision + recall

)
(8)

Prec(k) =
TP(k)

TP(k) + FP(k)
(9)
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4.3. Dataset Description

In this manuscript, the experiments of driver distraction detection were conducted on the
two well-known benchmark datasets: the State Farm Distracted Driver Detection [40] (SFD3),
which is publicly available; and the AUC Distracted Driver [40] dataset is a private dataset.

4.3.1. State Farm Distracted Driver Detection (SFD3) Dataset

The State Farm Insurance (SFI) company published a challenging dataset of distracted
drivers, which is publicly available on the Kaggle competition. The SFD3 contains around
102,150 images of different driver behaviors that are separated into 10 categories as provided
in Figure 4, which are labeled as in Table 2.
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Table 2. Briefly detail of SFD3 dataset.

Class Class Name Number of Images

c0 Safe driving 2489
c1 Texting-right 2267
c2 Calling on the phone—right 2317
c3 Texting—left 2346
c4 Calling on the phone—left 2326
c5 Operating the Radio 2312
c6 Drinking 2325
c7 Reaching behind 2002
c8 Makeup 1911
c9 Talking to the passenger 2129

Total — 22,424

4.3.2. AUC Distracted Driver (AUCD2) Dataset

The AUCD2 is a challenging dataset that was created by Abouelnaga et al. [40], there
are thirty-one drivers from different nations, who participated in this dataset. The dataset
contains 11,678 images of the different drivers with different postures as tabulated in
Table 3; moreover, the images are separated into 10 different folders, where Figure 5 is the
visual representation of the AUCD2 dataset. We split both datasets into three sub-sets such
as training, testing, and validation. In the training set we have a total of 60% of data, testing
20% of data, and validation 20% of data.

4.4. Results Evaluation Using SFD3 Dataset

We evaluated and compared the performance of different pretrained traditional DLs
with the proposed model using SFD3. To evaluate the performance of our model, we
used the Stochastic Gradient Descent (SGD) optimizer with 50 epochs. The training and
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validation accuracy are illustrated in Figure 6a, while Figure 6b illustrates the training
and validation loss, where the confusion matrix of our experimental results is provided
in Figure 7. It is clearly shown in the graph that training and validation accuracy of the
proposed model are significantly increasing with each epoch, while our proposed model
converged above 90% approximately within a few numbers of epochs. After reaching
30 epochs, the model accuracy or loss line graph did not change further and continues as
a straight line, until the training process ends.

Table 3. Brief detail of AUCD2 dataset.

Class Class Name Number of Images

c0 Safe driving 2706
c1 Texting-right 1438
c2 Calling on the phone—right 976
c3 Texting—left 844
c4 Calling on the phone—left 1040
c5 Operating the Radio 843
c6 Drinking 796
c7 Reaching behind 754
c8 Makeup 764
c9 Talking to the passenger 1517

Total — 11,678

1 

 

 

c0 c1 c2 c3 c4 

c5 c6 c7 c8 c9 

Figure 5. Visual representation of AUCD2 dataset where the details of c0~c9 are given in Table 3.
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Furthermore, the proposed model is compared in terms of evaluation metrics with
Stacking Ensemble [2], ConvoNet [13], HRRN [17], VGG19 [20] without pretrained weights,
and Drive-Net [21]. We notice that Stacking Ensemble obtained 97.00% accuracy using
SFD3 dataset as provided in Table 4.

Table 4. Comparison between proposed model with different SOTA model using SFD3 dataset.

Reference Accuracy

Stacking Ensemble [2] 97.00%
ConvoNet [13] 98.48%

HRRN [17] 96.23%
VGG19 without pretrained weight [21] 99.39%

Drive-Net [22] 95.00%

Proposed Model 99.58%

In addition, ConvoNet achieved 98.48% performance in terms of accuracy, while the
HRRN method has 96.23% accuracy based on the SFD3 dataset. Comparably, VGG19 and
Drive-Net obtained 99.39% and 95% performance in terms of accuracy, respectively, the
details are listed in Table 4. Our proposed model surpasses these methods by achieving
higher accuracy, which is 99.58% accuracy using SFD3 dataset. In addition, the visual
results of our proposed model using SFD dataset are shown in Figure 8.
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4.5. Results Evaluation Using AUCD2 Dataset

Detailed reports of each model across test data using AUCD2 are presented in Table 5.
We trained several baseline models for 50 epochs where the proposed model achieved
optimal results compared with other models in terms of testing accuracy and testing loss
as we observe in Table 5. The training and validation graphs of the proposed method
using AUCD2 dataset are shown in Figure 9. Furthermore, the classification reports of the
proposed model can be retrieved from the confusion matrix as presented in Figure 10.

Table 5. Comparison between proposed model with different SOTA models using AUCD2 dataset.

Reference Accuracy

HRRN [17] 92.36%
C-SLSTM [41] 92.70%
D-HCNN [15] 95.59%
ConvNet [13] 95.64%

Proposed Model 98.97%
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We compared the proposed model using AUCD2 dataset with HRRN [17], C-SLSTM [22],
D-HCNN [15], and ConvNet [13], where we examine that HRRN [17] obtained 92.36% accuracy
using AUCD2 dataset. In addition, C-SLSTM [22] achieved 92.70% performance in terms
of accuracy. Similarly, the D-HCNN [15] and ConvNet [13] methods have 95.59% and
95.64% accuracy, respectively. The proposed model obtained the highest accuracy, 98.97%,
using the AUCD2 dataset as mentioned in Table 5. Moreover, Figure 11 is the visual results
of the proposed model.



Sensors 2023, 23, 3835 14 of 18Sensors 2023, 23, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 10. Confusion matrix of proposed model with normalized prediction between zero and one, 
using AUCD2 dataset. 

We compared the proposed model using AUCD2 dataset with HRRN [17], C-SLSTM 
[22], D-HCNN [15], and ConvNet [13], where we examine that HRRN [17] obtained 
92.36% accuracy using AUCD2 dataset. In addition, C-SLSTM [22] achieved 92.70% per-
formance in terms of accuracy. Similarly, the D-HCNN [15] and ConvNet [13] methods 
have 95.59% and 95.64% accuracy, respectively. The proposed model obtained the highest 
accuracy, 98.97%, using the AUCD2 dataset as mentioned in Table 5. Moreover, Figure 11 
is the visual results of the proposed model. 

 
Figure 11. Visualized result of proposed model in real-time scene using AUC2 dataset. 

4.6. Ablation Study 
This section provides the discussion and results over several DL-based models with 

and without CA mechanism. The comparison of proposed model with other DL-based 
models using evaluation metrics such as, F1-score, precision, recall, testing accuracy, and 

Figure 10. Confusion matrix of proposed model with normalized prediction between zero and one,
using AUCD2 dataset.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 10. Confusion matrix of proposed model with normalized prediction between zero and one, 
using AUCD2 dataset. 

We compared the proposed model using AUCD2 dataset with HRRN [17], C-SLSTM 
[22], D-HCNN [15], and ConvNet [13], where we examine that HRRN [17] obtained 
92.36% accuracy using AUCD2 dataset. In addition, C-SLSTM [22] achieved 92.70% per-
formance in terms of accuracy. Similarly, the D-HCNN [15] and ConvNet [13] methods 
have 95.59% and 95.64% accuracy, respectively. The proposed model obtained the highest 
accuracy, 98.97%, using the AUCD2 dataset as mentioned in Table 5. Moreover, Figure 11 
is the visual results of the proposed model. 

 
Figure 11. Visualized result of proposed model in real-time scene using AUC2 dataset. 

4.6. Ablation Study 
This section provides the discussion and results over several DL-based models with 

and without CA mechanism. The comparison of proposed model with other DL-based 
models using evaluation metrics such as, F1-score, precision, recall, testing accuracy, and 

Figure 11. Visualized result of proposed model in real-time scene using AUC2 dataset.

4.6. Ablation Study

This section provides the discussion and results over several DL-based models with
and without CA mechanism. The comparison of proposed model with other DL-based mod-
els using evaluation metrics such as, F1-score, precision, recall, testing accuracy, and testing
loss over SFD3 and AUCD2 datasets are briefly explained in the following subsequent
sections.

The proposed model and other baselines were trained for 50 epochs with 32 batch
size using a low learning rate of 0.001. Further, we set Stochastic Gradient Descent (SGD)
with a momentum of 0.9 to ensure that the network retains most of the previously learned
information. In these experiments, the proposed model was used to update the learning
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parameters moderately, which resulted in optimal performance on the target dataset.
Additionally, we used the default input size (224 × 224) for each network.

In the experimental results, we conducted extensive experiments to evaluate the
effectiveness of the proposed model and other baselines with and without CA for driver
distraction detection using SFD3 and AUC2. We compared these models using several
evaluation metrics including F1-score, precision, recall, testing accuracy, and testing loss.
Our experimental results indicate that the models with CA outperforms among the models
without CA across all metrics, indicating that the inclusion of CA enhances the proposed
model’s effectiveness.

Significantly, the proposed model with CA achieved an F1-score of 1.00, precision of
1.00, recall of 1.00, testing accuracy of 0.9958, and testing loss of 0.0202 for the SFD3 dataset
as provided in Table 6. Furthermore, the proposed model with CA also obtained promising
performance using the AUC2 dataset based on F1-score, precision, recall, testing accuracy,
and testing loss, which were 0.99, 0.99, 0.99, 0.9897, and 0.0425, respectively as tabulated
in Table 7. These results justify that the CA can help the model better attend to important
features in the input data, which lead to enhancing the model performance.

Table 6. Classification reports of different pretrained models using SFD3 dataset.

Model F1-Score Precision Recall Testing Accuracy Testing Loss

VGG16 0.88 0.88 0.87 0.8792 0.4214
VGG16+CA 0.93 0.93 0.93 0.9332 0.2453

ResNet50 0.94 0.94 0.94 0.9394 0.5736
ResNet50+CA 0.98 0.98 0.98 0.9804 0.1201

Xception 0.96 0.96 0.96 0.9611 0.1929
Xception+CA 0.97 0.97 0.97 0.9671 0.1351
InceptionV3 0.87 0.89 0.87 0.8810 0.8923

InceptionV3+CA 0.91 0.92 0.91 0.9178 0.5596
EfficientNetB0 0.98 0.98 0.97 0.9760 0.0961

Proposed Model 1.00 1.00 1.00 0.9958 0.0202

Table 7. Classification reports of different pretrained models using AUCD2 dataset.

Model F1-Score Precision Recall Testing Accuracy Testing Loss

VGG16 0.92 0.93 0.91 0.9282 0.2778
VGG16+CA 0.96 0.96 0.95 0.9618 0.1634

ResNet50 0.95 0.95 0.94 0.9562 0.2809
ResNet50+CA 0.95 0.96 0.95 0.9582 0.3028

Xception 0.96 0.96 0.96 0.9681 0.2145
Xception+CA 0.97 0.97 0.98 0.9767 0.1035
InceptionV3 0.95 0.96 0.94 0.9533 0.3039

InceptionV3+CA 0.94 0.95 0.93 0.9510 0.2592
EfficientNetB0 0.99 0.99 0.99 0.9880 0.0598

Proposed Model 0.99 0.99 0.99 0.9897 0.0425

4.6.1. Ablation Study over SFD3 Dataset

The classification reports of all the models across test data using SFD3 are presented in
Table 6 where the proposed model achieved 0.9958 testing accuracy and 0.0202 testing loss.
We observe that the proposed model is comparatively better, which exhibits the efficiency
of our model.

4.6.2. Ablation Study over AUC2 Dataset

Table 7 shows the results over AUCD2 dataset, where the VGG16 and VGG16+CA
obtained the worst results in the experiments. Similarly, ResNet50 and ResNet50+CA also
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achieved the lowest results comparatively, which is approximately the same as shown in
the Table 7. To compare with Xception and Xception+CA, these models achieved optimal
performance in terms of testing accuracy. However, it is not suitable to deploy on resource
constraint devices. Furthermore, InceptoinV3 and InceptionV3+CA achieved better results;
however, the proposed model achieved the highest performance based on testing accuracy.
In addition, we proposed this model due to the highest performance and lightweight
model capabilities. These two reasons prove that it can be easily deployed on resource
constraint devices.

4.7. Time Complexity

In the visual domain, achieving lower time complexity is a more challenging task
than obtaining promising performance and achieving the smallest error rate in real time.
Therefore, we compared the proposed model with four different baseline methods in terms
of inference time. In addition, numerous experiments are conducted based on two different
hardware such as CPU and GPU as tabulated in Table 8. In these experiments, the ResNet50
and ResNet50+CA have lower inference speed than the InceptioV3 and InceptioV3-CA. The
proposed model achieved higher frame per second (FPS) rates for both CPU and GPU than
other baseline models, which is 21.73, and 83.75, respectively. In addition, the inference
time of the proposed EFFNet-CA can be further enhanced based on hardware improvement.
Hence, the inference speed justifies that the proposed model can be easily deployed over
resource constraints for real-time decision-making.

Table 8. Time complexity between proposed model and other baseline models for CPU and GPU.

Reference
Frame per Second

Parameters (Million) Model Size (MB)CPU GPU

ResNet50 8.37 57.3 23.58 98
ResNet50+CA 6.00 53.45 24.37 99
InceptionV3 12.90 70.55 21.80 92

InceptionV3-CA 10.55 66.10 22.59 94
Proposed Model 21.73 83.75 4.57 5

5. Conclusions

Driver distraction leads drivers toward accidents that affect lives, i.e., driver death or
major injuries and causes of economic losses, globally. In the literature, several techniques
have been introduced to detect driver distraction in an efficient way. However, their
techniques are time-consuming, have a high false alarm rate and are difficult to deploy
on edge devices due to the high number of parameters. To solve a certain problem, we
proposed a novel framework for an efficient and effective driver distraction based on
a CNNs with the integration of CAmechanism. Moreover, the proposed model contains
three steps, such as training, testing and evaluation. Additionally, our proposed model is
compared with various baseline CNNs where only the classification layers were fine-tuned
while the rest of the models’ layers were frozen. Moreover, the proposed model achieved
optimal results in terms of testing accuracy and testing loss using two well-known datasets.
The proposed model indicated 99.58% testing accuracy using the SFD3 dataset and 98.97%
testing accuracy on the AUCD2 dataset. In other words, the proposed model can easily be
deployed on resource constraints devices due to its size and less computational complexity.
Further, due to the rapid increase in the developing technologies, the metaverse provides
us a great opportunity for better contributions such as the implementation of our proposed
work in metaverse-based 3D modeling.

In the future, our goal is to make the proposed model more effective, reduce the
false alarm rate, and try to reduce the number of parameters of using model compression
techniques such as pruning and quantization. Furthermore, we also aim to deploy our
proposed architecture on resource constraints such as Raspberry Pi and Jetson Nano.
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