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Abstract: To encourage potential major depressive disorder (MDD) patients to attend diagnostic sessions,
we developed a novel MDD screening system based on sleep-induced autonomic nervous responses.
The proposed method only requires a wristwatch device to be worn for 24 h. We evaluated heart rate
variability (HRV) via wrist photoplethysmography (PPG). However, previous studies have indicated
that HRV measurements obtained using wearable devices are susceptible to motion artifacts. We propose
a novel method to improve screening accuracy by removing unreliable HRV data (identified on the basis
of signal quality indices (SQIs) obtained by PPG sensors). The proposed algorithm enables real-time
calculation of signal quality indices in the frequency domain (SQI-FD). A clinical study conducted
at Maynds Tower Mental Clinic enrolled 40 MDD patients (mean age, 37.5 ± 8.8 years) diagnosed
on the basis of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and 29 healthy
volunteers (mean age, 31.9 ± 13.0 years). Acceleration data were used to identify sleep states, and a linear
classification model was trained and tested using HRV and pulse rate data. Ten-fold cross-validation
showed a sensitivity of 87.3% (80.3% without SQI-FD data) and specificity of 84.0% (73.3% without
SQI-FD data). Thus, SQI-FD drastically improved sensitivity and specificity.

Keywords: major depressive disorder; ultra-short-term heart rate variability; autonomic nervous
response; photoplethysmography; signal quality index; machine learning

1. Introduction

Major depressive disorder (MDD) is a severe mental illness that affects many people,
and can result in self-injurious behavior and suicide. According to the World Health
Organization, approximately 280 million people worldwide experienced depression in
2021 [1]. Moreover, according to one study, MDD is the second most serious health issue
worldwide with respect to disability-adjusted life years [2]. Screening for depression in
adults, including elderly and pregnant populations, is recommended in the United States
because of the effectiveness of medications and cognitive behavioral therapy for prevention
and early intervention [3,4].

Clinicians typically diagnose MDD according to the guidelines provided by the
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [5]. Currently, the
benefit of brief screening using questionnaires is considered questionable [6]. Although
quantitative diagnostic methods for MDD are needed, there is a lack of evidence supporting
the diagnosis of MDD on the basis of physiological biomarkers [7,8]. Recently, studies
of digital biomarkers have been performed using data obtained from smartphones and
wearables [9–12]. Given the widespread use of these commercially available devices, this
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novel screening approach is expected to facilitate early intervention and prevention for
many potential MDD patients. Wearables noninvasively provide continuous 24 h mul-
timodal data, such as electrocardiography (ECG), actigraphy, pulse rate, sleep duration,
perspiration, and peripheral skin temperature data [13–17]. Automatic methods for screen-
ing and assessing the severity of MDD have been investigated, and have also been applied
to detect stressors under free-living conditions [18–20].

Heart rate variability (HRV) refers to the temporal variability between consecutive
heartbeat intervals [21], and reflects the activity of the sympathetic and parasympathetic
nervous systems; these systems regulate respiratory sinus arrhythmias and the cardiovascu-
lar system. HRV is a useful indicator of mental stress, and resting HRV has been shown to
be significantly decreased in patients with MDD [22,23]. Activity in the high-frequency (HF)
band is lowered by stressful stimuli and anxiety [24–27]. Decreased HRV in MDD patients
increases the risk of cardiovascular disease, and HRV may serve as a crucial indicator of the
treatment response [22,28,29]. Shinba et al. proposed a method to screen MDD patients by
focusing on transient changes in HRV before and after mental stress induced by a random
number generation task; since HRV exhibits considerable interindividual variation, more
reliable screening results can be obtained by analyzing the transient response to applied
stress rather than HRV at rest [25,30,31]. Using the Ewing test to assess the autonomic
transient response, Kuang et al. obtained similar results [32]. The golden standard for HRV
measurement is ECG. However, HRV can also be measured with sufficient accuracy using
photoplethysmography (PPG) sensors under static conditions [33,34] and at night [35],
although this is not possible during physical activity or in the presence of certain mental
stressors [36]. Dagdanpurev et al. and Unursaikhan et al. showed that an autonomic
transient response-based MDD screening method provided valid data even when using
PPG signals extracted from finger pulse waves [37] and webcams [38], respectively. These
studies suggest that MDD screening can be performed using wearable devices equipped
with PPG sensors.

PPG sensors are noninvasive and capture pulse-dependent increases or decreases in
the light absorbance of hemoglobin via transmitted or reflected light-emitting diode light
irradiating the skin [39,40]. Pulse oximeters are commonly used in hospitals to obtain
PPG data. Accurate peak positions and pulse waveforms are needed to extract HRV data,
as well as data for other cardiovascular parameters such as blood pressure, from PPG
waveforms [40,41]. Because motion artifacts affect the data obtained in uncontrolled envi-
ronments (e.g., under continuous 24 h monitoring conditions), signal quality assessment is
essential. Previous studies developed methods to detect motion artifacts in PPG signals, as
well as signal quality degradation due to ambient light, using signal quality indices (SQIs)
such as kurtosis and skewness [42]. Such SQIs aid in the detection of motion artifacts using
a simple algorithm, but cannot reveal whether the shape of the pulse waveform has been
sufficiently conserved. Another study proposed a method to remove unreliable data using
wavelet transforms; the method improved the accuracy of peak-to-peak interval (PPI) and
time-domain HRV indices [43].

Pedrelli et al. assessed the severity of MDD using the E4 wristband (Empatica, Cam-
bridge, MA, USA), a smartphone sensor, and usage data collected over 8 weeks [9]. The
wristband data included electrodermal activity, peripheral skin temperature, and pulse rate,
but not HRV. According to a regression model, the mean prediction error for the 17-item
Hamilton Depression Rating Scale ranged from 3.88 ± 0.18 to 4.74 ± 1.24. Tazawa et al.
assessed the severity of MDD by analyzing hourly step count, energy expenditure, body
movement, sleep duration, pulse rate, skin temperature, and ultraviolet exposure data
obtained by the Silmee W20 wristband (Toshiba, Tokyo, Japan) [44]. The accuracy rate of
their classification model for symptomatic MDD patients was 76%.

In the studies mentioned above that performed MDD screening using wearable de-
vices in free-living conditions, HRV was either not used at all or did not play a major role.
In another study, the screening accuracy was 71% despite the use of HRV [45]. There are
two possible reasons for this. First, under free-living conditions, although resting periods
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can be identified using an accelerometer, detecting stressful events, i.e., events that can
trigger autonomic response, is challenging. Second, PPG sensors are sensitive to body
motion. If MDD screening is performed on the basis of HRV, classification will be compro-
mised unless a large amount of training PPG data of sufficient accuracy are available. To
address these issues, we screened for MDD on the basis of reliable HRV features obtained
before, during, and after sleep. Here, a sleep relaxation intervention was used instead
of a task-based intervention evoking autonomic nerve activity, such as random number
generation tasks, which are conventionally employed. In addition, the PPG signal was
filtered using signal quality indices in the frequency domain (SQI-FD) that represent the
shape of frequency spectra. Although using SQIs reduces the amount of data available
for 24 h HRV analysis, our framework compensates for this by using ultra-short-term
heart rate variability (USTHRV), i.e., HRV calculated from PPG signals shorter than 5 min
(overlapping sliding window of 1 min). Previous studies on USTHRV have demonstrated
that frequency domain HRV indices require longer ECG/PPG records than time-domain
HRV indices to ensure accurate results. In this study, USTHRV with 3 min intervals was
used [46,47]. Under this condition, the frequency-domain HRV indices would have a
correlation coefficient of ≥0.9, with short-term HRV having 5 min intervals. In 24 h HRV
recording data, both short-term and long-term HRV analyses are applicable [48]. Short-
term HRV analysis, which analyzes 5 min subsegments, is more prevalent but susceptible
to noise; furthermore, the physiological significance of these indices may be ambiguous
when measured in free-living conditions [49]. Long-term HRV analysis can mitigate the
effects of noise and changes in HRV over time while enabling the acquisition of more
stable results for the very-low-frequency component. This study employed USTHRV as a
surrogate for short-term HRV to capture dynamic changes in HRV indices over time. The
proposed method, applicable to short-duration data, is advantageous because standard
wearable devices, unlike 24 h Holter ECGs, have limited battery capacity and necessitate
intermittent measurements. We trained logistic regression models using HRV indices cal-
culated with the proposed framework. By applying 10-fold cross-validation, we evaluated
classification performance using the data of 40 unipolar MDD patients and 29 healthy
adults. Then, 24 h measurements obtained using a wristwatch device identified MDD
patients with a sensitivity of 87.3% and specificity of 84.0%. Furthermore, performance
was significantly superior when SQI-FD data were analyzed. For MDD screening, signal
quality assessment is recommended when measuring HRV under free-living conditions
using wristband devices.

2. Proposed Framework

The 24 h HRV analysis framework is shown in Figure 1; it was implemented using
Python libraries (NumPy [50] and SciPy [51]). Using the 24 h continuous PPG and 3-axis
acceleration data obtained by the E4 wristband as input, sleep duration, pulse rate, and
HRV data were derived at 1 min intervals (1 epoch = 1 min). Sleep and wake sections were
discriminated according to activity amplitude, which was derived from the acceleration
data using a traditional algorithm. The MUSIC algorithm was employed for pulse rate
detection. An SQI for pulse rate detection (SQIpr) was used to skip calculations at epochs
where accurate pulse rate estimation was deemed unlikely to be accurate. For epochs
where pulse rates were successfully obtained, HRV was calculated. Again, PPG data
with low signal quality were removed in advance on the basis of the signal quality index
for heart rate variability (SQIhrv). HRV indices in the time and frequency domains were
compared between healthy adults and MDD patients, and logistic regression was applied
for binary classification.
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2.1. Sleep/Wake Estimation

Accelerations sampled at 32 Hz were bandpass-filtered using a Butterworth filter
(0.25–3.0 Hz), and activity amplitudes were calculated for each epoch using the Scripps
Clinic algorithm [52], which is a traditional algorithm for distinguishing sleep and waking
states using wrist actigraphy. In an earlier study, the rescored Scripps Clinic algorithm had
the highest F1 score and second-highest accuracy among all traditional algorithms used for
sleep/wake classification [53].

Traditional algorithms tend to overestimate sleep duration [53]. We included bed
rest before and after sleep as part of the intervention period because our MDD screening
method considers the relaxed state to reflect sympathetic dominance. Rescoring should
conservatively correct for “false” sleep epochs such that detection sensitivity is not sig-
nificantly reduced. In cases where multiple segments of sleep are detected within 24 h,
HRV analysis is performed with a focus on the longest sleep segment. To achieve this, we
implemented the following rescoring steps, which differ from those proposed by Webster
et al. and Cole et al. [54]:

1. Change the status from “sleep” to “awake” of <120 consecutive minutes between two
epochs with activity amplitudes above the 75th percentile value for all epochs.

2. Among connected “sleep” fragments, which can include up to 100 min of mid-waking,
only the longest segment is retained; the others are changed to “awake.”

3. Find the beginning and end of the fragment of consecutive “sleep,” which is longest
when awakenings <4 min are ignored. Any fragments of “sleep” <60 min at both ends
of that are corrected to “awake.”

2.2. Pulse Rate Detection with Thresholding Using SQIpr

As well as HRV, pulse rate reflects the status of the sympathetic and parasympathetic
nervous systems. Because pulse rate is also a proxy for the mean PPI and can enhance
the accuracy of HRV calculations, the heart rate is calculated before HRV analysis. The
proposed algorithm is based on the subspace MUSIC algorithm [55], which is used to
detect the pulse rate. The subspace-based method is more robust to noise and has a higher
frequency resolution than fast Fourier transform. However, it requires more computation
time than conventional methods because matrix calculations are performed repeatedly.
Therefore, SQIpr was used to filter out PPG data, for which accurate pulse rate detection is
difficult when using the MUSIC method. It should be noted that this index is intended to
improve calculation efficiency and does not enhance the accuracy of pulse rate detection or
HRV analysis.

Our proposed SQI for pulse rate detection, SQIpr, was calculated in the frequency
domain. We used Welch’s method [56] to estimate power spectral density (PSD). First,
raw PPG signals sampled at 64 Hz by the E4 sensor were bandpass-filtered at 0.5–5 Hz.
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The initial pulse rate estimate was considered as the frequency bin with the maximal peak
in PSD in the 40–160 bpm range. The standard deviation for all frequency bins >−5 dB
relative to the maximum was calculated. The target range for pulse rate detection was
40–160 bpm and no more than twice the initial pulse rate estimate. Using this standard
deviation, SQIpr was defined (Algorithm 1).

For each epoch, SQIpr was calculated using a 3 min sliding window (1 min overlap)
before and after each epoch. The Blackman–Harris window was applied for the PSD
calculation. Pseudo-spectra were calculated by the MUSIC algorithm for all epochs in
which the SQIpr was above the threshold value. In the pseudo-spectra, the maximum peak
(in the range of 40–120 bpm in the sleep state and 40–160 bpm in the waking/resting states)
was used for the final pulse rate estimate. The threshold value for SQIpr was set at 0.5,
and an activity amplitude of ≤300 was defined as the resting state. Data from non-resting
epochs were not used for HRV analysis because prior studies did not recommend that
USTHRV analysis be performed under non-resting conditions [57]. In epochs with missing
pulse rate data, median-filtered interpolation of the pulse rate was performed using a 7 min
data window.

Algorithm 1: Calculation of SQIpr

Input: Spectral density dn and Frequency bin bin of PSD
Target range f min and f max
Output: SQIpr
1: f init = bin[argmax(dn)]
2: threshold = dn[f init]/3.16 //−5 dB
3: idx_array = where dn > threshold in range [f min, max (f max, 2.0 * f init)]
4: if length of idx_array > 1 then
5: bin_std = standard deviation of bin[idx_array]
6: return 1.0–3.0 * bin_std/(max (f max, 2.0 * f init ) − f min)
7: else
8: return 1.0

2.3. USTHRV Analysis with Thresholding Using SQIhrv

As in the previous subsection, 3 min sliding windows were applied to compute another
SQI and HRV for each epoch. SQIhrv is the ratio between the harmonic components up to
the third order and inharmonic components in the frequency spectrum of the PPG signal.
The PPG waveform depends on multiple factors in the circulatory system and skin. Because
it is unusual for the waveform of a person without arrhythmia to change significantly within
a few minutes at rest, we assumed that the signal was periodic, including the harmonics.
For PPG data with high signal quality, i.e., where the pulse waveform retains information
such as the peak positions, energy is concentrated in the heartbeat component and its
harmonics, as shown in Figure 2 (left). However, for data whose quality has been degraded
by motion artifacts and other types of noise, the energy of the non-integer components
increases to a greater extent, as also shown in Figure 2 (right). SQIhrv is calculated using the
algorithm shown in Algorithm 2. The same PSD data in RAM used for calculating SQIpr
can be used again for each epoch. The fundamental frequency is derived using the MUSIC
algorithm described in the previous subsection. Employing a robust frequency estimator
prevents the calculation of inaccurate values for the signal quality, even for noisy PPG data.

All epochs for which SQIhrv was above the threshold value were preprocessed using
known pulse rates (f MUSIC; Algorithm 2). The threshold value of SQIhrv was empiri-
cally determined as 1.0 on the basis of some example data. The raw PPG data were 4×
upsampled [58,59] and the first-order difference operation was applied, followed by a
bandpass filter (range: 0.75f MUSIC to 6.5f MUSIC). Peak detection was performed using the
find_peaks function in the SciPy library. To remove the second peaks in the double-peak
PPG waveform, we first removed all peaks in which one previous valley was >0. The
PPI used for HRV analysis was calculated using the obtained peaks. Simple validation
was performed by comparing the number of measured peaks with the number calculated
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from the data length and pulse rate, and the mean PPI measured with the reciprocal of the
pulse rate; if either value was 30% higher or lower than the other, HRV analysis was not
performed for that epoch. We did not interpolate for epochs with no HRV data.
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Algorithm 2: Calculation of SQIhrv

Input: Spectral density dn and Frequency bin bin of PSD
Fundamental frequency of heartbeats f MUSIC
Margin in frequency bin f margin
Output: SQIhrv
1: idx_h1 = bin in range [f MUSIC − f margin, f MUSIC + f margin]
2: idx_h2 = bin in range [2.0*f MUSIC − f margin, 2.0*f MUSIC + f margin]
3: idx_h3 = bin in range [3.0*f MUSIC − f margin, 3.0*f MUSIC + f margin]
4: idx_i1 = bin in range [0.5*f MUSIC + f margin, f MUSIC − f margin]
5: idx_i2 = bin in range [f MUSIC + f margin, 2.0*f MUSIC − f margin]
6: idx_i3 = bin in range [2.0*f MUSIC + f margin, 3.0*f MUSIC − f margin]
7: Aharmonic = sum of dn[idx_h1] + sum of dn[idx_h2] + sum of dn[idx_h3]
8: Anon-harmonic = sum of dn[idx_i1] + sum of dn[idx_i2] + sum of dn[idx_i3]
9: if Anon-harmonic > 0 then
10: return log(1.0 + Aharmonic /Anon-harmonic)
11: else
12: return 0.0

The HRV indices used for MDD screening in this study are shown in Table 1. Al-
though HRV indices characteristic of MDD have been identified at rest and in response to
mental stress, few studies have validated their use in relaxation tasks. Thus, we selected
several indices commonly used in previous methods. The frequency-domain indices were
calculated using Welch’s method.

Table 1. Heart rate variability indices used in this study.

Method Index Unit Description

Time domain RMSSD ms Root mean squared successive differences of PPI
SDNN ms Standard deviation of PPI

Frequency domain LF ms2 Absolute power of the low-frequency band (0.04–0.15 Hz)
HF ms2 Absolute power of the high-frequency band (0.15–0.40 Hz)

LF/HF Ratio between LF and HF
TP ms2 Total power of all frequency bands
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3. Experimental Procedure

We evaluated the proposed algorithm using the data of 40 MDD patients (18 males
and 22 females) diagnosed by clinicians using the DSM-5 at Maynds Tower Mental Clinic
(Tokyo, Japan), as well as the data of 29 healthy adult volunteers (15 males and 14 females)
recruited at Tokyo Metropolitan University (Tokyo, Japan). All participants were legal
adults and provided written informed consent. They were instructed not to consume
alcohol or caffeine for 24 h before the study, and to refrain from smoking on the day of the
study. We assessed symptom severity in both groups using the Zung Self-Rated Depression
Scale (SDS). The MDD patients had not been diagnosed with a physical illness and were
participating in a return-to-work program at the time of the study. This study was approved
by the Ethics Committee of Tokyo Metropolitan University (approval number: 411) and
was conducted from October 2019 to September 2021. The participants’ demographic and
clinical characteristics are summarized in Table 2.

Table 2. Demographic and clinical characteristics of the study groups.

Total Healthy Adults MDD Patients p-Value

n 69 29 40
Male (%) 15 (51.7) 18 (45.0) N.S. (χ2)
Female (%) 14 (48.3) 22 (55.0)

Age in years, mean (SD) 35.6 (11.3) 31.9 (13.0) 37.5 (8.8) N.S.
Self-reported sleep
duration (min) 448.0 (95.8) 426.7 (94.3) 463.5 (95.0) N.S.

SDS scores, mean (SD) 40.6 (10.2) 34.0 (8.6) 45.7 (8.2) <0.001

The E4 wristband can continuously record acceleration, PPG, electrodermal activity,
and skin surface temperature data for >32 h. Our participants wore the E4 device on their
non-dominant wrist; data were recorded for 24 h under free-living conditions. They were
asked to record activities such as sleeping, eating, and bathing using a log sheet.

The proposed algorithm processed the 24 h sensor data, and the HRV analysis focused
on sleep/relaxation periods, as shown in Figure 3. We established the phases shown
in Figure 3 as the unit of HRV analysis. Each phase was set to a duration of 90 min,
based on the standard sleep cycle for adults, except P4, which has a variable length to
accommodate individual differences in total sleep time (TST). P1 corresponds to the awake
period immediately prior to sleep onset, while P2 represents the initial period following
sleep onset. A similar procedure was employed to define the five phases up to P5, which
is the first period after awakening. This method requires at least 270 min of sleep time
data per participant; one MDD patient was excluded from the analysis because their TST
was below this threshold. Participants with no data suitable for analysis after SQI-FD
thresholding (because of persistently low signal quality; one healthy adult and one MDD
patient) were also excluded from the analysis.

Logistic regression was performed to discriminate between healthy adults and MDD
patients on the basis of 20 features and the mean values of the HRV indices in each
phase (two-class classification). For pipeline processing, we implemented 10-fold cross-
validation, standardized scaling, and logistic regression using the Scikit-Learn library [60].
The training/validation/test split occasionally provided inconsistent results when applied
to holdout samples due to inadequate sample sizes. Moreover, when employing leave-
one-out cross-validation, the classification accuracy of the training model tended to be
overestimated. Because some HRV indices show multicollinearity, L2 penalty terms were
added separately to the logistic regression model.
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4. Results
4.1. Sleep Time Estimation

The TST estimated by the proposed algorithm is plotted against the self-reported sleep
duration (as recorded in the log sheet) in Figure 4. The self-reported sleep duration is a
subjective value derived from manual recordings made every 15 min; the mean absolute
percentage error was 13.6% in the healthy group and 15.3% in the MDD group. The TST
was underestimated by >60 min in only one MDD patient.
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4.2. SQI Thresholding and HRV Indices

The percentages of data that remained after thresholding using the SQI-FD are shown
in Table 3. More than 70% of the awake-period data were filtered out by SQI-FD, i.e., were
not included in the HRV analysis, whereas most of the sleep/rest period data were free
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from motion artifacts. The computer processing unit (CPU) time was measured using a
MacBook Air with 16 GB of RAM. Using our algorithm, the mean CPU time was reduced
by 45.9% because data with low signal quality were skipped.

Table 3. Percentages of data remaining and computer processing unit time after thresholding using
signal quality indices in the frequency domain.

Total (%) Healthy Adults (%) MDD Patients (%)

Awake period
SQIpr 41.1 46.0 36.9
SQIpr and SQIhrv 22.7 26.1 19.8

Sleep period
SQIpr 88.0 87.5 88.4
SQIpr and SQIhrv 83.9 84.5 83.4

Without SQIpr With SQIpr Reduction

Mean CPU time (s) 139.96 79.47 45.9%
SD 5.4 19.2 13.3%

Table 4 shows the mean values of the HRV indices in each phase obtained after
applying the proposed algorithm. For phases P2–P4, HRV data from epochs classified
by the Scripps Clinic algorithm as awake after sleep onset were excluded from the mean
calculations. In four participants with MDD (participants 60, 61, 71, and 73), the number
of epochs available for HRV analysis was zero in at least one phase after thresholding by
SQI-FD. Data from these participants were not included in the analyses that yielded the
following results. The values for most HRV indices tended to decrease after being filtered
by SQIhrv. The Wilcoxon signed-rank test showed significant differences in all indices,
except the low-frequency (LF)/HF ratio, with versus without thresholding; HRV indices
that were not significantly different are underlined in the table. The Mann–Whitney U test
revealed significant differences in at least one phase between the healthy adults and MDD
patients for all HRV indices.

Table 4. Differences in HRV indices with and without thresholding by real-time calculation of signal
quality indices in the frequency domain (SQI-FD).

HRV Index Phase Healthy Adults MDD Patients

Without
SQI-FD

With
SQI-FD

Without
SQI-FD

With
SQI-FD

RMSSD (ms)

P1 100.6 84.5 91.2 69.0 **
P2 62.1 60.0 52.1 * 46.4 **
P3 65.5 64.1 46.0 ** 40.4 ***
P4 72.3 70.0 50.9 *** 48.0 ***
P5 99.4 81.5 92.7 70.8 ***

SDNN (ms)

P1 91.8 78.2 79.6 ** 62.6 ***
P2 64.0 60.6 53.3 * 46.4 **
P3 64.4 61.3 54.1 47.8 **
P4 72.9 69.5 57.9 ** 53.8 ***
P5 94.0 80.6 83.1 *** 65.4 ***

LF (ms2)

P1 1727 1369 1006 *** 689 ***
P2 850 785 511 * 417 **
P3 718 660 540 444 *
P4 981 911 548 ** 492 ***
P5 1594 1276 1119 *** 726 ***
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Table 4. Cont.

HRV Index Phase Healthy Adults MDD Patients

Without
SQI-FD

With
SQI-FD

Without
SQI-FD

With
SQI-FD

HF (ms2)

P1 1833 1326 1229 ** 748 ***
P2 1045 1014 625 ** 511 **
P3 1279 1257 497 *** 405 ***
P4 1426 1386 586 *** 550 ***
P5 1653 1208 1429 ** 876 ***

LF/HF

P1 1.22 1.41 1.20 1.41
P2 1.25 1.21 1.50 1.52
P3 0.98 0.93 1.72 ** 1.72 ***
P4 1.13 1.11 1.44 1.41
P5 1.19 1.40 1.12 1.22

TP (ms2)

P1 4175 3139 2977 ** 1834 ***
P2 2275 2130 1519 * 1217 **
P3 2391 2270 1354 ** 1061 **
P4 2863 2710 1531 *** 1384 ***
P5 3862 2804 3162 ** 1891 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

The mean root mean square of successive differences between normal heartbeats
(RMSSD), standard deviation of N-N intervals (SDNN), LF, and total power (TP) values
were lower in the MDD patients than healthy adults, and a U-shaped response was seen
(i.e., the values decreased during sleep and returned to normal upon awakening). The
LF/HF ratio was significantly higher in the MDD than healthy adult group in P3 (p < 0.001).

4.3. MDD Screening

For binary classification, a logistic regression model that included HRV indices and
pulse rate was used. The HF, LF, and LF/HF values were analyzed, but the RMSSD, SDNN,
and TP values were omitted because they were strongly correlated with the sum of HF and
LF [61] and the variance inflation factor (VIF) was high (>100) [62]. LF and HF, which tend
to be log-normally distributed, were log-transformed before the analysis. All of the VIFs
in the feature set were <10. Grid searches were performed for each condition (with and
without SQI-FD) to optimize the L2 regularization strength C.

The receiver operating characteristic curve obtained through 10-fold cross-validation
is shown in Figure 5. The area under the curve (AUC) values were 0.93 (95% confidence
interval (CI): 0.86–0.99) and 0.81 (95% CI: 0.71–0.92) with and without the application of
SQI-FD thresholding, respectively.
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Figure 6 is a scatterplot of the SDS scores against the logit scores for the trained model,
with SQI-FD thresholding applied. There was a positive correlation between the two scores
(r = 0.55), which was higher than in our previous study [30]. The optimal SDS cutoff
score for MDD was 40 (sensitivity = 0.784, specificity = 0.793). This threshold shows good
agreement with previous studies [63,64].
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Table 5 shows the average classification performance after 100 iterations of 10-fold
cross-validation (random sampling). The classification accuracy was highest when SQI-FD
thresholding was applied to both the awake and sleep periods, followed by when it was
applied only to the awake period.

Table 5. Major depressive disorder screening performance with and without thresholding using
signal quality indices in the frequency domain (SQI-FD).

Accuracy Sensitivity Precision NPV F1 Score MCC

Without SQI-FD 0.772 0.803 0.733 0.750 0.796 0.537
With SQI-FD 0.859 0.873 0.840 0.842 0.872 0.714

Awake period 0.816 0.834 0.794 0.794 0.834 0.628
Sleep period 0.798 0.828 0.760 0.781 0.819 0.590

5. Discussion

Wearable devices enhance privacy and confidentiality because users collect their own
personal data. It is hoped that noninvasive, unrestrained, objective MDD screening can
be achieved using wearable devices, which may also promote early medical consultations
and self-management. In particular, the data shown in Figure 6 related to MDD risk can
be easily understood by patients and will benefit those seeking to return to work after
consultation and treatment [65,66].

Obtaining indices of HRV can aid screening for MDD because of the tendency toward
dysautonomia of sufferers [67]. Indeed, HRV can be measured to track autonomic responses
to mental stress over a short period [31,32]. Moreover, daily tracking allowed an MDD
screening accuracy of >70% to be achieved [45,68]. However, two issues make it challenging
to perform HRV measurements under free-living conditions: the deterioration of sensor
signal quality over time because of body motion and the difficulty of determining the
analysis period for transient autonomic responses.

In the HRV indices shown in Table 4, a common trend can be observed: MDD patients
exhibit higher LF/HF and lower other HRV indices compared with healthy adults. These
findings align with those of previous studies [22,69]. All HRV indices, except LF/HF in
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MDD patients, demonstrate a V-shaped temporal transition, higher in the awake period and
lower during sleep. SDNN, LF, and LF/HF are also consistent with a previous study [67], as
these indices are lower during sleep than in awake periods, except for rapid eye movement
(REM) sleep. It is important to note, however, that this study did not measure sleep stages,
and all valid data were averaged for each phase; thus, the results are only consistent
on average.

Research has indicated that HF increases during the night in healthy young adults [68].
In this study, although the percent power in the HF band increased similarly to the liter-
ature, HF tended to decrease during sleep. We attribute this to the fact that the effect of
body movement is more dominant in awake data than in sleep data; the diminishing of
this trend after thresholding with the SQI-FD supports this assertion. Nonetheless, the
HF in sleep after noise removal did not increase, and the trend remained flat, suggesting
that the filtered data was not entirely free of motion artifacts. The HF HRV components
exhibited the most significant difference between healthy adults and MDD patients during
relaxation, particularly after more than 3 h from sleep onset (P3 and P4). Our findings sug-
gest that the parasympathetic activity associated with sleep/relaxation may be suppressed
in MDD patients.

According to the data in Table 5, the proposed method distinguished MDD patients
from healthy controls with a sensitivity of 87.3% and specificity of 84.0%, and the classifi-
cation performance was superior to that achieved using Zung’s SDS score with optimal
thresholding. Table 4 shows that the HRV indices were lower with versus without SQI-FD
thresholding. Measurements affected by motion artifacts usually overestimate HRV in-
dices [36], suggesting that our SQI-FD thresholding process may have removed HRV data
affected by body motion. These results indicate the importance of removing unreliable data
when screening for MDD; although we had expected that to be the case for waking-state
data, Table 5 shows that it also applies to sleep-state data.

To assess autonomic transient responses under free-living conditions, i.e., without the
imposition of mental stress, HRV indices measured by a wearable device must be analyzed
in the context of the user’s typical behavior. In this study, individual differences in pre-
and post-sleep activity may have affected the results, and misclassification of sleep and
waking states might have occurred; however, the impact of these factors on screening
performance did not appear to be critical. The analysis scheme shown in Figure 3 can be
used for MDD screening with acceptable accuracy, even when using a wrist actigraphy
system that automatically detects sleep.

There were some limitations to this study. First, when setting the threshold for
SQI-FD, most of the waking period data were omitted, and HRV analysis could not be
performed in four subjects who had no data. To reliably screen for MDD over a single
24 h period, a more flexible thresholding process is needed to ensure that sufficient data
with acceptable signal quality are collected [70]. To prevent unnecessary discarding of data
containing noise, preprocessing should be performed to correct sections for PPG data with
motion artifacts, and HRV analysis should be performed with variable epoch lengths. As a
second limitation, our MDD patients were all taking antidepressants; previous studies have
shown that antidepressants may decrease HRV [24,71]. Although the proposed method
focuses on HRV changes associated with sleep relaxation, and may be less susceptible
to small increases or decreases in HRV, future studies should enroll patients who are not
taking antidepressants. Third, the dataset used in this study was small (69 participants)
compared with the datasets typically analyzed in medical informatics studies; moreover,
the reliability of evaluations using leave-one-out cross-validation and holdout methods has
been questioned, and it is important to evaluate data that have not been used in the training
and hyperparameter tuning processes. Finally, our measurements were obtained under
free-living conditions, such that various confounders may have influenced the experimental
results. In the future, we plan to analyze a larger amount of clinical data obtained with the
wearable devices.
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Acronyms Definition
AUC Area Under the Curve
DSM-5 Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
ECG Electrocardiography
HRV Heart Rate Variability
MDD Major Depressive Disorder
PPG Photoplethysmography
PPI Peak-to-Peak Interval
PSD Power Spectral Density
REM Rapid Eye Movement
ROC Receiver Operating Characteristic
SDS Zung Self-Rated Depression Scale
SQI Signal Quality Index
SQI-FD Signal Quality Indices in the Frequency Domain
TST Total Sleep Time
USTHRV Ultra-Short-Term Heart Rate Variability
VIF Variance Inflation Factor
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