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Abstract: Clinical alarm and decision support systems that lack clinical context may create non-
actionable nuisance alarms that are not clinically relevant and can cause distractions during the
most difficult moments of a surgery. We present a novel, interoperable, real-time system for adding
contextual awareness to clinical systems by monitoring the heart-rate variability (HRV) of clinical team
members. We designed an architecture for real-time capture, analysis, and presentation of HRV data
from multiple clinicians and implemented this architecture as an application and device interfaces
on the open-source OpenICE interoperability platform. In this work, we extend OpenICE with new
capabilities to support the needs of the context-aware OR including a modularized data pipeline for
simultaneously processing real-time electrocardiographic (ECG) waveforms from multiple clinicians
to create estimates of their individual cognitive load. The system is built with standardized interfaces
that allow for free interchange of software and hardware components including sensor devices, ECG
filtering and beat detection algorithms, HRV metric calculations, and individual and team alerts
based on changes in metrics. By integrating contextual cues and team member state into a unified
process model, we believe future clinical applications will be able to emulate some of these behaviors
to provide context-aware information to improve the safety and quality of surgical interventions.

Keywords: surgical data science; interoperability; cognitive load; smart alarms; heart-rate variability

1. Introduction

Cardiac Surgery is one of the most complex and high-risk areas of medicine. Four
teams (Surgery, Anesthesia, Perfusion, and Nursing), each comprised of 2–3 individuals,
need to cooperate and interact with medical cyber-physical systems to achieve the desired
cardiac intervention (e.g., repair a defective mitral valve) effectively, safely, and expedi-
tiously [1]. Effective team coordination requires the management of interruptions and
distractions as well as awareness of the context of the surgical procedure. Cognitive load,
a measure of how mentally occupied or stressed a team member is at a particular time,
provides a useful metric for understanding how team members’ attention and mental load
varies through the stages of a surgical procedure.

A context-aware operating room (OR) is one in which patient data are integrated
with information about surgical processes, medical devices, and clinician mental states in
order to provide OR providers, in real time, with an overall status of the surgical process,
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alerts and guidance about current and anticipated hazardous situations. Thus, the real-
time monitoring and alerting of the cognitive load of surgical team members during the
procedure can be an important application of the context-aware OR.

To establish context-aware OR infrastructures and applications, the emerging field of
surgical data science strives to leverage the data-rich environment in the OR through the
capture, formatting, analysis, and modelling of data to ultimately improve surgical care [2].
Building a context-aware OR requires multidisciplinary collaboration to not only capture
disparate data sources, but also integrate device data, clinician mental state monitoring,
and process modelling and monitoring. These new intelligent spaces offer great potential
to improve patient safety and outcomes as well as to build rich new data stores for better
understanding and improving clinical processes.

Unfortunately, current technologies capturing and integrating important patient data
from clinical environments, such as widely used anesthesia record systems and electronic
health records (EHR), suffer from significant limitations in recording key information
necessary for understanding clinical processes. These systems are not suitable for building
real-time alarms and closed-loop control applications, or for supporting the context-aware
OR vision described above. For example, there may be delays of up to several minutes
from the time a medication administration or other data element is entered at the bedside
until it appears in the EHR report from that patient and detailed information from patient
monitors such as waveforms are usually not recorded.

In this paper, we propose a framework and describe a novel application that both
makes use of, and adds additional contextual information to, a context-aware OR based
on the OpenICE (Open Integrated Clinical Environment) medical device interoperabil-
ity framework [3]. This effort builds on previous work on surgical process modeling,
behavioral and cognitive engineering [4], and an offline dashboard for cognitive load
analysis [5]. In particular, we apply the OpenICE platform to the surgical subspecialty of
Cardiac Surgery in order to enable a ‘smarter’, or more context-aware, operating room by
developing real-time processing, monitoring, and alerting based on measures of individual
and overall team cognitive load. We call this adaptation COR-ICE for the Cardiac Operating
Room Integrated Clinical Environment.

OpenICE is an open-source implementation of the AAMI (Association for the Advance-
ment of Medical Instrumentation) 2700-1:2019 standard on the patient-centric integrated
clinical environment (ICE) interoperability architecture [6]. It is a platform for medical
device integration that supports rapid development of bedside clinical applications includ-
ing data collection, smart alarms and data dashboards, and closed-loop control of devices.
OpenICE software code is freely available online: https://www.openice.info (accessed on
10 January 2023).

In this work, we extend OpenICE with new capabilities to support the needs of the
context-aware OR including a modularized data pipeline for simultaneously processing
real-time electrocardiographic (ECG) waveforms from multiple clinicians to create estimates
of cognitive load.

This real-time ECG pipeline leverages previous work [5] on developing a dashboard
for offline analysis of cognitive load estimates derived from heart-rate variability (HRV)
metrics as well as extensive related work on HRV metrics and ECG signal processing and
analysis algorithms [7,8].

Unobtrusive physiological sensors and the accompanying algorithms applied to the
waveforms generated by them [9] have contributed substantially to our understanding of
psychophysiological states. Devices and software designed to receive and filter physio-
logical waveforms, identify features of interest, calculate relevant metrics based on those
features, and present information on the underlying physiological status back to the user
form the backbone of real-time biofeedback approaches [10,11]. These types of sensors
and algorithms have been successfully implemented to train users to improve physical
symptoms (i.e., vestibular imbalances [12]), mental symptoms (i.e., depressive states [13]),
and a variety of other clinical symptoms.

https://www.openice.info


Sensors 2023, 23, 3890 3 of 12

Biofeedback approaches relying on the detection of cardiovascular changes are partic-
ularly prevalent given the prominent and relatively isolated amplitude of the R-peak ap-
pearing within ECG waveforms, which represents ventricular contraction of the heart [14].
Subsequently, sensors designed to monitor cardiovascular changes have contributed sub-
stantially to the understanding of autonomic nervous system (ANS) changes [15]. For these
approaches to be successful, it is critical that the feedback loop underpinning them operates
in real-time or near real-time. While the shortest duration for traditional HRV analysis of
ECG waveforms was historically identified as five minutes [16], more nuanced methods are
required in order to accomplish on-line analysis. Specifically, this calls for ultra-short-term
analytical approaches to calculate upon incoming data, which has become increasingly
utilized in recent years [17].

Further, to ensure accuracy in real-time calculations, consideration must be given to
the nature of the calculations, including the physiological processes they represent. HRV
metrics consist of time-domain, frequency-domain, and geometrical approaches and can
broadly be categorized according to the branch of the ANS contributing to its measure-
ment [7]. In particular, the high frequency (HF) band (0.15–0.40 Hz) reflects respiratory
sinus arrythmia, which is vagally mediated and reflects parasympathetic dominance. The
low frequency (LF) band (0.04–0.15 Hz), in contrast, has been demonstrated as a proxy
for sympathetic dominance by some, and sympatho-vagal balance by others [16]. The
LF/HF ratio thus reflects an input from both branches of the ANS and, given their re-
spective oscillation frequencies and generally slower sympathetic responsiveness, requires
a minimum time window of one minute of data to discriminate between high and low
arousal states accurately [18], and to perform on-line processing with accuracies equivalent
to a 5-min time window [19,20]. Additionally, previous work has suggested a relationship
between the LF/HF ratio and emotional states such as frustration [21], mental stress [22],
and cognitive workload [23].

Insights into the surgical team members’ mental state and changing cognitive work-
load can be extrapolated according to underlying physiological changes via non-invasive
sensors [24]. Estimation of intra-operative cognitive workload in particular is most often
approached through HRV acquisition and analysis [25]. Previous work has demonstrated
the sensitivity of capturing intra-operative HRV from multiple team members, analyzed
according to surgical phase [26] and according to intra-operative events [27].

In addition to integrating data representing the progress of the surgical procedure and
patient data, monitoring clinicians’ mental workload state may provide a more compre-
hensive snapshot of the COR context. In fact, clinician workload represents a unique data
stream/input incorporated into the COR-ICE platform. The tenets of mental workload
theory are the assumptions that individuals have a limited cognitive capacity, demands
imposed and resources required vary according to the task at hand, and individuals differ
in the degree of cognitive resources required to perform a given task [28]. Thus, monitoring
individual operators during the course of a multi-task, multi-step procedure reflects person-
alized insights into cognitive efficiency. In the future, tying these insights to a process model
of the specific procedure would allow immediate feedback based on both the current step
in the process as well as predicted likely future states and actions. In surgery in particular,
cognitive factors are the major contributors to human performance deficiencies and adverse
events [29], necessitating a nuanced understanding of these cognitive workload changes
over time.

In addition to deriving individual indicators of mental states using sensor technology,
capturing and representing team cognitive load states is still facing a particularly com-
pelling knowledge gap. Effective implementation of team cognitive load calculations has
been demonstrated through off-line analysis in the domains of submarine navigation [30]
and cardiac surgery [31,32], but its real-time implementation has received less attention.

The goal of this work is to develop an interoperable pipeline on an open-source
platform to enable the real-time representation of a team cognitive load estimate derived
from the simultaneous acquisition of ECG measurements from multiple team members.
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2. Methods

We designed an architecture for real-time capture, analysis, and presentation of HRV
data from multiple clinicians and implemented this architecture as an application and
device interfaces on the OpenICE platform.

2.1. COR-ICE: OpenICE-Centered Context-Aware Operating Room

The COR-ICE architecture shown in Figure 1 brings together physiological data from
multiple clinicians into an interoperable processing pipeline that supports individualized
and team-based alerts and notifications. COR-ICE includes interfaces for the clinical team
that provide a summary of the current data sources and HRV metrics for each clinician and
a dashboard of team status.
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OpenICE (OpenICE source code is freely available at github.com/mdpnp (accessed
on 10 January 2023) and OpenICE.info) is intended as a distributed system centered on a
single patient. One of the foundational insights in its design was that healthcare is already
a distributed system; caregivers learn about the patient and their condition and share
information with each other in both structured and un-structured ways as the information
is needed and available. COR-ICE builds on this foundation to add multiple streams
of clinician physiological data that can be associated with the clinical role and a specific
patient, enabling alerts that could also take into account that patient’s status.

The design of OpenICE mirrors this architecture, with independent agents such as
medical equipment interfaces and applications sharing data elements as needed via a
publish/subscribe middleware. In a publish/subscribe communication pattern, data
producers publish the produced data to different pre-defined topics, while data consumers
who are interested in using the produced data for their tasks subscribe to these topics. In
this pattern, topics can be considered as buffers from which data consumers can receive
the latest data produced by data producers. We have found that these publish/subscribe
patterns map well onto many clinical applications and that building on existing and familiar
communication patterns enhances explainability; the way data moves around makes sense
to many clinicians because it matches how they are used to working. OpenICE shares goals
with other medical device interoperability projects such as the 11073-SDC (Service-oriented
Device Connectivity) family of standards developed by the OR.net organization [33,34].

OpenICE emphasizes bedside networks and the capacity for closed-loop control based
on requirements from specific clinical scenarios, while 11073-SDC has an emphasis on
linking devices to enable data sharing using established web-services protocols. Both
groups have complementary approaches and share the goals of improving the safety and
quality of clinical care.

github.com/mdpnp
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The COR-ICE architecture shown in Figure 1 supports connecting a wide variety
of sensors and data sources. As many sources of contextual data are available for use
in OR, COR-ICE provides a generalized, standards-based terminology set and means to
capture and share data from sensors. The ICE standard explicitly includes the healthcare
providers (HCP), connections to non-medical equipment in the room; tracking sound/noise
levels and equipment state provides important contextual cues [35]. This aligns with the
ultimate goal of this work—supporting the cardiac surgical team with relevant contextual
information [36].

A wide range of monitoring modalities are available. In previous work, we proposed
to monitor HRV and map this psychophysiological measure to cognitive workload [26];
we are extending this in COR-ICE to additionally monitor clinician eye-tracking, electroen-
cephalography (EEG), Near Infrared Spectroscopy (NIRS), heart rate (ECG), pulse oximetry,
body temperature, blood pressure, electrodermal activity (EDA), and voice recognition.

In this work, we integrate with OpenICE portable monitors that the team members
can wear that will stream ECG and other physiologic signals from all of the participants
simultaneously. Preoperative domain knowledge, patient information, and staff profiles
could also be securely made available to the COR-ICE from the hospital PACS (Picture
Archiving and Communication System) through the COR-ICE external interface and HL7
FHIR (Fast Healthcare Interoperability Resources) interfaces, though this would require
further system integration work.

Software applications for the cardiac OR mostly fall into two categories: (1) smart
alarms and dashboards that monitor the output of one or several connected devices and
create alarms and alerts based on the data they receive; and (2) closed-loop control applica-
tions that automatically control the care delivery by one device based on sensor data from
one or more other devices. These software applications are safety critical and will usually
need to be hosted close to the patient rather than on a server in a datacenter; this reduces
the risks of network delay and accidental disconnection, simplifies patient identification
and association, and allows direct feedback to the clinicians at the patient’s side. These
software applications for the cardiac OR can be implemented as ‘apps’ hosted inside the
ICE Manager in OpenICE that is deployed close to the patient.

2.2. Deriving Cognitive Load Estimates and Alerts from Heart-Rate Variability Metrics

Dias et al. [5] introduced a dashboard for visualizing cognitive load of multiple
clinicians in a surgical team. The proposed dashboard used recorded data and a commercial
HRV analysis program to do offline analysis and visualization. We build on this work by
creating an open-source processing pipeline for real-time monitoring and alerting based on
live streams of data from the surgical team members, where components of the pipeline
can be easily changed and reordered to accommodate different formats and quality levels
of the input ECG data streaming.

2.3. Processing Pipeline

The process of going from individual clinician ECG measurements to alert notifications
based on the team’s cognitive load estimate includes six major stages as illustrated in
Figure 2, including: (1) acquisition of ECG data; (2) ECG filtering to remove noise; (3) Beat
detection and inter-beat interval (IBI) calculation; (4) HRV metric calculation; (5) cognitive
load estimation; and (6) alert management. The inputs and outputs of each stage are
enumerated in Table 1.
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Table 1. Processing Pipeline Stages, Inputs, and Outputs.

Stage Input Output

ECG Acquisition Physiologic measurement Standardized ECG waveform

ECG Filtering Standardized ECG waveform Standardized ECG waveform

Beat Detection Standardized ECG waveform IBI Series

Metric Calculation IBI Series HRV Metrics Series

CL Estimation HRV Metrics Series CL Estimate Series

Alerting CL Estimate Series Team CL Alerts

ECG acquisition starts with a medical device measuring electrical potential from
multiple points on a person’s skin. This system was developed and tested with different
devices: Mindware Mobile monitors, a Philips MX800 patient monitor, and a software
simulated ECG device built into OpenICE. ECG waveforms at this stage include noise and
artifacts from motion, poor electrode contact, and other causes.

ECG data originates as voltages measured using electrodes attached to the skin. Elec-
trical potential differences between pairs of electrodes are represented by convention as
virtual Leads. We used Lead II as the input for this processing pipeline. The Mindware
Mobile, Philips MX800, and most other medical devices output data encoded in proprietary
terminologies and communicate using proprietary protocols. The OpenICE equipment
interfaces use these proprietary protocols to communicate with the devices and then repub-
lish the data in a standardized encoding. This encoding uses the ISO 11073-10101 [37] term
“MDC_ECG_Lead_II” and represents the data as a series of voltage measurements with
a sampling rate determined by the acquisition device. OpenICE bundles together 250 ms
of waveform data into each waveform publication. The Mindware Mobile samples at
500 samples per second, so each MDC_ECG_Lead_II waveform publication would include
125 samples and a timestamp for the first sample in the array. This format is used between
several of the stages of the processing pipeline and also in other applications, allowing easy
use of other ECG acquisition devices and easy replacement or reordering of processing
pipeline stages.

The filtering stage takes a standardized ECG waveform as input, applies signal process-
ing to remove noise and artifacts, and outputs the ‘cleaned-up’ ECG as another standardized
ECG waveform. We followed the approach of Chen et. al. [8] and designed our prototype
application with three stages of filtering: wavelet denoising, linear high-pass filter, and
non-linear low-pass filter. Any number of filtering stages could be applied here; each
consumes and produces an ECG waveform so they can be combined in any desired order.
Related work in de-noising and classifying individual beats [38–40] could plug in at this
stage to reduce the effects of missed beats and noise on the downstream calculations of
inter-beat intervals.

Accurate beat detection is critically important for the HRV analysis. Our implemen-
tation uses an adaptive threshold algorithm that continuously monitors the ECG signal
to determine the highest voltage values (corresponding to R-wave peaks) over the last
10 s, then sets a slightly lower threshold value. When the input waveform exceeds this
threshold, the algorithm watches for a change in sign—when the voltage switches from
increasing to decreasing—that marks the peak of the R-wave. The time of this peak is the
time of a heartbeat, and the time interval between this and next peaks is the R-R interval
or inter-beat interval. Much related research in beat detection, for instance [41], could be
leveraged here to improve performance.

The ECG sampling rate must be high enough to allow peak detection with minimal
errors. Errors in the timing of R-waves will directly affect the accuracy of inter-beat
intervals and all downstream metrics. Sampling rate relates to the accuracy of the timing
measurements because the R-wave peak will fall within one to two sample periods. The
interval depends on the time of two beats, so each interval has an error of ±2 sample



Sensors 2023, 23, 3890 7 of 12

periods. If the ECG is sampled at 100 Hz, each sample covers a 10 ms time period and the
errors become a similar magnitude to the beat-to-beat variability being measured. This
prototype application requires a sample rate of 500 measurements per second or higher to
reduce the magnitude of timing measurement errors.

The sequence of IBIs is the basic input to the HRV metric calculations. There are many
HRV metrics [7]; previous work [5] has found that RMSSD and LF/HF ratio are the most
relevant for the cognitive load estimation stage that will use these metrics as input.

The modular architecture of the processing pipeline allows for easily providing addi-
tional inputs at any stage. Some devices, for instance the Polar H10 monitor [42], directly
output and stream IBI sequences in real-time. Feeding these IBI sequences into the pipeline
replaces the Acquisition, Filtering, and Beat Detection stages with the H10′s built-in algo-
rithms. This has advantages for reducing the complexity of the system at the expense of
also reducing flexibility—it is not possible, for instance, to change how the H10 filters ECGs
before beat detection.

Our COR-ICE prototype implementation allows playback of recorded IBI sequences
from Polar or processed output of programs such as Kubios that take ECG records as input,
perform highly-configurable processing, and output IBI sequences. Analysis programs
such as Kubios are useful tools for offline analysis but do not generally support real-time
streaming or alert generation.

The six stages of our data pipeline are modularized and interoperable, meaning that
their inputs and outputs of each stage are defined in a standardized terminology and the
OpenICE platform provides a standardized means for communicating the data elements
between stages or applications.

3. Results

We have built a prototype implementation of COR-ICE, an interoperable system for
capturing and real-time analysis of multiple streams of ECG data and performed pre-
clinical bench testing to verify that it meets key design metrics. It should be noted that this
prototype does not intend to validate specific HRV metric calculations or cognitive load
estimation algorithms. Rather, it intends to verify the system architecture, particularly the
data pipeline described above, for future integration with and application in the context-
aware OR to support clinical research on surgical process monitoring and modeling.

System Implementation

Our COR-ICE prototype is implemented as an app on the OpenICE platform. As such,
it inherits many capabilities and interfaces from the platform, including the real-time data
bus and equipment interfaces. Figure 1 shows the main components of this app.

Multiple Mindware Mobile monitors are connected via a dedicated WIFI network to a
computer running Mindware’s Biolabs software. The Mindware Data Streaming Module
is used to collect and relay one channel of ECG data per monitor as a data stream over
ethernet to an OpenICE equipment interface. The equipment interface receives the data
stream, associates each ECG waveform with a unique device identifier, and publishes
the data as an MDC_ECG_LEAD_II waveform on the DDS data bus. The data streaming
module supports eight simultaneous waveform streams. The monitoring app is designed
to support simultaneous monitoring of up to four members of the surgical team, but there
is no fundamental limit preventing expansion to monitoring up to eight people with a
single data streaming module or multiples of eight people with multiple Biolabs systems.

The COR-ICE app subscribes to these waveform data streams, calculates the HRV
metrics, and creates a real-time display of metrics and cognitive load estimates. Data,
including the calculated metrics and waveforms, is also recorded by the OpenICE’s built-in
data logger (complying with the AAMI 2700-2-1: ICE Forensic Data Logging Standard [43])
with a coordinated timestamp to support future analysis and research.

One challenge in developing this app is that the ICE architecture has primarily been
used to host applications supporting the care of a single patient. While there is still a
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single patient in the cardiac operating theatre, the system must now track physiologic data
from multiple individuals. This is handled in the HRV Analysis app by providing a user
interface (shown in Figures 3 and 4) with means for the user to associate ECG waveforms
with a clinical role and, optionally, clinician name. In this implementation, the team roles
are “Surgeon”, “Anesthesiologist”, “Perfusionist”, and “Nurse”.
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Much of the complexity of the data processing pipeline is not exposed on the user
interface. The user can specify the time window over which the HRV metric calculations
are made, ranging from 10 s to 300 s. The average heart rate over this interval, SDNN,
RMSSD, and LF/HF ratio over this time window are displayed for each clinician and the
values are updated once per second.

The last layer of interpretation is estimating clinician cognitive load from the HRV
metrics. The app will generate some threshold-based alerts from the HRV and/or Cognitive
Load metrics. The cognitive load estimation and alerts are still under development. We
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plan to map terciles of LF/HF ratio to low/medium/high cognitive load estimates and
display a ‘traffic light’ style section for each clinician, illustrated in Figure 4 as a small green
box. For team alerts, we plan to assign a score of 1 to 3 to each tercile and set a team alarm
under two conditions: if the sum of the four scores is ≥7 OR if two team members are in
the red.

Validation that the cognitive load measurements accurately reflect the clinician’s actual
cognitive load and that alerts are triggered at correct times will require running the app
against recorded data sets where events and cognitive load levels are manually annotated.
We are in the process of collecting such a data set and will pursue validation of the cognitive
load estimation algorithm as future work. One key benefit of our approach is that any
algorithm for cognitive load estimation based on ECG signals or sequences of HRV metrics
can easily plug into other pipeline stages, allowing for quick testing and comparison of
algorithms without needing to recreate data collection and filtering stages.

4. Conclusions

We have presented an overview of the COR-ICE architecture, an example scenario of
the type of applications we are planning to address, and the data sources, including surgical
team monitoring, that drive the awareness of context. We believe all of these elements are
necessary to build a context-aware operating room for cardiac surgery.

Beyond the technical ‘bricks and mortar’ that make up the COR-ICE, we have a
shared vision of how applications in a context-aware operating room will need to inter- act
with the surgical team. Current medical devices and clinical applications typically trigger
alarms and alerts based on a single monitored variable such as heart rate or blood pressure.
Monitors and decision support systems that lack clinical context create non-actionable
nuisance alarms that are not clinically relevant and cause distractions during the most
difficult moments of a surgery. In contrast, we believe COR-ICE applications will be able to
interact with the surgical team more like another team member. Communication between
team members takes into account where they are in the surgical workflow, how busy or
mentally occupied each team member is, and knowledge of who needs to know what to
respond to expected and unexpected occurrences. By integrating contextual cues and team
member state into a unified process model, COR-ICE applications will be able to emulate
some of these behaviors to provide context-aware information to improve the safety and
quality of surgical interventions.

This novel work demonstrates for the first time the feasibility of acquiring multiple
ECG waveforms, applying an interoperable pipeline capable of filtering the ECGs, identify-
ing IBIs, calculating HRV metrics, estimating team cognitive load states, and generating
alerts in response. The real-time, multi-agent nature of this open-source platform advances
the current state of sensor-derived signal analysis, with implications for providing cognitive
support to teams operating in complex environments.

In the future, we envision further extensions to COR-ICE that will enable recording,
in a common terminology and time-base, data from a rich variety of inputs including
RGB-D cameras, real-time location systems, posture, gesture, instrument, and eye motion
tracking, as well as object recognition, action detection, and detection of person-object
interactions. Together with the current capability to stream and record vital signs and
other information from the patient and clinical team, this will support integration with the
workflow and process modeling to add awareness of the current status and stage of the
surgical procedure.

Though preliminary, the demonstration of this pathway is unique in its utilization of
data acquired in the naturalistic and complex environment of the cardiac operating room.
Subsequent efforts will target validating the team cognitive load estimates derived algo-
rithmically by observing event logs, team non-technical skills, and self-reports of stress and
cognitive workload corresponding to the associated times. Excessive team cognitive load
estimates will be validated against audio/video data capturing the procedures included in
this analysis.
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