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Abstract: Three colour and depth (RGB-D) devices were compared, to assess the effect of depth image
misalignment, resulting from simultaneous localisation and mapping (SLAM) error, due to forest
structure complexity. Urban parkland (S1) was used to assess stem density, and understory vegetation
(≤1.3 m) was assessed in native woodland (S2). Individual stem and continuous capture approaches
were used, with stem diameter at breast height (DBH) estimated. Misalignment was present within
point clouds; however, no significant differences in DBH were observed for stems captured at S1 with
either approach (Kinect p = 0.16; iPad p = 0.27; Zed p = 0.79). Using continuous capture, the iPad was
the only RGB-D device to maintain SLAM in all S2 plots. There was significant correlation between
DBH error and surrounding understory vegetation with the Kinect device (p = 0.04). Conversely,
there was no significant relationship between DBH error and understory vegetation for the iPad
(p = 0.55) and Zed (p = 0.86). The iPad had the lowest DBH root-mean-square error (RMSE) across
both individual stem (RMSE = 2.16 cm) and continuous (RMSE = 3.23 cm) capture approaches. The
results suggest that the assessed RGB-D devices are more capable of operation within complex forest
environments than previous generations.

Keywords: RGB-D; forestry; inventory; low-cost; remote sensing

1. Introduction

Proximal three-dimensional (3D) remote sensing approaches, have revolutionised the
acquisition of forest inventories, allowing for rapid and accurate measures of biophysi-
cal traits, to support the sustainable management of forests [1,2]. The adoption of this
technology can largely be attributed to continued improvements in light detection and
ranging (LiDAR) technologies since the early 2000 s [3,4]. Proximal 3D remote sensing in
forestry, involves close-range (≤100 m) measurements of environmental features, from
both terrestrial and airborne perspectives. Recently, proximal LiDAR approaches have
begun to see operational adoption, replacing or supplementing visual and conventional
tool assisted methods (e.g., calipers), that are often time consuming and/or lacking in
quantitative measurement accuracy [5–8]. Furthermore, the detailed representations of
biophysical structures they provide, present the opportunity for the development of new
metrics to describe forests [3,9].

The ground-based 3D remote sensing assessment of forest attributes—such as stem
location, basal diameter and vertical forest structure—was initially facilitated through
the employment of terrestrial laser scanning (TLS), which now forms the standard that
alternative ground-based 3D remote sensing technologies are currently compared to [4].
The continued development of LiDAR hardware and computational software, has led to
the exploration of personal laser scanning (PLS) and drone-mounted LiDAR approaches
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for forest measurement tasks, that aim to overcome the limitations of long capture times,
occlusion, and registration error associated with the static nature of TLS [10–13].

Regardless, TLS and alternative conventional LiDAR technologies have a high associ-
ated hardware cost that, whilst decreasing, has limited the operational adoption of these
approaches to large forest management groups, such as government bodies and companies
overseeing the administration of large plantation forests. This has meant that individuals
or smaller groups, such as local councils, have been left to continue their proximal forest
inventory acquisition using conventional manual techniques. Low-cost remote sensing
approaches that can accurately capture the 3D structure of trees, are therefore beneficial
to such groups. It is this that has urged the exploration of proximal low-cost three di-
mensional (LC3D) remote sensing approaches, the most established among these being
structure-from-motion (SfM) photogrammetry [14]. Previous studies have shown both
terrestrial and airborne SfM approaches are able to provide accurate estimates of forest
structure [15–17]. However, the expertise required to achieve accurate measurements,
through strong camera geometry and accurate references of scale, as well as the high
computational requirements needed to conduct SfM workflows at a plot scale, in a timely
manner, have proved prohibitive to its operational adoption [14].

Recently, however, there has been an increase in the availability of LC3D technolo-
gies designed primarily for consumer applications. Most commonly, new LC3D devices
incorporate colour and depth (RGB-D) sensors, that operate on either time-of-flight (ToF) or
stereo triangulation approaches, to acquire range measurements. Devices utilising RGB-D
sensors, typically also incorporate an inertial measurement unit (IMU), allowing for near
real-time point cloud co-alignment using simultaneous localisation and mapping (SLAM)
algorithms [18]. This access to SLAM processing workflows, makes these RGB-D devices
similar to PLS in their mobile data acquisition. Furthermore, whilst available as standalone
LC3D devices, RGB-D sensors are beginning to see integration into familiar consumer
technologies, such as smartphones and tablets, increasing their accessibility both in terms
of sensor procurement and familiarity of use. It is within these aspects that RGB-D devices
may be a viable alternative over low-cost terrestrial photogrammetric approaches, as they
can rapidly capture forest environments and the resultant point clouds can be visually
assessed in near real time [19].

Current studies have largely focused on using active projection ToF RGB-D sensors
for acquiring structural measurements of forest environments. One of the first ToF RGB-D
sensors integrated into smartphones, was the Google Tango. This technology was utilised
by Tomaštík et al. [20], who captured forest plots to extract stem diameter at breast height
(DBH) and location, whilst investigating different SLAM capture paths. The authors found
that capture approaches that do not repeatedly view the same stem, achieved accurate
estimates of stem DBH and reduced the root-mean-square error (RMSE) (RMSE = 1.83 cm).
The authors also found that, revisiting stems throughout the capture appeared to improve
the accuracy of tree location estimates (stem position RMSE = 0.2 m), however, this resulted
in increased DBH measurement error. In Hyyppä et al. [21], the authors also investigated
the Google Tango technology, in comparison to the standalone Microsoft Kinect V1 active
stereo RGB-D device, to measure DBH (Tango RMSE = 0.73 cm, Kinect V1 RMSE = 1.9 cm).
As opposed to a continuous capture approach, trees were only measured individually, as
the authors found that when attempting to capture more than one stem with either device,
their performance became inconsistent, due to misalignment of depth frames caused by
SLAM positional drift and incidental duplicate stem observations. We previously explored
the use of the latest generation of the Microsoft Kinect Series, the Azure Kinect, a ToF
RGB-D device. In an attempt to remove the point cloud misalignment error caused by
SLAM drift, we used single depth images to estimate DBH. However, this approach was
not as accurate as complete stem captures due to single stem perspectives not accounting
for basal deformations within measured stems (RMSE = 8.43 cm) [22]. Recent studies have
focused on the ToF RGB-D sensor integrated into the Apple iPad 2020/2021/2022 Pro and
iPhone 13/14 Pro devices. The authors in Mokroš et al. [19], compared the Apple RGB-D
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sensor to the handheld PLS, stereo-camera SfM and TLS, for estimating stem diameter and
location in forest plots. They found that, of the technologies utilised, the Apple RGB-D
device provided the closest estimates of DBH compared to the TLS measurements (RGB-D
RMSE = 3.14 cm, TLS RMSE = 1.45 cm). In Gollob et al. [23], they also explored the Apple
RGB-D device and a series of different processing applications, in comparison to handheld
PLS in forest plots. Using the optimal sensor application, the authors achieved similar
DBH accuracy (RMSE = 3.13 cm). However, in this case, the Apple RGB-D device was
outperformed by the handheld PLS, even though it was the same sensor used by Mokroš et
al. [19] (GeoSLAM ZEB Horizon) (DBH RMSE = 1.59 cm). These Apple RGB-D technologies
have also been applied in urban forest environments. Similar to the aforementioned studies
in native forests, when measuring urban stem DBH, Wang et al. [24] found their optimal
capture approach (individual stems) achieved an RMSE of 2.78 cm. Furthermore, the
authors of Bobrowski et al. [25] found measurements of basal trunk flare derived with
the Apple iPad Pro 2020, comparable to those captured with TLS (iPad RMSE = 8.7 cm,
TLS RMSE = 7 cm). Whilst these previous studies have provided an assessment of the
performance of individual RGB-D devices, few have provided a direct comparison between
the technologies. It is therefore difficult to draw direct comparisons between RGB-D devices,
as depth camera specifications, SLAM algorithms, capture approach, and environmental
complexity all have an effect on overall performance.

Because of the limited range of these active projection RGB-D sensors (≤5.5 m under
optimal conditions), stem structural measurements are restricted to those that can be acquired
within this distance. Whilst passive triangulation RGB-D sensors may provide an extended
measurement range (≤15 m), to our knowledge only the authors of Tran et al. [26] have
explored these sensors for forest measurement, with other proximal passive remote sensing
studies preferring alternative photogrammetric approaches [15,27–30]. Using single depth
frames from the Intel Realsense D455 RGB-D device, Tran et al. [26] found measurements of
stem DBH and curve, to a height of 2.9 m, comparable to SfM and TLS approaches. However,
stem measurements at heights above this were difficult, due to sensor field of view (FoV) and
occlusion from canopy vegetation.

An additional challenge with RGB-D devices, is that even though a sensor may be
able to record depth frames, there is no guarantee that it will reconstruct an environment
using SLAM, due to insufficient feature matches within the device’s capture path. This
is because forest environments are one of the most difficult settings in which to conduct
spatial mapping ; the homogeneous texture and colour of features, as well as the presence
of complex geometry with soft edges, results in issues with object identification and loop
closure for drift correction [31]. Previous studies that have explored the application of RGB-
D devices, have largely utilised them in open forest environments or urban settings. This is
not consistent with the composition of native forest structures found within southeastern
Australia. The close proximity of vegetation and irregular vertical growth pattern of
eucalyptus species, increases the likelihood of repeat recordings of stems. This may result
in stem duplication or deformation, due to misalignment error as a product of SLAM
positional drift, when capturing stand information at a plot scale. Furthermore, the sparse
canopy structure found within native eucalyptus forests, promotes the growth of understory
vegetation elements around lower stem areas. The complex structure, soft edges, and
obscuring nature of this vegetation has the potential to disrupt SLAM positional tracking
and spatial mapping.

Within this context, the aim of this study is to: (1) investigate the effect of incidental
stem captures, due to stem density, on DBH measurements acquired with low-cost RGB-D
devices, (2) investigate the effect of understory vegetative elements, <1.3 m above ground
height (AGH), within the capture range of RGB-D sensors, on the accuracy of DBH measure-
ments captured with these devices, and (3) provide an inter-comparison between a selection
of current RGB-D technologies and their associated SLAM algorithms, for acquiring basal
stem measurements in urban and native southeastern Australian forest environments.



Sensors 2023, 23, 3933 4 of 21

2. Materials and Methods
2.1. Study Area

Two study areas were selected for this paper, in order to provide a range of stem
proximities and understory vegetation densities, to assess the effect these environmental
factors may have on RGB-D device performance. Royal Park, an urban park located in
Parkville, Victoria, in Melbourne CBD, was used as site one (S1). This park covers over
170 hectares and contains individual stems surrounded by maintained lawns, managed
garden beds, and smaller areas of eucalyptus forest. Vegetation present within the park is
primarily native to Australia, with the dominant captured species consisting of Eucalyptus
Ironbark (Eucalyptus sideroxylon), River Red Gum (Eucalyptus camaldulensis), and Yellow
Gum (Eucalyptus leucoxylon). S1 was used to assess the effect of stem proximity, and
incidental duplicate captures, on the performance of a selection of RGB-D devices when
estimating stem DBH measurements. A total of seven irregularly shaped plots, ranging
between approximately 80 m2 and 590 m2, and containing between 3 and 14 stems, were
established, where the effect of stem proximity could be observed. Plots were captured
until a range of stem diameters and distances between stems was achieved.

The second site, site two (S2), was located within the You Yangs National Park, located
approximately 55 km southwest of Melbourne CBD in Victoria, Australia. The national
park consists of a series of granite ridges and surrounding native woodlands, with a
maximum canopy height of approximately 15 m. Present throughout the plots is invasive
Boneseed growth (Chrysanthemoides monilifera), that provides elevated soft edged vegetation
with broad leaves. This soft edged understory vegetation surrounding stems, could be
used to assess the effect that it may have on the performance of RGB-D devices. At S2,
four sampling plots, 22.56 m in diameter, and containing between 9 and 25 stems, were
established, to match the size of field plots used within the Victorian Forest Monitoring
Program [32]. The information in Table 1 provides a summary of tree characteristics, and
Figure 1 depicts examples of vegetation composition across both sites.

Figure 1. Examples of characteristic vegetation within each site environment. (a) Less dense stems at
S1, (b) more dense stems at S1, (c) less dense surrounding understory vegetation at S2, and (d) more
dense surrounding understory vegetation at S2.
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Table 1. Stem counts, Please confirm color on table and please confirm table format. diameter at
breast height (DBH) characteristics, and dominant species within site one (S1), at Royal Park (urban
parkland), and site two (S2), at the You Yangs National Park (native woodland).

Site Stem Count DBH Mean DBH IQR Dominant Species

S1—Royal Park 60 34.9 cm 47.8 cm

Ironbark
(Eucalyptus
sideroxylon)

River Red Gum
(Eucalyptus

camaldulensis)
Yellow Gum
(Eucalyptus
leucoxylon)

S2—You Yangs 79 23.1 cm 19 cm
Yellow Gum
(Eucalyptus
leucoxylon)

2.2. RGB-D Devices

Three RGB-D devices were selected, to assess the effect that stem density and under-
story vegetation elements may have on the accuracy of basal measurements derived from
these technologies. The RGB-D devices used within this study were: (1) the Microsoft
Azure Kinect (henceforth Kinect) (Microsoft Corp., Redmond, WA, USA) [33], (2) the Ap-
ple iPad Pro 2020 (henceforth iPad) (Apple Inc., Cupertino, CA, USA) [34], and (3) the
Stereolabs Zed 2 (henceforth Zed) (Stereolabs Inc., San Francisco, CA, USA) [35]. These
devices were selected as they represent both RGB-D sensors integrated into consumer
technologies (iPad), and those that require integration with a CPU, data storage, and an
external power source (Kinect and Zed) but offer greater flexibility in surrounding capture
and processing settings. These devices also demonstrate RGB-D technologies with bespoke
SLAM algorithms designed for the device (iPad = Apple ARKit; Zed = Zed Fusion), or
those that require integration with an open source algorithm (Kinect = RTAB-Map). Lastly,
they provide an example of two common depth sensing approaches, in ToF RGB-D (iPad
and Kinect) and passive stereo (PS) triangulation RGB-D (Zed).

The following sections present an outline of the capture and processing approaches
used to acquire 3D representations of stem structures with these RGB-D devices and their
associated SLAM algorithms.

2.3. RGB-D Data Capture

Across both S1 and S2, the capture approach to acquire depth image streams was kept
consistent with all three RGB-D devices. At both sites, a continuous capture approach was
used to acquire depth image streams. After each plot had been established, a starting stem
was identified, based on its location towards the edge of a group of stems or plot. Holding
the RGB-D device at a height of approximately 1.3 m—angled down slightly to keep the
ground within view (approximately 10◦), and facing towards the stem at a distance of
1 m—the depth image capture was started. The operator then moved at a slow walking
pace (approximately 0.7 m per second) around the stem, until it had been captured from
all angles (Figure 2). Care was taken to ensure that object surfaces did not pass within
the self-occlusion range of each RGB-D sensor (ToF ≤ 0.3 m, PS ≤ 0.5 m), to reduce the
number of dropped depth frames that may introduce SLAM error. Once the first stem had
been completely captured, the operator slowly walked the device to the next closest stem,
making sure that the slight downwards facing angle of the sensor was maintained and
attempting to avoid any abrupt movements. This downward angle ensures that ground
surface points continued to be captured, as depth frames absent of depth measurements
may also introduce SLAM error, due to a lack of feature matches. This process was repeated
until all stems within the target area had been captured.
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In addition to the continuous capture approach, an individual stem capture approach
was also conducted. The justification behind this was twofold. Primarily, this was to ensure
that all stems within each plot were represented, even if the SLAM algorithm failed to
co-align depth frames, by losing its spatial position estimate due to complex understory
vegetation, when moving between stems. Furthermore, it also provided another point of
reference for assessing the effect of duplicate stem captures, that may be present with a
continuous capture approach. For individual stem captures, the same approach was used
regarding sensor height, distance, and orientation in relation to the target stems, the only
point of difference, being that depth image capture was stopped when moving between
stems and a new capture begun for each tree within the plot.

Due to active projection RGB-D devices experiencing increased noise and reduced
capture range under strong ambient lighting conditions [22], depth recordings with RGB-D
devices were conducted under partial cloud (S1) and overcast (S2) conditions.

Figure 2. (a) Depicts how colour and depth (RGB-D) devices were held relative to each stem
during capture, (b) shows how each stem was circumnavigated using both the individual stem and
continuous capture approaches, and (c) provides an example of the path used to move the RGB-D
devices through a plot at S2, native woodland, using the continuous capture approach.

2.3.1. Azure Kinect Data Capture Parameters

The depth sensor included within the Kinect device, acquires range measurements on
the basis of active projection ToF. Based on our previous work, we determined the optimal
capture parameters for the Azure Kinect sensor in an outdoor environment, to be a narrow
FoV with binned depth pixels (resolution = 320 × 288 pixels, FoV = 75◦× 65◦) [22]. Using
the K4Aviewer software, provided by Microsoft as part of the Azure Kinect development
kit, and the aforementioned capture settings, depth images and associated inertial data
from the device’s IMU were recorded, at intervals of 30 frames per second. Once RGB-D
recordings had been captured at each site with the Kinect, the software RTAB-Map was
used to generate 3D point clouds of each capture path [36]. RTAB-Map provides a graph-
based SLAM solution, that can be applied to a range of supported RGB-D devices, to create
a spatial map of the recorded environment, composed from the registered depth frames.
Within RTAB-Map, the maximum depth range was limited to 3 m, and IMU recordings
were filtered and smoothed using the provided Magdwick algorithm. The distance of 3 m
was selected for depth range based on initial exploration with RTAB-Map and previous
research with the Kinect device [22]. RGB camera frames were used, as opposed to near
infrared (NIR) frames, for feature detection, due to sufficient lighting during the capture
process. The resultant spatial maps were then exported as point clouds for assessment.
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2.3.2. iPad Pro Data Capture Parameters

The RGB-D sensor incorporated within the iPad is a ToF sensor, and therefore operates
with the same depth acquisition principals as the RGB-D sensor within the Kinect. Due
to being integrated into a tablet, there are a series of applications available to the iPad
device, that can be used to capture, pre-process and visualise 3D point clouds. In this
study, we used the SiteScape application (Version 1.3) [37] (SiteScape Inc., New York,
NY, USA). This application was selected based on the previous study by Gollob et al.
[23], who assessed a series of available applications for the iPad device, with their results
suggesting that the SiteScape application was the most accurate when acquiring stem
DBH measurements. Furthermore, in the version of the software that we used, the iPad
display overlaid the captured point cloud on top of real-time imagery of the scene, captured
with the RGB camera, providing augmented reality feedback to the operator. This made
it easier to identify target stems in structurally complex forest environments. Based on
the findings of Gollob et al. [23], and our initial exploration with the application, the
following capture settings within the software were used: scan mode = maximum density,
point density = high, and point size = low.

A major point of difference between the iPad and the two standalone Kinect and Zed
RGB-D devices, is that depth measurements were automatically aligned and visualised as a
point cloud on the tablet’s screen, allowing for visual assessments of point cloud quality to
be conducted in near real time. Furthermore, where the standalone sensors could capture
indefinitely, until they run out of battery or storage space, the iPad only recorded for a
certain number of points (based on application capture parameters and data size) before
automatically stopping. In this case, a new recording was immediately started where the
last ended, and the scan path finished when conducting the continuous capture approaches.
As SiteScape is able to hold position within the arbitrary coordinate space established
within the first scan, the resultant point clouds from subsequent scans were easily checked
for alignment and fused afterwards within CloudCompare (CloudCompare, ver. 2.11.3,
Paris, France) [38]. Due to limited control surrounding depth measurements and the SLAM
process with the iPad, the maximum depth measurement range of the sensor during spatial
mapping could not be reduced. Therefore, all depth measurements, up to a maximum
sensor distance of approximately 5.5 m, were considered.

2.3.3. Zed2 Data Capture Parameters

The Zed RGB-D sensor captures depth frames on the basis of passive triangulation.
This approach estimates the distance between the sensor and objects based on feature
matches between pixels and the baseline distance between the optical centre of each
camera. Stereo image streams were acquired using the ZEDexplorer application provided
by Stereolabs. Within the software, the default camera configuration was used, except
for the following settings: image resolution = 1920 × 1080, frames per second = 30, and
image enhancement on. Stereo image recordings captured from both sites were then loaded
into ZedFusion. This application takes the stereo image stream and the sensor calibration
file provided with, and unique to, each Zed device and creates depth frames from the
paired stereo images. These stereo images are then used to create a spatial map of the
captured environment using the in-built SLAM algorithm included within ZedFusion.
When processing the Zed spatial map, depth measurements were limited to 3.5 m. This was
done as, whilst ZedFusion allows for range measurements up to 10 m during the SLAM
process, it was found, during initial exploration, that when processing with measurement
ranges greater than this, there was an increased likelihood of duplicate stem representations
in the resultant point cloud. The spatial map of each recording was then exported as a
point cloud, for further analysis.

2.4. TLS Data Capture

Point clouds captured with a Trimble TX8 TLS, were used as a reference to validate the
performance of the RGB-D devices. Whilst there are still observational errors within TLS
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datasets, it is considered to be the benchmark sensor that emerging terrestrial 3D remote
sensing technologies are compared to within forested environments [4,39]. The TX8, costing
approximately USD 70,000, operates on the basis of ToF, emitting pulses of NIR EMR and
using the travel time for a pulse to reflect off a surface within the environment and return
to the sensor to provide an accurate estimate of the distance to that object [40]. Based on
this range estimate and the angle at which the pulse was emitted, the location of the surface
can then be determined relative to the sensor.

At S1, scan stations were placed at 10 m intervals, until all faces of each stem within
the target area were captured. For S2, a seven scan approach was used, to acquire point
clouds of each plot. This incorporated a single scan at the centre of the plot and six scans
towards the exterior boundary of the plot, approximately 10 m from the plot centre, located
at 60◦ intervals from the centre scan. TLS point clouds were processed using the Trimble
Realworks 11.1 software (Trimble Inc., Sunnyvale, CA, USA), native to the TX8. Scans
were automatically co-aligned using the cloud based registration tool. After automatic
registration the location of each scan station was visually assessed and manually adjusted
where considered necessary, before refining the registration until an acceptable level of error
was achieved (<10 mm). Registered point clouds were then exported for the extraction
of metrics.

2.5. Point Cloud Processing and Stem Diameter Estimation

Point clouds derived from both the RGB-D sensors and their associated SLAM algo-
rithms, and the TLS, were visually assessed and edited for noise using a nearest neighbour
approach, within CloudCompare. TLS point clouds were then cropped to the extent of each
plot. This was done manually for the irregular shaped plots captured at S1, making sure
to include all stems captured with RGB-D devices, and automatically, using an in-house
Python library and a 12 m radial crop, based on the central TLS scan location, for the plots
captured at S2. This step was not required for the RGB-D point clouds, as the limited range
of the sensors and SLAM depth threshold, meant that only the stems of interest and directly
surrounding environmental features were captured.

The cleaned point clouds were then imported into 3DForest (National Land Survey
Service, ver. 0.52, Helsinki, Finland), an open source software for visualising and measuring
common stem and crown attributes from point clouds of forest structures [41]. Ground
points were first segmented from each point cloud using an octree approach, with a 10 cm3

voxel resolution. This approach classifies the points within the lowest filled voxels as the
ground layer and all other points as vegetation. Individual stems are then identified from
the vegetation points using the automatic segmentation tool, as described in Avery and
Burkhart [5]. When conducting automatic segmentation, the following parameters where
used: voxel size = 5 cm3, descriptor threshold value = 70%, iterations = 5, voxels in element
= 100, distance from terrain = 0.5 m, and descriptor variable = principal component analysis.
Stems were then visually assessed for correct segmentation, left over vegetation points
were removed, and segmentation was repeated on still grouped stems, using a finer 2 cm3

resolution. Stem base position was then estimated as the median coordinate for all stem
points above the classified ground points and 1 m AGH. These points were considered
to account for any stems that had significant basal sweep, that may otherwise estimate
their stem location away from their DBH measurement location. For some stems captured
with RGB-D devices at S2, there was poor representation of ground features through dense
understory vegetation. In these cases, the ground height was considered to be the height of
the lowest 98th percentile of points within the cloud. Stem DBH values were then estimated
using the ground height at stem location for the reference and a least squares regression
(LSR) fit at 1.3 m AGH. This process was repeated with both continuous and single stem
captures from all devices (RGB-D and TLS) across both sites.
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2.6. Stem Density and Soft Edged Vegetation Estimation

Stem proximity and understory vegetation volume was estimated using the TLS
reference point cloud datasets. At S1, proximity values were assigned to each tree using the
distance to the next closest stem within the target plot. The rationale behind this metric, is
that a tree with a shorter distance to another target stem will have an increased likelihood
of being accidentally captured multiple times, due to being within the depth measurement
range of an RGB-D device whilst another stem is the target. Therefore, this means that
whilst the surrounding stems are being captured, there is an increased chance of a duplicate
capture occurring that, due to SLAM positional drift, may result in misalignment error.
Due to the different maximum depth ranges of each RGB-D device, this duplicate capture
distance varied between each instrument.

For S2, estimates of understory vegetation volume (≤1.3 m AGH) surrounding each stem
was calculated. This was conducted for each stem, by extracting circular subplots (2 m radius
for Kinect assessment, 2.5 m radius for Zed assessment, and 4.5 m for iPad assessment) for each
stem within each plot. The radius of these subplots was determined by the depth measurement
range of each RGB-D device, e.g., as the Kinect depth measurements were limited to 3 m and
the sensor was held 1 m away from the face of the stem, the 2 m radial subplot represents the
area within range of the sensor. Each subplot was then cropped further, to points ≤1.3 m AGH,
this was to consider all understory vegetation below RGB-D sensor height. A cloth simulation
filter was then used to segment and remove ground points [42]. The parameters used with this
cloth simulation filter were: grid resolution = 0.24 m, class threshold = 0.03 m, time step = 0.6 s,
iterations = 1000, and rigidity = 3. The target stem was then extracted from each subplot, and
soft vegetation volume calculated. This approach involved first creating a voxel space for each
subplot, composed of 10 mm3 cells. As the upper layer of the understory vegetation occludes
elements beneath it, volume was calculated using the highest point return within each voxel
column and considering all space beneath it as filled. Vegetation volume was then calculated as
the sum of all filled voxels.

2.7. Stem Diameter Measurement Analysis

Stem DBH estimates derived with the RGB-D devices, were compared to estimates
derived with the TLS, across both sites. To compare performance between the RGB-D
devices, scatter plots comparing the DBH acquired with each RGB-D device to TLS estimates
were generated, and the RMSE and root-mean-square percentage error (RMSPE) for each
RGB-D device at S1 and S2 were calculated. Plots were also generated comparing the stem
proximity value (S1) or understory vegetation volume (S2), to stem DBH RMSE. Welch’s
t-test was used to assess if there was a significant different within DBH measurement error
between stems within the duplicate capture range of each RGB-D device captured at S1,
with the continuous approach and the individual approach (absent of incidental duplicate
captures caused by stem proximity). A Pearson’s correlation coefficient statistical test was
conducted to check for a significant relationship between understory vegetation and the
DBH error observed at each stem, with each RGB-D device, at S2. In addition, RGB-D point
clouds, captured at both sites, were visually assessed for misalignment error or incomplete
stem representation, in comparison to point clouds derived with the TLS. For the Kinect
and Zed devices, the raw depth imagery was also visually inspected.

3. Results
3.1. Colour and Depth Sensor Performance

The number of stems successfully reconstructed at each site, with each RGB-D device
and approach, and the DBH measurement error, is presented in Table 2. Across both sites,
and using both approaches, the iPad achieved the lowest RMSE when estimating DBH,
when compared with TLS measurements (Figures 3 and 4). At S1, the Zed was observed to
have the next lowest RMSE with both capture approaches. However, at S2, when using
the individual stem capture approach, the Kinect device achieved a lower comparative
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DBH RMSE. Furthermore, across both sites and capture approaches, the Kinect was able to
successfully reconstruct point clouds of more stems than the Zed device.

DBH estimates acquired across both sites, that used an individual stem capture approach,
resulted in lower RMSE. The exception to this, was for the Zed device at S2 (Figure 4c,f).
However, although the Zed reported lower DBH RMSE when using the continuous capture
approach at S2, it was only able to represent 28/79 stems, compared to the 66/79 reconstructed
using the individual capture approach. Using the individual stem capture approach also allowed
an increased number of stems to be successfully described with the Kinect and Zed devices,
across both sites (Table 2). Whilst the iPad also captured more stems at S2 with the individual
capture approach, it was able to capture point cloud representations of all stems at S1 with both
data acquisition methods.

For both sites, the Kinect device was observed to overestimate DBH measurements
when using both capture approaches, when compared to TLS values (Table 2). Conversely,
the iPad and Zed devices underestimated stem DBH measurements across both sites. The
exception to this was at S2 when using the Zed device and the individual stem capture
approach, where there was observed to be a slight positive bias.

Figure 3. Stem diameter at breast height (DBH) estimates captured at site 1 (S1), in urban parkland,
using colour and depth (RGB-D) sensors, and compared to terrestrial laser scanning (TLS) measure-
ments. (a) Microsoft Azure Kinect individual stem capture, (b) Apple iPad Pro 2020 individual stem
capture, (c) Stereolabs Zed 2 individual stem capture, (d) Microsoft Azure Kinect continuous capture,
(e) Apple iPad Pro 2020 continuous capture, and (f) Stereolabs Zed2 continuous capture. The red ×
symbols along the x-axis represent the measured TLS DBH of stems that were unable to be captured
using the respective RGB-D device.

Table 2. The number of stems successfully represented, and the root-mean-square error (RMSE) and
bias of the stem diameter at breast height (DBH), for the colour and depth (RGB-D) devices at both
site 1 (S1) and site 2 (S2). The * symbol denotes that some stems were unable to be captured beyond a
point within the plot, due to loss of positional estimate within the SLAM spatial mapping process.

RGB-D Sensor
Individual Capture Continuous Capture

Stems Captured DBH RMSE DBH Bias Stems Captured DBH RMSE DBH Bias

Site 1: Urban Parkland

Microsoft Azure Kinect 57/60 3.72 cm 3.1 cm 56/60 4.96 cm 2.5 cm
Apple iPad Pro 2020 60/60 2.17 cm −0.9 cm 60/60 3.32 cm −0.9 cm
Stereolabs Zed 2 54/60 2.82 cm −1.3 cm 47/60 3.98 cm −1.4 cm
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Table 2. Cont.

RGB-D Sensor
Individual Capture Continuous Capture

Stems Captured DBH RMSE DBH Bias Stems Captured DBH RMSE DBH Bias

Site 2: Native Woodland

Microsoft Azure Kinect 74/79 3.34 cm 2.7 cm 48/79 * 3.91 cm 3 cm
Apple iPad Pro 2020 76/79 2.15 cm −1.1 cm 70/79 3.13 cm −2.2 cm
Stereolabs Zed 2 66/79 3.89 cm 0.1 cm 28/79 * 3.62 cm −0.9 cm

Figure 4. Stem diameter at breast height (DBH) estimates captured at site 2 (S1), in native woodland,
using colour and depth (RGB-D) sensors, and compared to terrestrial laser scanning (TLS) measure-
ments. (a) Microsoft Azure Kinect individual stem capture, (b) Apple iPad Pro 2020 individual stem
capture, (c) Stereolabs Zed 2 individual stem capture, (d) Microsoft Azure Kinect continuous capture,
(e) Apple iPad Pro 2020 continuous capture, and (f) Stereolabs Zed2 continuous capture. The red ×
symbols along the x-axis represent the measured TLS DBH of stems that were unable to be captured
using the respective RGB-D device.

3.2. Effect of Stem Proximity on RGB-D DBH Estimates

DBH measurement error, present within RGB-D observations, in relation to stem prox-
imity, is shown in Figure 5. When visually assessing point clouds captured at S1, all three
RGB-D devices were observed to experience some form of misalignment error, as a result of
duplicate stem captures and positional drift, where a stem fell within the observation range
of another stem for that specific RGB-D device. Despite this misalignment error however,
no significant difference in RMSE was observed for stems within the duplicate capture
range of another tree for the individual and continuous capture sets (iPad t(36) = 1.11,
p = 0.27; Kinect t(16) = 1.44, p = 0.16; Zed t(10) = 0.27, p = 0.79).

Using the iPad, of the trees captured at S1, 40 stems fell within the 4.5 m duplicate
capture range of this device (Figure 5b). The RMSE of these 40 stems, when using the
continuous capture approach, was 2.32 cm, with a mean observed TLS DBH of 26 cm
(RMSPE = 8.9%). The remaining stems that did not experience duplicate capture, had a
DBH RMSE of 4.72 cm and a mean DBH of 52.6 cm (n = 20, RMSPE = 9%). Using the Zed
device, 23 captured stems were within the 2.5 m duplicate capture range (Figure 5c). Of
these stems, 11 failed to capture with the Zed and the remaining 12 had a DBH RMSE of
3.9 cm, with a mean DBH of 23.5 cm (RMSPE = 16.6%). The stems outside of this range, had
a DBH RMSE of 4.01 cm, with a mean DBH of 48.9 cm (n = 35, RMSPE = 8.2%). The Kinect
had a total of 21 stems within the 2 m duplicate capture range of the device. Three of these
stems failed to capture with the Kinect device, with the remaining 18 having a DBH RMSE
of 5 cm, with a mean DBH of 17.7 cm (RMSPE = 28.2%). The rest of the stems outside the



Sensors 2023, 23, 3933 12 of 21

duplicate capture range of the Kinect, had an RMSE of 4.93 cm and a mean DBH of 45.4 cm
(n = 38, RMSPE = 10.9%).

Figure 5. Stem diameter at breast height (DBH) measurement error (cm) derived from colour and
depth (RGB-D) sensors, and the distance from target stem to the next closest stem. (a) Microsoft
Azure Kinect, (b) Apple iPad Pro 2020, and (c) Stereolabs Zed 2. The symbol size and colour around
points represents the DBH of each stem measured with terrestrial laser scanning (TLS). The red ×
symbols on the x-axis represent trees that were unable to be captured using the respective RGB-D
sensor and the distance to the next closest stem within their plot. The grey shaded section on each
plot represents the range in which duplicate stems could occur for each RGB-D sensor.

3.3. Effect of Understory Vegetation on RGB-D DBH Estimates

The plots established at S2, native woodland, were used to assess the effect of un-
derstory vegetation (≤1.3 m) on the DBH estimates derived by the RGB-D devices. When
using the continuous capture approach, the iPad was the only device that was able to
maintain SLAM spatial tracking within all four plots. When using the Kinect device, 25/31
(81%) failed stem captures were due to a loss of spatial tracking within the SLAM algorithm,
that resulted in depth images failing to co-align. This loss of spatial positioning occurred
within plot one (understory cover = 56.6% and volume = 43.5%) and plot four (understory
cover = 35.7% and volume = 27.4%). The Zed device experienced similar issues, with 47/51
(92%) failed captures being due to a loss of positional estimate within the SLAM process.
Both the Kinect and Zed devices were only able to maintain SLAM spatial tracking for the
entirety of plots two (understory cover = 42.3% and volume = 32.6%) and three (understory
cover = 17.4% and volume = 13.4%).

When the individual stem capture approach was used, all devices were able to recon-
struct a greater number of stems, compared to when using the continuous capture approach
(Table 2). For DBH values derived from the Kinect device (Figure 6a), there was observed
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to be a low, but significant, correlation between DBH error and surrounding understory
vegetation volume (r(72) = 0.24, p = 0.04). Conversely, no significant relationship was
observed between DBH measurement error and understory vegetation volume within the
measurement range of successfully captured stems when using the iPad and Zed devices
(iPad p = 0.55, Figure 6b; Zed p = 0.86, Figure 6c). Furthermore, the iPad and Zed devices
both presented very low correlation between DBH error and understory vegetation volume
(iPad r(72) = −0.07, Zed r(64) = 0.02).

Figure 6. Stem diameter at breast height (DBH) measurement error (cm) derived from colour and
depth (RGB-D) sensors, and the volume of understory vegetation surrounding each stem within
RGB-D device range and below device height (1.3 m). (a) Microsoft Azure Kinect, (b) Apple iPad Pro
2020, and (c) Stereolabs Zed 2. The symbol size and colour around points represents the DBH of each
stem measured with terrestrial laser scanning (TLS). The red × symbols on the x-axis represent trees
that were unable to be captured using the respective RGB-D sensor and the volume of understory
vegetation within the capture range of that stem.

4. Discussion

This study investigated the impact of stem proximity and surrounding sub-canopy
vegetation (≤ 1.3 m AGH) on measured stem DBH, when using contemporary consumer
grade RGB-D devices, providing an accuracy performance for each. This was done by
analysing data collected across urban parkland, to assess stem proximity and incidental
duplicate captures, and native southeastern Australian woodland, to assess sub-canopy
vegetation density, using individual stem and continuous capture approaches, and com-
paring them to TLS. The RGB-D devices used within this study, were either standalone
(Kinect and Zed) or integrated into consumer devices (iPad), and provided examples of
common depth sensing technologies, in the form of active projection ToF (Kinect and iPad)
or passive triangulation (Zed). Each RGB-D device had an associated SLAM algorithm,
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used to register individual depth frames together and create point cloud representations
of stem structures. However, as a result of this, it is difficult to decouple error from that
which originates within the depth imagery or the SLAM registration process. The following
sections provide discussion points surrounding sensor performance, the effect of the inves-
tigated environmental factors, RGB-D sensor limitations, and future research directions for
this low-cost technology.

4.1. Sensor Performance

Sensor performance was assessed for tree allometry for the Kinect, iPad, and Zed. Of
the three RGB-D devices, the iPad was observed to have the best performance, presenting
the lowest DBH RMSE and successfully resolving the greatest number of stems, across
all sites and using both data capture approaches. The results for the iPad DBH RMSE
derived from the continuous capture approach (S1: urban parkland DBH RMSE = 3.32 cm,
S2: native woodland DBH RMSE = 3.13 cm), correlate with those reported within previous
studies by Gollob et al. [23] and Mokroš et al. [19] who, when using the iPad in open forest
environments, reported DBH RMSEs of 3.13 cm and 3.14 cm, respectively, from similar
capture approaches.

Within the urban parkland environment, the stems that failed to be represented with
the Kinect and Zed devices all had TLS DBH values ≤ 8.6 cm and ≤ 10.4 cm, respectively.
The exception to this, was a single tree reconstructed by the Kinect device that, whilst
having a DBH value of 26.2 cm, had low branches, resulting in foliage around sensor
height, that prevented an unobscured and complete view of the stem. This obfuscation
of stems was also observed within the native woodland plots. In addition, large trees
(DBH ≥ 20 cm) were sometimes unresolved, due to a loss of SLAM position when using
the continuous capture approach. Where stems with DBH values < 15 cm were resolved
by any of the three RGB-D devices, the representation of overall stem structure was poor,
due to either noise off the face of the stem, sparse point density, or only once face of the
stem being characterised (Figure 7g–i). These results concur with findings from previous
studies, where the representation of stems with DBH ≤ 10 cm to ≤15 cm, are inconsistently
resolved when using RGB-D devices [19,23,25].

For all of the assessed RGB-D devices, the individual stem capture approach achieved
a lower DBH RMSE. This agrees with the authors of Bobrowski et al. [25], who, when using
the iPad device, found that there was a significant difference in stem perimeter at breast
height (PBH) estimates between scanned groups of three and six trees, with the scanned
groups of three stems resulting in lower measurement errors. Individual tree captures
also resulted in an increase in the number of stems that were successfully represented by
the Kinect and Zed across both sites and the iPad in native woodland plots. This increase
in representation was more evident within native woodland, and was due to limitations
within the Zed and Kinect SLAM algorithms. A complete loss of spatial position estimates
during data acquisition, resulted in all trees subsequent to the loss of position to be missing
in the final point cloud, due to depth frames no longer being aligned. While it is difficult
to identify the precise cause, the positional estimate of the device being lost is likely due
to the increased complexity of vegetation features within these native woodland plots, as
opposed to the urban parkland environment. This understory vegetation obscures the
RGB-D sensor’s view of the ground surface, that would otherwise act as a consistent plane
of reference for the fusion of depth images; and the abundance of soft edged vegetation,
comprising homogeneous colour and texture, complicates the identification of unique
feature points.
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Figure 7. Examples of depth image misalignment error, from the continuous stem capture ap-
proach, as a result of incidental duplicate captures, with (a) Microsoft Kinect, (b) Apple iPad, and (c)
Stereolabs Zed 2 colour and depth (RGB-D) devices (TLS DBH = 74.8 cm); and examples of depth
image misalignment error as a result of simultaneous localisation and mapping (SLAM) drift with
(d) Microsoft Kinect, (e) Apple iPad, and (f) Stereolabs Zed 2 colour and depth (RGB-D) devices (TLS
DBH = 68 cm). While stems ≤ 15 cm can be represented, they are often poorly so (TLS DBH = 7.5 cm):
(g) Microsoft Kinect, (h) Apple iPad, and (i) Stereolabs Zed 2.

The iPad was more resilient to this effect. Due to the black-box nature of the device’s
SLAM algorithm, and limited access to raw depth imagery however, determining the
direct cause of this is difficult. Based on the visual assessment of point clouds achieved
with the iPad, it is speculated that there may be noise filtration of raw depth images as
a pre-processing step, before being co-aligned with the Apple SLAM algorithm. Such
a noise filter would remove much of the complex geometry of low canopy foliage and
understory vegetation present within the native woodland plots, and would explain its
limited representation within iPad point clouds. This proposition is further supported by
the negative bias reported within stem DBH estimates derived from the iPad device, a likely
outcome of the filter, which would remove the back scatter noise that is the result of mixed
NIR reflectance depth pixels along the edge of stem objects. In contrast, the Kinect device
operates on the same ToF RGB-D approach, but uses the raw depth images within the SLAM
process, it is this backscatter edge effect that likely results in the positive bias present within
DBH estimates acquired with this device. Although the iPad provided representations of
hard surfaces of stem features, due to much of the softer vegetative material being absent
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from scans, this device may not be appropriate for describing vegetation other than large
woody structures.

Whilst the single stem approach resulted in lower measurement error, it is important
to note that capturing individual stems, as opposed to continuous capture, resulted in
longer acquisition times. On average, capturing an 11.28 m radial plot, comprising between
15 and 27 stems, took between five and seven minutes. Comparatively, the single stem
approach took between 15 and 18 min for the same plots. However, much of this time was
spent stopping and starting sensor capture, and checking for successful output. Although
not assessed in this study, the individual stem capture approach also limits the capture
of plot-scale inventory metrics, such as stocking density and stem location. A potential
solution to these issues may utilise a continuous depth stream capture, to reduce capture
time and allow for assessment of plot-scale vegetation metrics, that can then be broken
down into each individual stem capture for extraction of metrics.

4.2. Effect of Stem Proximity and Understory Vegetation

Previous studies have shown that prior generations of RGB-D devices have expe-
rienced substantial misalignment errors, resulting from continuous capture approaches,
that cause repeat observations of tree structures [20,21]. Whilst recent studies have largely
explored the Apple iPad RGB-D device for measurements of basal forest structure, these
studies have been conducted in open forest environments [8,19,24,25,43]. This study sought
to better understand the effect of duplicate stem observations on contemporary RGB-D de-
vices and how they perform in native woodland environments with understory vegetation
of varying complexity.

Although evidence of misalignment error due to incidental duplicate captures and
SLAM positional drift was visible within the RGB-D point clouds (Figure 7), there was
not observed to be a significant difference in stem DBH error when comparing estimates
acquired with the continuous and individual stem capture approaches. It should be noted,
that the smaller capture ranges of the Zed and Kinect devices, compared to the iPad, as well
as their inability to consistently resolve stems with DBH ≤ 15 cm, led to smaller sample
sizes and therefore reduced statistical power.

Based on the visual assessment of RGB-D point clouds, duplicate captures of stems
resulted in points derived from incidental observations of stem faces being slightly misplaced,
either off the face of points from the intended stem capture, or more often in the case of
larger diameter stems, overlapping the deliberate observation. This slight misalignment,
however, is further reduced when estimating stem DBH, as the LSR diameter estimation
approach places a best fit circle through the mean distribution of points, effectively smoothing
misalignment error. Slight misalignment error was also visible within point clouds of stems
captured with the individual stem approach. This is because of SLAM drift whilst the operator
circles around an individual stem, as well as accidental over observation of a stem as a result
of capturing past the initial capture point on a stem face, resulting in re-observation. An
example of this is presented within Figure 7d–f). Whilst care was taken to avoid this as much
as possible, it is outside of operator control in the case of drift, and difficult to consistently
avoid in the case of re-observation. However, this error was less than that observed within
the continuous capture approach. The authors of Bobrowski et al. [25], found that multiple
rotations around a stem increased the accuracy of tree PBH estimates when using the iPad
device. However, they could not discern why this effect was observed. We speculate this
may be due to overlapping observations of stem structure and SLAM drift reducing the
negative bias associated with the stem DBH observations we observed with the iPad device.
Regardless, it is evident that, where earlier iterations of RGB-D devices—such as the Google
Tango and the Microsoft Kinect V1—struggled with the continuous capture of multiple stem
structures, as suggested by Hyyppä et al. [21], the current generation of RGB-D devices were
more successful when utilising a continuous plot-scale capture approach, particularly in open
forest environments, such as the urban parkland investigated at S1. While contemporary
RGB-D sensors contain improved imaging hardware compared to previous generations, it is
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likely that the smaller misalignment error resulting from incidental duplicate observations
of stem faces, experienced by current RGB-D devices, is a result of advancements within
SLAM algorithms, IMU accuracy, and computational power. However, as reported by Gollob
et al. [23], RGB-D devices still struggle with actively revisiting stems that have previously
been captured, resulting in larger misalignment errors. This is likely because the loop closure
process, used by SLAM algorithms to reduce positional drift, is reliant on recognising the re-
visitation of uniquely unidentified environmental features. Where RGB-D SLAM algorithms
are designed primarily for use within man-made environments, this means that in forests
with homogeneous colour and texture, as well as soft edged surfaces, this can be difficult.

While there was not observed to be a significant relationship between the volume of
understory vegetation within the capture range of each RGB-D device and DBH error when
capturing individual stems, the structural complexity of understory vegetation within the
sensor’s view is likely what caused the SLAM algorithms used by the Kinect and Zed
devices, to lose positional estimate within two of the plots. It is, however, difficult to
quantify the exact environmental conditions that resulted in this error. The exception to
this was with the Kinect sensor within one plot, where understory vegetation passed too
close to the RGB-D sensor, resulting in self-occlusion and loss of depth imagery for five
frames (one-sixth of a second). This was enough for the RTAB-Map SLAM algorithm to
lose spatial positioning. The iPad was the most robust in this case, and as mentioned before,
this is likely due to some form of noise filtration that takes place before the SLAM process,
as much of the finer vegetation elements present within the TLS point clouds are absent
from the final iPad point clouds. The black-box nature of the Apple API, makes it difficult
to accurately identify what is occurring.

4.3. RGB-D Limitations and User Experience

One of the major benefits offered by RGB-D devices that have been incorporated into
handheld devices, such as mobile phones and tablets, is that they present the opportunity
to rapidly acquire and visualise point clouds in near real time. It is due to this visualisation
of point cloud imagery, as well as the small form and light weight of the device, that
the iPad offered the best user experience of the technologies assessed within this study.
This increasing integration of RGB-D sensors within consumer devices, lowers the barrier
of entry for acquisition of 3D representations of basal forest structures, both in terms of
hardware accessibility and familiarity of use. However, whilst the extraction of simple
and common forest inventory metrics is available with some applications, such as the
ForestScanner application for Apple RGB-D devices [43], there are limitations with access to
raw depth images or point cloud data, and further expertise is required for the processing
and extraction of more complex metrics, such as basal taper and sweep.

While RGB-D devices share similarities with PLS, the FoV of the sensor is limited to
directly in front of the device. This means that each stem has to be manually identified by the
operator and circumnavigated. Whilst this is relatively straightforward in urban parkland,
open forests, and managed plantation environments, it was found to be more difficult
in the native woodland plots, where, in some situations, dense understory vegetation
obstructed the visibility of target stem faces and inhibited the operator’s path around
the stem. Furthermore, to acquire reliable inertial data, the device should be moved
through the plot in a smooth and controlled manner—something that is difficult if the
view of the ground is obstructed, uneven, or there are tripping hazards, such as fallen
limbs, present within the plot. Because of this, the most reliable data capture approach
in such environments is likely an individual stem capture approach, that also resulted
in lower DBH RMSE. However, this capture approach foregoes the acquisition of other
important plot-scale metrics, such as stem position, and can make it difficult to validate
whether a captured stem located close to a plot boundary, should be considered within the
inventory sample.

Beyond this, one of the greatest drawbacks associated with RGB-D devices is their
capture range, that limits structural measurements to the lower basal areas of stems. Whilst
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this may be somewhat overcome by panning the device up stems to capture their elevated
structure, it was found in initial exploration, that this may introduce duplicate captures if
the device is panned back down the stem, and losing view of the ground plane may also
introduce further misalignment error.

4.4. Future Opportunities

Current RGB-D SLAM algorithms are designed primarily for use within built environ-
ments and indoors, where the sensors components operate best. The development of SLAM
algorithms specific to forest environments would likely assist in increasing the accuracy of
object identification, and therefore the likelihood and frequency of loop closures, used to
correct for positional drift. Such algorithms may potentially include a pre-processing noise
filtration approach, akin to the iPad ARkit SLAM, to assist in depth frame registration, by
simplifying the geometry present within the scene. Once registration is complete, the fil-
tered information may then be re-projected back into the scene, based off camera geometry,
to provide observations of finer vegetative structures. Further post-processing strategies,
such as cylinder identification after stem segmentation, might then be used to further
correct SLAM drift, by correcting overlapping observations of stem hemispheres that fall
within a specific distance of one another and have similar stem diameters, identifying
them as observations of the same stem. An alternative approach to reducing the effect
of incidental duplicate stem captures and SLAM drift, may be the process of classifying
individual points relative to the time they were observed within the capture process. Points
may then be filtered from a stem observation if they are classified with a capture time
outside a specific window of deliberate observation.

Such approaches, however, are reliant on access to raw data streams that are not
locked to a proprietary SLAM algorithm. Whilst the iPad performed the best across both
forest environments investigated within this study, with integrated RGB-D devices likely
offering the best user experience when it comes to data capture and visualisation, there is
limited access to depth images and inertial information. Future integrated devices may
offer greater accessibility to RGB-D recordings, but until then, a potential workaround
may be the utilisation of two RGB-D devices, one integrated and one standalone, located
at a fixed distance, operating on the same RGB-D sensor technology, and with similar
components (e.g., iPad and Kinect). This means that, where one device registers depth
images in near real time and provides capture information to the operator, the other device
records raw RGB-D data for processing at a later date, using an algorithm and approach of
choice. This may also allow for further diagnosis of error, propagating within both depth
images and registration workflows.

Currently, the relatively short range of RGB-D sensors integrated into handheld devices
limits their inventory capture to measurements of basal stem structures and understory
vegetation characteristics. Therefore, future research should investigate if the implemen-
tation of multiple low-cost technologies and platforms, such as consumer drones, can be
used to reduce measurement error and/or increase the range of forest inventory metrics
that can be acquired using cost-effective proximal RS approaches. Such an approach may
also help to overcome the limitations associated with drone SfM approaches, that struggle
to characterise vertical stem characteristics, due to occlusion resulting from upper canopy
vegetation [44].

Since data capture for this study was conducted with the iPad device, there has been
the release of the Reality Scan application [45]. This software uses RGB images from the
device and a cloud based SfM workflow to generate point cloud representations of the
device’s environment. As a part of this process, the application uses depth measurements
from the RGB-D sensor and augmented reality feedback through the screen of the device,
to inform the operator of image capture location and assist in ensuring adequate camera
geometry and overlap between images, in near real time. However, at the time of publi-
cation, there are limitations on the number of RGB images that can be considered within
a single project, potentially limiting the area of interest that can be captured with this
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approach. Regardless, how this application functions within a forested environment should
be explored, even if only conducted at the individual stem scale, to potentially overcome
some range and misalignment limitations associated with ToF RGB-D technologies.

Lastly, whilst inter-comparison between RGB-D devices is complex, due to optimal
operating procedures varying due to RGB-D sensor technology and error propagating both
within raw depth frames and the SLAM co-alignment algorithm, there should be the design
of a method to benchmark current and emerging low-cost devices. This would assist in the
operational adoption of RGB-D devices, as it may be used to inform their selection and use
within different forest environments.

5. Conclusions

The results of this paper, suggest that the selection of current RGB-D devices assessed
are more capable of operating within structurally complex forest environments, when
compared to their predecessors. Whilst misalignment error due to incidental captures was
visible in point cloud representations of stems, it was not observed to have a significant
effect on DBH measurements derived with these devices. Individual captures of stems, as
opposed to a continuous plot-scale capture, resulted in lower DBH RMSE. Furthermore, the
complexity of the native woodland plots also resulted in complete loss of spatial positional
estimates within the SLAM algorithms associated with the Kinect and Zed devices. This
resulted in point cloud representations of forest structure no longer being reconstructed
beyond this point. However, beyond one occurrence of self-occlusion with the Kinect
sensor, it is difficult to determine the exact cause for this.

Of the sensors assessed, the iPad achieved the lowest DBH RMSE across both parkland
and native woodland environments, and using both capture approaches. It also provided
the best user experience, being integrated into a tablet, providing near real-time feedback of
registration. Future research should focus on the development of bespoke SLAM algorithms
for forest environments, methods for integrating multiple low-cost remote sensing solutions
to increase the accuracy and range of forest representation, and the continued exploration
of emerging consumer remote sensing technologies and approaches.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-Dimensional
LiDAR Light Detection and Ranging
TLS Terrestrial Laser Scanning
PLS Personal Laser Scanning
LC3D Low-Cost Three-Dimensional
SfM Structure from Motion
RGB-D Colour and Depth
ToF Time-of-Flight
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IMU Inertial Measurement Unit
SLAM Simultaneous Localisation and Mapping
DBH Diameter at Breast Height
RMSE Root-Mean-Square Error
FoV Field of View
AGH Above Ground Height
S1 Site One
S2 Site Two
PS Passive Stereo
NIR Near Infrared
LSR Least Squares Regression
RMSPE Root-Mean-Square Percentage Error
PBH Perimeter at Breast Height
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11. Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-held personal laser scanning–current status and
perspectives for forest inventory application. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 165–183.

12. Abegg, M.; Kükenbrink, D.; Zell, J.; Schaepman, M.E.; Morsdorf, F. Terrestrial laser scanning for forest inventories—tree diameter
distribution and scanner location impact on occlusion. Forests 2017, 8, 184. [CrossRef]

13. Schneider, F.D.; Kükenbrink, D.; Schaepman, M.E.; Schimel, D.S.; Morsdorf, F. Quantifying 3D structure and occlusion in dense
tropical and temperate forests using close-range LiDAR. Agric. For. Meteorol. 2019, 268, 249–257. [CrossRef]

14. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A
review. Curr. For. Rep. 2019, 5, 155–168. [CrossRef]

15. Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surovỳ, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial
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