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Abstract: In this article, we theoretically designed and simulated a silicon core fiber for the simultane-
ous detection of temperature and refractive index. We first discussed the parameters of the silicon core
fiber for near single-mode operation. Second, we designed and simulated a silicon core-based fiber
Bragg grating and applied it for simultaneous sensing of temperature and environmental refractive
index. The sensitivities for the temperature and refractive index were 80.5 pm/◦C and 208.76 dB/RIU,
respectively, within a temperature range of 0 to 50 ◦C and a refractive index range of 1.0 to 1.4. The
proposed fiber sensor head can provide a method with simple structure and high sensitivity for
various sensing targets.

Keywords: silicon core fiber; fiber Bragg grating; fiber sensing

1. Introduction

Sensing technologies based on optical fibers have several inherent advantages that
make them attractive for a wide range of industrial sensing applications [1,2]. They are
typically small in size, passive, immune to electromagnetic interference, resistant to harsh
environments, and have the ability to perform distributed sensing [3,4]. Although there
are many different fiber optic sensor technologies (e.g., fiber-based interferometers [5,6]),
the most frequently used fiber-based sensing device at the present time is fiber Bragg
grating (FBG). FBG is a multifunctional fiber device that is applied for communication and
sensing because of the mature manufacturing technology and low cost compared with
other fiber devices [7]. In the past decade, semiconductor-based core fibers have become
more and more attractive [8], especially those based on silicon materials [9]. Most of the
recent research into silicon core-based fibers shows nonlinear effects because they have a
higher nonlinear coefficient than fused silica, e.g., four-wave mixing and supercontinuum
generation [10,11]. Compared to fused silica fibers, the core diameter of SCFs needed to
be reduced to smaller than 1 µm for single-mode operation [12]; in other words, SCFs
has more potential applications for nonlinear effect. Apart from nonlinear effects, U. J.
Gibson used a 30 W CO2 laser to fabricate silicon core fiber Bragg grating in 2017 [13].
During the manufacturing process, they controlled the laser power by using 5 kHz pulse-
width modulation and a ZnSe lens. In addition, the authors used the proposed silicon-
core FBG to independently detect the temperature variation from 30 to 55 ◦C with a
sensitivity of 76.64 pm/◦C, and an axial strain from 0 to 2600 µεwith a sensitivity of around
0.235 pm/µε [14]. In reality, the connection between SCF and fused silica-based fiber was
an important issue that needed to be overcome. Wang et al. [15] proposed that the SCF
could be connected to fused silica-based fiber devices via a mid-IR single-mode fiber (SMF)
to a tapered SCF. In addition, there were other techniques for avoiding exciting higher-order
modes when coupling a Gaussian beam to a different type of fiber, such as offset launch
technique [16] and mode field-matched center launching [17].
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In this manuscript, we proposed a silicon core-based FBG that could be applied for
simultaneous temperature and refractive index sensing. The purpose of this was because
the refractive index of a material is changed with temperature. Therefore, the simultaneous
detection of temperature and refractive index is necessary when monitoring a target. If
the impact of environmental refractive index is negligible, the proposed fiber sensor head
could be applied for harsh temperature environments, e.g., nuclear reactors [18]. When the
sensor head was applied for detecting temperature and refractive index simultaneously,
the sensing ranges for temperature and refractive index were from 0 to 50 ◦C and 1.0
to 1.4, respectively. However, we also theoretically discussed the characteristic of SCF,
including single- or multi-mode operation with a different radius of SCF compared to our
original research [19]. This condition was important; multimode operation of the silicon
core-based FBG would cause more than two reflection wavelengths leading to misjudgment
or confusion for the user. Due to the proposed method for data analysis, the temperature
sensing was limited. However, the sensing range for temperature and refractive index still
covered a majority of substances, e.g., ethanol, methanol, and so on.

2. Materials and Methods

Figure 1a shows the 3D model of the proposed silicon core-based fiber Bragg grating;
the length of Si-FBG was set as 1200 µm, which was long enough for fiber sensing [20]. In
addition, the detail of Si-FBG is presented in Figure 1b, which shows the cross-section. The
diameter of the silicon core and glass-based cladding were initially set at 1 µm (Dc) and
12 µm (Dcl), respectively, and the period of Si-FBG was 1760 nm (Λ). We set the glass-based
cladding diameter to 12 µm to decrease the simulation period. However, there were no
obviously different results between 12 µm and other larger cladding diameter sizes (e.g.,
125 µm diameter), especially for reflectance. According to past research [12], the main
condition for single-mode operation of SCF is that the core diameter of SCF should be
smaller than 1 µm. To investigate this condition, we simulated transmission transparency
with a different radius of silicon core, from 0.45 to 0.75, and transmission mode, respectively,
without fiber Bragg grating design. In addition, in the material setting, the dispersion
property both of silica and silicon of the proposed schematic can be described by the
Sellmeier equation [21]:

n2(λ) = 1 +
A1λ2

λ2 − B1
+

A2λ2

λ2 − B2
+

A3λ2

λ2 − B3
(1)

where n and λ are the refractive index value and operating wavelength, respectively.
In the silica case, the coefficients are A1 = 0.696166, A2 = 0.4079426, A3 = 0.8974794,
B1 = 4.6791482 × 10−3 µm2, B2 = 1.351206 × 10−2 µm2, B3 = 97.934 µm2 [21]. In the silicon case,
the coefficients are A1 = 10.66842, A2 = 0.003043, A3 = 1.54133, B1 = 9.09122 × 10−2 µm2,
B2 = 1.2876602 µm2, B3 = 1.21882 × 106 µm2 [22]. The initial results are shown in
Figure 2a–d with different rc and transmission mode. According to the results, the cut-off
wavelength of TE02 mode would be shifted toward long wavelength if the rc size increased,
and the inset in Figure 2a–d shows the transmission profiles with different transmission
mode at cut-off wavelengths of 1397 nm, 1549 nm, 2006 nm, and 2310 nm, respectively. In
the 0.45-rc case, the transmission profile of TE02 mode was obviously different to other
cases, which was because of the smaller size of rc. The V-number (also called normalized
frequency) of a fiber is a useful specification for the number of transmission modes at a
given wavelength, which could be calculated by [23]

V =
2π·rc

λ

√
n2

c − n2
cl =

2π·rc

λ
NA (2)

where the V is the V-number, λ is the wavelength, nc is the refractive index of the core, ncl
is the refractive index of the cladding, and NA is the numerical aperture of the fiber. The
calculation results for V-number are shown in Figure 2e. The black solid and dashed lines
show that the V-number decreases when the operating wavelength increases to a longer
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wavelength. The red solid line is the limitation for near single-mode operation, which
means a V-number below the red solid line is necessary for near single mode, and the value
was around 6.4. In Figure 2a–d, TE01 and TM01 mode were still generated simultaneously
when the operating wavelength was shorter than the cut-off wavelength. However, TE01
mode had more efficient transmission than TM01 due to the lower loss, which was so-called
near single-mode operation in this study. Figure 2f shows the transmission efficiency with
different rc and modes. To verify the reflection wavelength, we also simulated reflected
output spectrum at 25 ◦C environmental temperature with the different rc and transmission
modes. The results are shown in Figure 3a–d. In the cases of 0.6 and 0.75 µm-rc, the TE02
mode was generated in the communication wavelength band, which could cause user
misjudgment, so the larger rc should be avoided. Second, the reflected wavelength of the
TE01 mode in the 0.5 µm-rc case was 1549.43 nm, which was close to the end region of the
TE02 mode at around 1549 nm; if the regions are too close, this limits the temperature sens-
ing. The third case is the 0.45-rc case, which had a good spectrum for sensing applications.
However, the smaller rc could cause insensitivity for the refractive index sensing because
of the smaller contact area between the silicon core and environmental medium. To solve
the problem in the second case (0.5 µm-rc), we could easily increase the grating period to
1794 to shift the reflected central wavelength to 1569.8 nm with around 0.65 reflectivity.
During our simulation process, the records show that the relationship between period and
reflected central wavelength could be written as

λ(nm) = 0.599·Λ + 494.983 (3)
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Figure 1. (a) 3D structure of fiber Bragg grating in COMSOL Multiphasic and (b) cross-section of
silicon core-based fiber Bragg grating.

Figure 2. Cont.
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Figure 2. The transmission profiles with rc of (a) 0.45 µm, (b) 0.5 µm, (c) 0.6 µm, and (d) 0.75 µm
without grating design, (e) the V-number, and (f) the transmission in TE01 and TM01 modes with
different rc.
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in wavelength and order number of grating.

The updated reflection spectrum is shown in Figure 3e, and the central wavelength
was still within the communication band. The central wavelength λB was related to grating
period, which is defined as a Bragg condition, and can be written as [24]

λB = 2·ne f f ·Λ (4)

where the neff is effective refractive index of the waveguide. According to ref. [13], the
central wavelength corresponded to an 8th order grating of the proposed Si-FBG. To investi-
gate the resulting order number of grating, we collected the output spectrum of TE01 mode
from Figure 3a–d. The results in Figure 3f show the relationship between grating order and
wavelength, and can be described as

λB =
2·ne f f ·Λ

N
(5)
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where the N is the order number of the grating. However, it was shown that the relationship
between order number of the grating and reflected central wavelength was not linear but
square. The calculated electric field with TE01 mode in different cross-sections of the 3D
model at the end of Si-FBG is shown in Figure 4a–d. In Figure 4a,c, the results show the
low reflection of Si-FBG in the x–y and y–z cross-sections, whereas Figure 4b,d show the
high reflection of Si-FBG in the x–y and y–z cross-sections, respectively.
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The calculated electric field in TE01 mode with different cross-sections in the 3D model
at the end of Si-FBG are shown in Figure 4a–d. In Figure 4a,c, the results show the low
reflection of Si-FBG in the x–y and y–z cross-sections, whereas Figure 4b,d show the high
reflection of Si-FBG in the x–y and y–z cross-sections, respectively.

3. Results and Discussion

a. Temperature sensing

For the temperature sensing, we set the boundary condition of fiber ends as the same
as the silicon core fiber to negate the environmental refractive index condition. Figure 5a
shows the wavelength responses when the temperature increased or decreased, and the
relationship between the peak wavelength and temperature is shown in Figure 5b with
R-squared of the fitting curve of 0.9999. By means of data fitting, the regression equation
can be expressed as:

λ(nm) = 0.0805·Ten + 1567.82 (6)

where λ is the peak wavelength and Ten is the environmental temperature. The calculated
sensitivity was 80.5 pm/◦C, which is higher than the fused silica core-based FBG due to
the high hermos-optic coefficient and thermal expansion coefficient of 1.8 × 10−4 K−1 and
2.6 × 10−6 K−1, respectively, compared with the case of fused silica where the values are
9.6 × 10−6 K−1 and 0.57 × 10−6 K−1, respectively.
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b. Refractive index sensing

For refractive index sensing, we keep the same conditions as part A, with temperature
at 25 ◦C, and only changed the boundary condition of fiber ends with refractive index
from 1.0 to 1.4. The simulation results of output spectrum are shown in Figure 6a. There
was no obvious wavelength shift of central peak, which was at 1569.8 nm, because the
environmental refractive index changes had no influence on the Bragg condition. The
interface between a fiber and the environment formed a Fresnel reflection, which is like a
partially reflecting mirror; the Fresnel equation can be defined as [25]

R =

(
cosθi − nt

ni
cosθt

cosθi +
nt
ni

cosθt

)2

(7)

where the ni and nt are the refractive index of the silicon core and environmental refractive
index, respectively, and θi and θt are the angle of incidence and transmission, which
was 0‘degrees. To compare the theoretical calculations with our simulation results, we
collected the reflectance of central, first side-mode of left and first side-mode of right with
different refractive indices; the results are shown in Figure 6b. All the R-squared of the
fitting curves were higher than 0.9998. The trends proved that our results fitted well with
theoretical calculations.

In this article, we proposed another analysis method. First, we transformed the results
of Figure 6a through fast Fourier transform (FFT); the results are shown in Figure 6a.
Second, we picked the first point of spatial frequency with different refractive index, and
the relationship between first point of spatial frequency and different refractive index is
shown in Figure 7b. The R-squared was higher than 0.9999, and the fitting curve could be
written as

FPSF (dB) = 129.262 × n2 − 518.652 × n + 580.414 (8)

where FPSF represents the first point of spatial frequency and n is the environmental
refractive index. The values of FPSF were up to 300 times larger than the reflectance
in Figure 6b, which means this analysis method has higher resolution than the original
analysis method.
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c. Simultaneous sensing

Before considering the simultaneous sensing of temperature and refractive index, we
separately investigated the FPSF of these two parameters, as shown in Figure 8a. We fixed
the temperature at 25 ◦C and 50 ◦C (red solid and dash lines) and changed the refractive
index from 1.0 to 1.4. We also fixed the refractive index at 1.1 and 1.2, and changed the
temperature from 0 to 50 ◦C. The trends shown were that the main condition influencing
the FPSF was refractive index, and that FPSF was insensitive to temperature.

We collected all the simulation results of FPSF, and the distribution map for different
temperatures and refractive indices is shown in Figure 8b. The points (X, Y, Z) indicated in
the figure refer to temperature, refractive index, and FPSF, respectively.

For convenience, the overall process to identify the two parameters in simultaneous
sensing can be outlined as follows:

Step 1: Identify the FBG peak and read its wavelength from the spectrum in Figure 5a.
Step 2: Calculate the temperature using the central wavelength and linear curve of the FBG
in Figure 5b and Equation (6).
Step 3: Transform the measurement of spectra by using fast Fourier transform.
Step 4: Locate the spatial frequency in Figure 8b by using the calculation results from Step 3.
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Finally, the performance comparison between the proposed fiber sensor and the
previously reported literatures is indicated in Table 1. Although our performance was not
the best, the proposed fiber sensor head was easy to fabricate compared to other devices.

Table 1. Comparison of simultaneous refractive index and temperature-sensing performance study
with existing sensors.

Ref. (Year) Sensor Type Refractive Index Sensitivity Temperature Sensitivity

[26] 2022 1. Anti-resonant reflection
2. Waveguide fiber ring-shaped structure 108.61 nm/RIU 19 pm/◦C

[27] 2022 1. Michelson interferometer
2. Waist-enlarged fiber bitaper −191.06 dBm/RIU 0.12 nm/◦C

[28] 2022 1. No-core fiber
2. Sureface plasmon resonance effect 5200 nm/RIU 7.2 nm/◦C

[29] 2022 Cascaded two long period fiber gratings −177.6 nm/RIU 0.1175 nm/◦C

[30] 2022 1. D-shaped optic fiber with PDMS film
2. Tilted fiber Bragg grating 521.92 nm/RIU 4.38 nm/◦C

This work One silicon sore based fiber Bragg grating 208.76 dB/RIU 80.5 pm/◦C

4. Conclusions

We theoretically proposed a silicon core-based FBG for monitoring environmental
temperature and refractive index. For single-mode operation in the communication band,
the radius of SCF should be less than 0.5 µm. The sensing properties of the proposed sensor
have been simulated by using a finite element method and a 3D model. The sensitivities of
temperature and refractive index were 80.5 pm/◦C and 208.76 dB/RIU, respectively, with
linear regression in the temperature range from 0 to 50 ◦C and the refractive index range
from 1.0 to 1.4. Without considering the refractive index factor, the range of temperature
sensing could be extended from −100 to +700 ◦C, which means the proposed sensor had
potential future applications. In additionally, the analyzed method could be imported into
machine learning and the database used to develop artificial intelligence algorithms.
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