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Abstract: Semi-supervised learning is a learning pattern that can utilize labeled data and unlabeled
data to train deep neural networks. In semi-supervised learning methods, self-training-based methods
do not depend on a data augmentation strategy and have better generalization ability. However,
their performance is limited by the accuracy of predicted pseudo-labels. In this paper, we propose
to reduce the noise in the pseudo-labels from two aspects: the accuracy of predictions and the
confidence of the predictions. For the first aspect, we propose a similarity graph structure learning
(SGSL) model that considers the correlation between unlabeled and labeled samples, which facilitates
the learning of more discriminative features and, thus, obtains more accurate predictions. For the
second aspect, we propose an uncertainty-based graph convolutional network (UGCN), which can
aggregate similar features based on the learned graph structure in the training phase, making the
features more discriminative. It can also output the uncertainty of predictions in the pseudo-label
generation phase, generating pseudo-labels only for unlabeled samples with low uncertainty; thus,
reducing the noise in the pseudo-labels. Further, a positive and negative self-training framework is
proposed, which combines the proposed SGSL model and UGCN into the self-training framework
for end-to-end training. In addition, in order to introduce more supervised signals in the self-training
process, negative pseudo-labels are generated for unlabeled samples with low prediction confidence,
and then the positive and negative pseudo-labeled samples are trained together with a small number
of labeled samples to improve the performance of semi-supervised learning. The code is available
upon request.

Keywords: semi-supervised learning; self-training; graph structural learning

1. Introduction

Semi-supervised learning is a schema for network training using a small amount of
labeled data and a large amount of unlabeled data. The current semi-supervised learning
methods are mainly categorized into consistency regularization methods [1,2] and pseudo-
labeling methods [3,4]. Consistent regularization methods aim to keep the outputs of the
model constant under perturbations. For example, Sajjadi et al. [5] proposed the π model.
It conducts two separate data augmentations for inputs and predicts the augmented inputs
separately using a deep network, then minimizes the distance between the two predictions
by a consistency loss function. However, the consistency regularization methods mostly
rely on data augmentation strategies, thus their generalization ability is limited.

In contrast, pseudo-labeling methods are independent from data augmentations. They
aim to generate pseudo-labels for unlabeled data and then train the network along with a
small amount of labeled data. In pseudo-labeling methods, self-training methods [6,7] are
the most widely studied methods, and such methods have three steps. Firstly, the network
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is pre-trained with a small amount of labeled data. Secondly, the pre-trained network is
used to generate pseudo-labels by classifying and predicting unlabeled data. Finally, the
network is trained with pseudo-labeled data and small amounts of labeled data. However,
the accuracy of the pseudo-labels limits the performance of the pseudo-labeling-based
methods. Specifically, pseudo-labels are mostly obtained from the predictions of the model,
which is not always reliable. In addition, if the model achieves high confidence on wrong
predictions, the model will continue to learn incorrectly.

It is worth mentioning that Rizve et al. [8] proposed to use uncertainty to determine
whether predictions of the network are reliable and to generate pseudo-labels on low
confidence to enrich supervised signals. However, this method does not take into account
the correlation between labeled and unlabeled samples. In fact, self-training methods
are often trained based on the assumption that results with high confidence tend to be
correct. However, this assumption may only hold if the features are discriminative in
the data space. It is well known that the features of a small amount of labeled data are
generally discriminative after supervised training of the network. If the correlation between
unlabeled data and labeled data can be further considered so that unlabeled data are close
to similar labeled data, the self-training model will be more accurate in predicting unlabeled
data and generating more accurate pseudo-labels, which will be beneficial to the network’s
self-training. Therefore, it is necessary to consider the potential similarity relationship
between unlabeled and labeled data.

The key to improving the performance of self-training methods lies in two aspects:
learning more discriminative features and generating more accurate pseudo-labels. To
this end, we propose a positive and negative self-training framework based on graph-
based deep uncertainty, which consists of two key models: the similarity graph structural
learning (SGSL) model and the uncertainty-based graph convolutional network (UGCN).
The proposed self-training framework consists of three stages. In the first stage, the entire
network is trained in a supervised manner using a small amount of labeled data. In the
second stage, the network model is adjusted to the test mode and the unlabeled data are
fed into the network for classification prediction. The high and low confidences are filtered
to generate pseudo-labels; the pseudo-labels include positive pseudo-labels (indicating
the categories to which the samples belong) and negative pseudo-labels (indicating the
categories to which the samples do not belong). In the third stage, the data with pseudo-
labels and a small amount of labeled data are both input into the network for supervised
training. Then the second and third stages are performed iteratively until the preset
conditions are reached.

In the above self-training process, the proposed SGSL model can learn a graph struc-
ture between labeled and unlabeled samples in the third stage, which is conducive to
promoting the features of unlabeled data to gradually become closer to those of labeled
data, ensuring that the predictions of unlabeled data are consistent with those of labeled
data. In addition, the proposed UGCN includes a dropout-based graph convolutional
network and an uncertainty filtering process. During the first and third stages, the dropout-
based graph convolutional network can aggregate neighborhood features based on the
learned graph structures, making similar features more similar in the data space. Moreover,
in the second stage, the UGCN outputs both predictions and uncertainties, and judges
the credibility of predictions through a double verification strategy. This results in the
generation of pseudo-labels with less noise. This is beneficial for network training and
further improves the performance of self-training.

The proposed method improves the quality of generated features by considering the
similarity between samples and reduces the noise of pseudo-labels based on uncertainty.
Our approach is well-adapted for tasks that require measuring similarity between samples,
such as clustering and retrieval tasks. Therefore, in this paper, image clustering and person
re-identification are chosen as case problems to evaluate the performance of the proposed
method. In these two tasks, the input data can be modeled as graph structures so that the
proposed semi-supervised approach can be applied.
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The contributions of this paper are as follows:
(1) A SGSL model is proposed to consider the potential correlation between labeled

data and unlabeled data. It calculates the similarity between unlabeled and labeled sample
features in a batch to initialize their correlation. Moreover, end-to-end training makes this
correlation optimized, which facilitates the network to learn more discriminative features
and, thus, makes the confidence of predictions more accurate and credible.

(2) In order to improve the accuracy and reliability of pseudo-labels, the UGCN is
proposed. It uses the graph convolutional network to aggregate features based on the
learned graph structures so that the unlabeled sample features are close to the similar
labeled sample features. When features are passed through the network, the predictions
will be consistent and, thus, improve the prediction accuracy of unlabeled samples. In
addition, we also use dropout to obtain the uncertainty of predictions. If the uncertainty
of predictions is high, it means that the confidence is not credible and does not generate
pseudo-labels for the corresponding samples to improve the reliability of pseudo-labels.

(3) A positive and negative self-training framework based on graph-based deep un-
certainty is proposed, which fuses the proposed SGSL and UGCN in the self-training
framework. It can make features more discriminative in data space and improve the
accuracy of pseudo-labels when the framework is trained end-to-end.

2. Related Work

Semi-supervised learning methods can be broadly divided into two categories: consis-
tency regularization methods [1,2] and pseudo-labeling methods [3,4]. There are three kinds
of perturbations in consistency regularization methods, i.e., perturbations to inputs [1,9],
perturbations to the network [10], and perturbations to the training process [2,11]. Ap-
plying perturbations to inputs is the most used strategy. For example, Guyon et al. [12]
propose the mean teacher model, which consists of two parts: the student model and
teacher model. Images are augmented twice and then inputted into the student model and
the teacher model to predict the corresponding label distributions, respectively, after which
a consistency loss is utilized for both predictions. Ke et al. [13] propose the dual student
method, which replaces the teacher model in the mean teacher method. When applying
perturbations to the network, Zhang et al. [10] propose the worst-case perturbation method,
in which additive and DropConnect perturbation are used to the network. Methods us-
ing perturbations to inputs are widely studied. However, these methods rely on data
augmentation strategies. Their performances will be limited if consistent regularization
methods are utilized in areas where the effectiveness of data augmentation is low (e.g.,
video, medical images).

Pseudo-labeling methods generate pseudo-labels for unlabeled data and then train
the network. Pseudo-labeling methods can be divided into two categories, i.e., multi-view
training methods [3,4,14,15] and self-training methods [6,7].

Multi-view training methods focus on training two or more different networks and
providing pseudo-labels to each other. For instance, the co-training method [3] contains
two networks that take images from two views as inputs. If one of the networks has higher
confidence, then pseudo-labels will be generated for inputs and served as the training set
for the other network in the next iteration. Chen et al. [14] propose a method with three
networks. If the predictions of the two models are consistent, then pseudo-labels are further
generated, which are then used as the training data for the third model in the next iteration.
In multi-view training methods, it is inevitable that multiple networks are involved and,
thus, the volume of network parameters to be trained increases, making it difficult to apply
to scenarios with limited resources.

In contrast, self-training methods use a single network to predict and generate pseudo-
labels. For example, Lee et al. [6] propose pseudo-labeling methods in which the network
was trained using a supervised learning approach via a small amount of labeled data; the
trained network model is used to predict unlabeled data. The predictions are filtered to
generate pseudo-labels and are added to the training set to train the network iteratively.
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Xie et al. [16] propose a noisy student model, which consists of a teacher model and a
student model. The teacher model is firstly trained on a small amount of labeled data, and
then the teacher model is used to predict the unlabeled data and generate pseudo-labels.
The pseudo-labeled data and the labeled data are then combined and trained with the
student model, which becomes a new teacher model after training and is trained again
iteratively by re-predicting the unlabeled data. Self-training methods do not rely on data
augmentation strategies and their network parameters are greatly reduced compared to
multi-view training methods. The main drawback of these methods is that the generated
pseudo-labels are not always accurate. To reduce the noise in pseudo-labels, Rizve et al. [8]
propose using uncertainty to determine whether predictions are reliable. Moreover, the
higher the uncertainty, the less reliable the predictions. In addition, Rizve et al. [8] argue
that the predictions with low confidence can also be used to generate pseudo-labels to
perform negative learning. However, this method does not take into account the correlation
between labeled data and unlabeled data during network training.

There are also many graph-based semi-supervised learning methods [17,18], in which
all data are represented as nodes in a graph, and labels of unlabeled data are obtained
by label propagation. These methods generally carry out research in terms of both graph
construction [19] and label inference [20]. Unlike them, graphs are used in our approach
to model the deep similarity between samples, which can be used for graph convolu-
tion to optimize the feature distribution and, thus, improve the quality of the generated
pseudo-labels.

3. Methods
3.1. Overview

To learn the correlation between labeled and unlabeled data, we propose a positive
and negative self-training framework based on graph-based deep uncertainty, as shown in
Figure 1.

Given an image training set I = {I1, I2, . . . , IO}, where O represents the number of
images in I. In semi-supervised settings, the training set is divided into two sets, i.e., labeled
images IL = {I1, I2, . . . , IL} and unlabeled images IU = {I1, I2, . . . , IU}, where L is the
number of labeled images and U is the number of unlabeled images, L� U, I = IL ∪ IU .
The proposed positive and negative self-training framework based on graph-based deep
uncertainty has three stages, which can be described as follows.

In the first stage, IL is passed through ResNet-50 in batches to obtain the batch features
XL

b and XL
b ∈ Rb×dim, where b denotes the number of images in a batch and dim is the

dimension of features. The batch features are directly used to generate predictions. After
that, the predictions of batch features logits and labels are inputted into the classification
loss, where logits ∈ Rb×M and M is the number of classes. Batch features XL

b are also
inputted to the proposed SGSL model, which outputs the correlation AL

b ∈ Rb×b between
samples in the current batch. Then AL

b and the true correlation between samples in the
current batch, denoted as Atar, are inputted to binary classification loss. Moreover, AL

b
and XL

b are inputted to the proposed dropout-based GCN, which outputs predictions
logitsgnn ∈ Rb×M. Then logitsgnn and labels are inputted to classification loss.

In summary, the losses in this phase consist of three items: (a) the loss between the
generated similarity graph of SGSL and the true relationship graph between samples,
which supervise the training of ResNet-50 and SGSL; (b) the loss between the predictions of
UGCN and the ground truth labels of samples, which supervise the training of ResNet-50,
SGSL, and UGCN; (c) the loss generated directly from the classification from the batch
features; this loss supervises the training of ResNet-50.
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Figure 1. A positive and negative self-training framework based on graph-based deep uncertainty.
The proposed framework is divided into three stages. In the first stage, a small number of labeled
samples are fed into the network and trained using a supervised learning approach. In the second
stage, the parameters are fixed and the network is tuned to the test mode. Unlabeled samples are
inputted to predict and generate pseudo-labels by uncertainty filtering. Then original unlabeled
data are updated by adding positive and negative pseudo-labels. In the third stage, the data with
pseudo-labels are trained together with a small amount of labeled data.

In the second stage, the trained network is used to extract features of IU in batches,
i.e., XU

b and XU
b ∈ Rb×dim. Then XU

b is input to the SGSL model to obtain the correlation
AU

b ∈ Rb×b of features in that batch of data. After that, XU
b and AU

b are input to the
proposed UGCN to generate positive and negative pseudo-labels for unlabeled data. In
this stage, the weights of the model are fixed.

In the third stage, the network is trained based on the pseudo-labeled samples obtained
in the second stage together with the original samples with labels. The positive and negative
self-training is performed in this phase. The training process of positive learning is the
same as the first stage. Moreover, for negative learning, IU is fed into ResNet-50, then
the predictions logitsneg ∈ Rb×M are output. logitsneg and negative pseudo-labels are
inputted to negative cross-entropy loss. More specifically, after obtaining pseudo-labels
for the unlabeled data, where positive pseudo-labels represent the categories to which the
samples belong and negative pseudo-labels indicate the categories to which the samples
do not belong, both positive and negative labels are used as inputs to the cross-entropy
loss function to supervise the model to learn features with discriminative properties. The
difference is that for positive pseudo-labels, the model predicts the category the sample
belongs to, while for negative pseudo-labels, the model predicts the category the sample
does not belong to. In addition, the usage of the original ground truth labels is the same as
the positive pseudo-labels.

In the self-training process, the second and third stages are iterated until the number
of iterations reaches the preset number NUMiter.
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3.2. The Similarity Graph Structural Learning Model

In order to take into account the correlation between labeled and unlabeled samples
in semi-supervised learning, so that the unlabeled sample features can be close to their
corresponding labeled sample features, and to make the predictions of unlabeled samples
more credible, we propose a SGSL model to learn the correlation between labeled and
unlabeled samples, as shown in Figure 2.

…
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v

C
o
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v

Figure 2. The architecture of the SGSL model. Input batch sample features Xb. After dimension
transformation, the initial representations of structural correlations can be obtained. Then after the
convolutional layer, batch normalization, and activation function, the correlation between batch
sample features is learned.

Given batch features Xb ∈ Rb×dim, the purpose of the proposed SGSL model is to
learn the similarity graph structure Â ∈ Rb×b. At first, the dimension of batch features
Xb is transformed by adding a dimension, i.e., Xb ∈ R1×b×dim. Then, we swap the first
and second dimensions of Xb to obtain X

′
b and X

′
b ∈ Rb×1×dim. Next, Xb and X

′
b are

subtracted to obtain the initialized representations A f ea of the similarity graph structure,
i.e., A f ea = Xb − X

′
b and A f ea ∈ Rb×b×dim. The entry of i-th row and j-th column of A f ea

denote the correlation representation of the i-th sample and j-th sample in the batch and it
has a dimension dim. Then, A f ea is fed into the proposed SGSL model, which consists of
convolutional layers, batch normalization, and activation functions. Each convolutional
layer has a kernel size of 1× 1 and a stride of 1× 1. The input dimension of the first
convolutional layer is dim and the output dimension is dimout

conv1, the input dimension of
the second convolutional layer is dimout

conv1, and the output dimension is dimout
conv2. After the

second convolutional layer, the input dimension of the third convolutional layer is dimout
conv2

while the output dimension is 1 because the similarity graph structure of the batch samples
needs to be obtained. After the sigmoid function, the structure Asim between the batch
samples is obtained, the values in Asim are all between 0 and 1, and Asim ∈ Rb×b. Then,
Asim is normalized, i.e.,

Â = D−
1
2 (Asim + J )D−

1
2 (1)

where D is the diagonalized degree matrix and J represents the identity matrix.
During the training process, the graph structure Atar of the current batch of samples is

obtained based on their true labels or pseudo-labels, as specified by the following rules

Atar
i,j =

{
1 , xi and xj have the same label or pseudo-label
0 , otherwise

Then, Atar and Asim are input to a binary cross-entropy loss, i.e.,

LSR = Atar
i,j log(Asim

i,j ) + (1− Atar
i,j ) log(1− Asim

i,j )

Moreover, the data input into SGSL to model similarity differ in the three phases. In
stage 1, SGSL is in training mode, and all the input data are labeled data with real labels; in
stage 2, the weights of SGSL are fixed, and the similarity between the input data (including
labeled data and unlabeled data) is evaluated; in stage 3, SGSL is in a training mode, the
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input data consist of labeled data and unlabeled data with positive pseudo-label, and the
labels consist of real labels and positive pseudo-labels.

3.3. Uncertainty-Based Graph Convolutional Network

In order to make the features of unlabeled data close to the features of corresponding
labeled data, so that similar features are consistent in prediction, and to use uncertainty to
determine whether the prediction confidence is reliable, UGCN is proposed, as shown in
Figure 3.

𝐴  

GCN Conv DP

𝑋𝑏  

Uncertainty 

filtering
GCN BN Conv BN

Figure 3. The architecture of the proposed UGCN. Similarity graph structure Â and batch features Xb
are input to UGCN. After the two-layer GCN, features with neighbor aggregation F(3) are obtained.
Then, F(3) and Xb are concatenated and input to the classifier. “Conv” represents the convolutional
layer, “BN” is batch normalization, and “DP” denotes dropout.

Given batch features Xb and the output of SGSL model Â, UGCN firstly uses the graph
convolution network to aggregate features based on the similarity graph structure Â, i.e.,

F(l+1) = σ(Â� F(l) � θ
(l)
gcn) (2)

where F(l) is the input of l-th GCN and F(1) = Xb. � denotes the inner product. θ
(l)
gcn

represents the learnable parameter of l-th GCN, and θ
(l)
gcn ∈ Rdim(l)

in ×dim(l)
out . σ is the activation

function. After GCNs, the aggregated features F(3) ∈ Rb×dim(2)
out can be obtained, i.e.,

F(3) = Â� (σ(Â� F(1) � θ
(1)
gcn))� θ

(2)
gcn (3)

Then, F(3) and Xb are concatenated, i.e.,

Xagg
b = concat(Xb, F(3)) (4)

where concat represents concatenation along the feature dimension, Xagg
b ∈ Rb×(dim+dim(2)

out).
Then Xagg

b is input to the convolutional layer. After batch normalization, activation function,
and dropout, a convolutional layer and batch normalization are attached to obtain the
predictions of Xagg

b , i.e., Ŷb, Ŷb ∈ Rb×M. The output dimension of the second convolutional
layer is M.

The above process is the training process in the first and third stages. While in the
second stage, UGCN is able to output the uncertainty of predictions for generating pseudo-
labels. The uncertainty is obtained by dropout. Specifically, the model is in the test mode in
the second stage, but the dropout layer is in the training mode. Therefore, the predictions
are different when inputting the same samples twice. The standard deviation can be used
to measure whether the predictions are credible. he proposed method repeatedly inputs
each sample in a batch T times to obtain T predictions. Then a sigmoid function is used to
restrict the values between 0 and 1. After that, the average of the results obtained from the
T predictions is calculated, i.e.,

Ŷb =
1
T

T

∑
t=1

Ŷ(t)
b (5)
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where Ŷ(t)
b represents the output of t-th inputs, T denotes the number of times that data are

repeatedly fed into the network, T = 10 in the proposed method. Ŷb denotes the predictions
in the second stage and Ŷb ∈ Rb×M. Then the maximum value in Ŷb can be obtained,

P̂b = max(Ŷb) (6)

where P̂b represents the confidence of samples belonging to the corresponding class, P̂b ∈
Rb×1. For uncertainty, the standard deviation is calculated,

Ub = std(Ŷ(1→T)
b ) (7)

where Ŷ(1→T)
b is T times the outputs of the same batch samples, and Ŷ(1→T)

b ∈ RT×b×M,
std calculates the standard deviation across the first dimension, and Ub ∈ Rb×M. Next, the
standard deviation Ûb corresponding to the maximum predicted value in P̂b is obtained and
Ûb ∈ Rb×1. Finally, the prediction confidence P̂b of a batch sample and its corresponding
uncertainty Ûb are obtained.

In summary, the role and training of UGCN in three phases are as follows: (a) In
the first stage, UGCN is set as the training mode, and the sample features extracted by
ResNet-50 are aggregated in the neighborhood according to the similarity graph built by
SGSL, the predicted categories of the samples are output after graph convolution. In this
process, because the inputs are labeled data, ground truth labels supervise the training of
UGCN. (b) In the second stage, UGCN is set as the eval mode. The inputs to the network are
unlabeled data, and UGCN predicts these samples to obtain their pseudo-labels. Moreover,
the UGCN generates confidence for the prediction of each sample as an assist to the pseudo-
label generation. In this process, the weights of UGCN a fixed. (c) In the third stage, the
UGCN is set to the training mode. The input of the network consists of labeled data and
unlabeled data with pseudo-labels, and the UGCN performs graph convolution on the
similarity graph of these data to output predictions, ground truth labels, and pseudo-labels,
generating losses to supervise its training.

3.4. Pseudo-Label Generation Based on Uncertainty

We utilize a pseudo-label generation method based on uncertainty. Given prediction
confidence P̂b and corresponding uncertainty Ûb, the i-th sample in the batch has a positive
pseudo-label only if the following condition is satisfied,

Ûb(i) ≤ κp ∧ P̂b(i) ≥ τp (8)

where Ûb(i) is the prediction confidence of the i-th sample in the batch and P̂b(i) is the
corresponding uncertainty. κp and τp are predefined values used to filter the uncertainty
and prediction confidence, respectively. If the prediction confidence of sample xi is greater
than or equal to τp, and its uncertainty is less than κp, then the prediction confidence
is considered reliable, and a positive pseudo-label can be generated. Such a strategy
leaves many unlabeled samples unlabeled, but in fact, although these samples do not
obtain positive pseudo-labels, they can obtain negative pseudo-labels, i.e., to determine the
categories to which these samples explicitly do not belong to, the specific rule is,

Ûb(j) ≤ κn ∧ P̂b(j) ≤ τn (9)

where κn and τn are pre-defined values used to filter the uncertainty and prediction con-
fidence for negative pseudo-labels. If the sample xj fails to be assigned to a positive
pseudo-label, a prediction confidence less than τn, and an uncertainty value less than
κn, then it can be considered that xj does not belong to the class corresponding to that
prediction confidence and the corresponding position. After this process, the generated
positive and negative pseudo-labels are used to update the original unlabeled data, and
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then in the third stage, the positive and negative pseudo-labeled data are used to train the
network together with the original labeled data.

4. Results and Discussion
4.1. Datasets and Settings

Our approach is suitable for tasks that are sensitive to inter-sample connections, such
as clustering and retrieval tasks. The proposed method is evaluated on image clustering
and person re-identification (re-ID) tasks. In these two tasks, the data can be naturally
modeled as graph structures, which allows learning the similarity between samples. Since
the inputs are image data, the general and powerful CNN model ResNet-50 [21] is used
as the feature extractor. Our semi-supervised approach improves the performance of the
model by increasing the accuracy of pseudo-labels. To evaluate the proposed method, we
adopt the metrics used in previous works.

For image clustering tasks, IJB-B [22] and IJB-C [23] datasets are utilized. In the IJB-B
dataset, there are seven subsets for clustering. In this paper, the top 3 subsets with the most
images are selected for clustering, i.e., the subsets including 512, 1024, and 1845 identities.
Moreover, in these subsets, there are 18,251, 36,575, and 68,195 images, respectively. The
IJB-C dataset is an upgraded version of the IJB-B dataset, which has 4 subsets with 32, 1021,
1839, and 3531 identities, respectively. The top 3 subsets with the largest image numbers are
also selected for clustering, and these subsets include 41,074, 71,392, and 140,623 images,
respectively. The widely used normalized mutual information (NMI) is our evaluation
metric for image clustering. In semi-supervised settings, only one-third of images of each
subset are labeled, the rest of the labels are not involved in semi-supervised training.

For the person re-ID task, Market-1501 [24] and DukeMTMC-reID [25] datasets are
used. Market-1501 includes 32,668 images of 1501 pedestrians captured by 6 cameras
from different angles. There are 12,936 images from 751 pedestrians in the training set,
19,732 images from another 750 pedestrians in the gallery set, and 3368 images in the
query set. The DukeMTMC-reID dataset contains 36,411 images of 1401 pedestrians and is
captured by 8 cameras from different angles. There are 16,522 images of 702 pedestrians in
the training set, 17,661 images of another 702 pedestrians in the gallery set, and 2228 images
in the query set. For evaluation, the widely used mean average precision (mAP) and
cumulative match characteristic (CMC) curve are calculated. For semi-supervised learning,
only 1/3 of the labels in the training set are available, the rest of the labels are not involved
in semi-supervised training.

4.2. Implementation Details

The proposed method was implemented using the PyTorch deep learning framework,
including torch 1.10.0, cudnn 8.2.0, and CUDA 11.3. The Python version used was 3.8.5.
The server hardware consisted of an NVIDIA Geforce RTX 3090 and an Intel(R) Core(TM)
i9-10900K CPU @ 3.70 GHz. The operating system used was Ubuntu 20.04.3 LTS.

The original images were all resized to 256× 128 and randomly horizontally flipped
for data augmentation. The stochastic gradient descent (SGD) algorithm was utilized to
optimize the proposed model with an initial learning rate of 0.03; the momentum is 0.9.
Here, NUMiter = 20, and in each iteration, the proposed model was trained for 60 epochs.
In addition, τp = 0.8, τn = 0.05, κp = 0.05, and κn = 0.005.

4.3. Ablation Study

To explore the impact of the proposed SGSL model and UGCN, ablation experiments
were conducted on the Market-1501 dataset, as shown in Table 1.
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Table 1. Ablation study on the Market-1501 dataset.

Variants Model Setting mAP Rank-1 Rank-5 Rank-10 Rank-20

1 w/o UGCN 62.6 81.7 92.4 95.2 97.0
2 w/o Uncertainty 62.2 81.3 91.9 95.0 96.9
3 Proposed 66.4 84.5 93.9 96.4 97.8

In Table 1, “w/o UGCN” indicates that the SGSL model and UGCN are removed
from the proposed method, “w/o Uncertainty” indicates that uncertainty is not utilized in
generating pseudo-labels, and “Proposed” indicates the proposed method.

As shown in Table 1, compared to variant 1, variant 3 improves mAP by 3.8%, Rank-1
by 2.8%, Rank-5 by 1.5%, Rank-10 by 1.2%, and Rank-20 by 0.8%. The difference between
variant 3 and variant 1 is that variant 3 utilizes the proposed SGSL model and UGCN, and
the experimental results are improved because the SGSL model considers the correlation
between unlabeled and labeled samples. This correlation is then input to the graph con-
volutional network. With the feature aggregation capability of UGCN, it can make the
features of the unlabeled samples approach its similarly labeled samples gradually, and
then drive the unlabeled samples to obtain more reliable classification predictions.

In addition, variant 3 improved mAP by 4.2%, Rank-1 by 3.2%, Rank-5 by 2.0%, Rank-
10 by 1.4%, and Rank-20 by 0.9% compared to variant 2. The main difference between the
two sets of experiments is that in variant 3, the proposed method utilizes uncertainty to
assist in generating pseudo-labels for unlabeled samples. The main reason for the improved
results is that the pseudo-label generation for unlabeled samples in variant 2 relies entirely
on predictions of the network. However, if there are incorrect predictions, the generated
pseudo-labels are more likely to be noisy and lead the network to be trained in the wrong
direction. In variant 3, the same batch of samples is repeatedly fed into the network 10
times and the standard deviation of the prediction results is calculated. This standard
deviation is used as the uncertainty of predictions. Then, pseudo-labels are generated
by filtering the predictions with low uncertainty, which effectively reduces the noise in
pseudo-labels and leads to an improvement in the network’s performance. Therefore, the
performance of variant 3 is better than that of variant 2.

4.4. Parameters Analysis

In the following experiments, the influence of threshold τp and GCN layer l on the
performance is explored.

To explore the impact of the threshold value τp, we varied it from 0.4 to 0.9 in in-
crements of 0.1, with the number of GCN layers set to 2. The experimental results are
presented in Figure 4, and specific numerical results are provided in Table 2. Figure 4 shows
that the performance of the model is relatively stable on mAP, Rank-1, Rank-5, Rank-10,
and Rank-20 with varying values of τp, and most of the evaluation metrics achieve their
best results when τp is set to 0.8. This part of the results shows that τp brings less influence
to the proposed method. The possible reason is that the features of the model tend to be
distinguishable and stable after several iterations of the self-training process when the
pseudo-labels predicted by UGCN tend to be correct and have a high confidence level.
Therefore adjusting the confidence threshold does not affect the model to select the true
positive samples.
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Figure 4. The influence of τp on performance.

Table 2. The influence of τp on performance.

τp mAP Rank-1 Rank-5 Rank-10 Rank-20

0.40 65.9 83.6 93.4 96.1 97.6
0.50 66.0 83.9 93.5 95.7 97.5
0.60 66.4 84.6 93.6 95.8 97.3
0.70 66.1 84.1 93.8 96.4 97.7
0.80 66.4 84.5 93.9 96.4 97.8
0.90 66.2 83.6 93.6 95.7 97.1

In the experiments exploring the effect of the number of graph convolution layers l,
we set l to 2, 3, and 4, respectively, with τp set to 0.8. The experimental results are shown in
Figure 5, and the specific numerical results are shown in Table 3. It can be observed from
Figure 5 that the model’s performance remains relatively stable as the number of graph
convolution layers changes, with most of the tested metrics reaching their best performance
when the model has two layers of graph convolution. This part of the experimental results
shows that the model is less sensitive to the number of graph convolution layers. This
is likely because increasing the depth of the graph convolution introduces an additional
number of parameters. In semi-supervised training, most of the data are unlabeled data.
Increasing the depth of the network does not effectively increase the knowledge gained
by the model from the data, so changing the number of layers of the graph convolution
has little effect on the performance of the network and may even bring about a decrease
in performance.

Table 3. Parameter l influence on the performance.

l mAP Rank-1 Rank-5 Rank-10 Rank-20

2 66.4 84.5 93.9 96.4 97.8
3 65.7 83.5 93.6 96.1 97.6
4 66.4 84.0 93.8 96.0 97.4
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Figure 5. The influence of l on performance.

4.5. Runtime Analysis

The running time of the model in each phase of the proposed method is shown in
Table 4. The results in the table are measured with a batch size of 64. From Table 4, it can be
seen that stage 2 of generating pseudo-labels and performing uncertainty filtering takes the
longest time in training. That is probably because it has to traverse and filter the confidence
of samples to obtain positive and negative pseudo-labels. In the testing phase, the model
is able to process about 1800 images per second, thus providing a certain level of the
real-time performance.

Table 4. Running time of the model on a batch in each phase.

Phase Runtime

Training
Stage 1 220 ms
Stage 2 365 ms
Stage 3 160 ms

Testing 35 ms

4.6. Performance Comparison
4.6.1. Comparison of the Image Clustering Task

The proposed method is compared to the classical clustering methods. For a fair
comparison, the features extracted by the proposed method are used for the rest of the
clustering methods. The experimental results are shown in Figures 6 and 7. The specific
numerical results are shown in Tables 5 and 6.

Figure 6. Performance comparison on the IJB-B dataset.
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Figure 7. Performance comparison on the IJB-C dataset.

Table 5. Method comparison on the three subsets of IJB-B.

Methods
NMI

IJB-B-512 IJB-B-1024 IJB-B-1845

K-Means [26] 0.8149 0.8303 0.8393
DBSCAN [27] 0.6340 0.6007 0.5896

ARO [28] 0.8007 0.8714 0.8904
L-GCN [29] 0.8333 0.8301 0.8311
Proposed 0.8447 0.8802 0.9128

Table 6. Method comparison on the three subsets of IJB-C.

Methods
NMI

IJB-C-1021 IJB-C-1839 IJB-C-3531

K-Means [26] 0.8690 0.8674 0.8676
DBSCAN [27] 0.7010 0.6625 0.6297

ARO [28] 0.8955 0.9101 0.9111
L-GCN [29] 0.8008 0.8042 0.8111
Proposed 0.9063 0.9271 0.9548

As shown in Figures 6 and 7, the proposed method outperforms the remaining clus-
tering methods in terms of experimental results. For example, on the IJB-B-512 subset,
the proposed method improves by 2.89% compared to k-means, 21.07% compared to the
DBSCAN method, 4.4% compared to the ARO method, and 1.14% compared to the L-GCN,
and achieves similar results to the rest of the IJB-B subsets. The experimental results show
that the predictions of the proposed method have high accuracy. This is mainly because,
the proposed method improves the accuracy of predictions from two perspectives, i.e., the
discrimination of features and the accuracy of pseudo-labeling. Specifically, the proposed
method learns the similarity graph structure between labeled and unlabeled samples using
the SGSL model, and then makes the features more discriminative by UGCN. Moreover,
when generating pseudo-labels for unlabeled samples, the proposed method not only uses
uncertainty to check the reliability of prediction confidence, but also makes full use of
samples with low confidence and generates negative pseudo-labels for them to enrich
supervised information of the network.

4.6.2. Comparison of Person Re-ID Task

The proposed method is being compared to semi-supervised person re-identification
methods. For a fair comparison, the proposed method is only compared to those methods
with the same semi-supervised setup. These methods can be briefly described as follows:
MVC [30], which is a semi-supervised method based on self-training, SPC [31], which is a
semi-supervised method based on self-paced learning, and TSSML [32], which is a person
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re-identification method based on transductive learning. The experimental results on the
Market-1501 and DukeMTMC-reID datasets are shown in Figures 8 and 9, and the specific
numerical results are shown in Tables 7 and 8, respectively.

Figure 8. Performance comparison on the Market-1501 dataset.

Figure 9. Performance comparison on the DukeMTMC-reID dataset.

Table 7. Performance comparison on the Market-1501 dataset.

mAP Rank-1 Rank-5 Rank-10

MVC [30] 52.6 75.2 - -
SPC-ResNet50 [31] 53.2 75.1 86.2 90.3

SPC-DenseNet101 [31] 56.6 75.9 90.0 93.5
SPC-Combine [31] 62.8 80.1 91.8 94.7

TSSML [32] 65.6 83.9 93.1 -
proposed 66.4 84.5 93.9 96.4

Table 8. Performance comparison on the DukeMTMC-reID dataset.

mAP Rank-1 Rank-5 Rank-10

MVC [30] 37.8 57.6 - -
SPC-ResNet50 [31] 37.4 58.5 73.6 79.3

SPC-DenseNet101 [31] 45.1 66.3 79.6 83.4
SPC-Combine [31] 50.2 70.7 82.1 86.4

TSSML [32] 53.2 72.7 85.2 -
proposed 53.8 71.4 84.8 89.3

From the comparison results on the Market-1501 dataset, it can be seen that the pro-
posed method achieves the best results on mAP, Rank-1, Rank-5, and Rank-10. Compared
to the suboptimal TSSML method, the proposed method improves by 0.8% on mAP, 0.6%
on Rank-1, and 0.8% on Rank-5. Moreover, from the comparison results on the DukeMTMC-
reID dataset, it shows that the proposed method improves by 0.6% in mAP compared to
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the TSSML method, while it is still competitive in Rank-1 and Rank-5, although it is not the
best. Compared to the SPC-Combine method, the proposed method improves by 3.6% on
mAP, 0.7% on Rank-1, 2.7% on Rank-5, and 2.9% on Rank-10.

There are two main reasons for the strong competitiveness of the proposed method.
Firstly, we fully consider the potential correlation between labeled and unlabeled samples
during training. Then, we exploit the neighborhood aggregation capability of the graph
convolutional network to gradually drive the features of unlabeled samples to approach
those of similar labeled samples during training. This, in turn, drives the backbone network
to learn more discriminative features through backpropagation. Secondly, to reduce the
noise in pseudo-labels, uncertainty is utilized to measure the reliability of predictions by
repeatedly feeding batch samples into the network 10 times and calculating the standard
deviation of 10 results. Only those with a standard deviation less than a threshold are
considered reliable classification predictions. Therefore, the experimental results of the
proposed method on both image clustering and person re-identification tasks are highly
competitive, demonstrating that the proposed method can learn more discriminative
features and generate more accurate pseudo-labels.

5. Conclusions

We propose a positive and negative self-training framework based on graph-based
deep uncertainty, which can utilize the potential correlation between labeled and unlabeled
samples in semi-supervised learning. The network includes two key models, i.e., SGSL
and UGCN. The SGSL model builds a kind of similarity graph structure for labeled and
unlabeled samples. The UGCN can aggregate features in the training phase based on
the learned graph structure, making the features more discriminative. In addition, it can
output uncertainty for predictions in the pseudo-label generation phase and generate
pseudo-labels only for the unlabeled samples with low uncertainty, which in turn reduces
the noise in pseudo-labels. The proposed method is evaluated on image clustering and
person re-identification tasks, and both experimental results show the effectiveness of the
proposed method.
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